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ABSTRACT

Han, Jaemin Ph.D., Purdue University, May 2016. Multi-session Network Coding
Characterization using New Linear Coding Frameworks. Major Professor: Chih-
Chun Wang.

Recently, Network Coding (NC) has emerged as a promising technique in modern

communication networks and has shown extensive potentials in practical implemen-

tations and theoretical developments. Nevertheless, the NC problem itself remains

largely open especially where the multiple flows (sessions) exist. Unlike single-session

where all receivers want the same information, they demand different set of infor-

mation in multi-session and thus NC strategy should be carefully designed to avoid

interferences. However, characterizing an optimal strategy (even a simple solution)

has known to be of prohibitive complexity even we restrict to the linear network

coding (LNC) problem.

This thesis provides a fundamental approach to overcome this multi-session com-

plexity. We first consider the Directed Acyclic Integer-Capacity network model that

characterizes the real-life instantaneous Wireline Networks. In this model, people

recently applied the results of wireless interference channels to evade the multi-

session difficulties. However, our NC understanding is still nascent due to differ-

ent wireline channel characteristics to that of wireless. Therefore, motivated by the

graph-theoretic characterizations of classic linear NC results, we first propose a new

Precoding-based Framework and its fundamental properties that can bridge between

the point-to-point network channel and the underlying graph structures. Such rela-

tionships turn out to be critical when characterizing graph-theoretically the feasibil-

ity of the Precoding-based solutions. One application of our results is to answer the



x

conjecture of the 3-unicast interference alignment technique and the corresponding

graph-theoretic characterization conditions.

ForWireless Networks, we use the packet erasure network model that characterizes

the real-life harsh wireless environment by the probabilistic arguments. In this model,

we consider the multi-session capacity characterization problem. Due to the signal

fading and the wireless broadcasting nature, the linear NC designer needs to optimize

the following three considerations all together: LNC encoding operations; scheduling

between nodes; and the feedback and packet reception probabilities. As a result, the

problem itself is more convoluted than that of wireline networks where we only need

to focus on how to mix packets, i.e., coding choices, and thus our understandings

have been limited on characterizing optimal/near-optimal LNC strategies of simple

network settings. To circumvent the intrinsic hardness, we have developed a frame-

work, termed Space-based Framework, that exploits the inherent linear structure of

the LNC problem and that can directly compute the LP(Linear Programming)-based

LNC capacity outer bound. Motivated by this framework, this thesis fully charac-

terizes more complex/larger network settings: The Shannon capacity region of the

3-node network with arbitrary traffic patterns; and The LNC capacity region of the

2-flow smart repeater network.



1

1. INTRODUCTION

In the communication network where multiple nodes are intertwined with each other,

it was commonly believed that an information packet should be unchanged during

delivery. As a result, the routing (store-and-forward) was an dominant form of dis-

tributing packets and thus network solution was approached as to optimize multi-

commodities (flow demands) between nodes.

This long-lasting routing paradigm has been enlightened by the seminal work from

Ahlswede et al., the concept of Network Coding (NC) in 2000 [1]. The new concept

that information packets can be mixed to be beneficial, not only achieved the single

multicast capacity, but also broadened our understandings of the notoriously chal-

lenging network information problem. Network Coding has been further concreted

by the follow-up works from theory to practice. Li et al. showed that linear network

coding (LNC) suffices to achieve a single-session (also known as intra-session) ca-

pacity [2], which followed by the well-formulated framework for general multi-session

(also known as inter-session) settings [3]. This classic framework bridged a straight

connection between a given network information flow problem and a finite field al-

gebraic variety (the set of solutions of a system of polynomial equations), providing

a critical step in shifting Network Coding from knowledge to application. Network

Coding became further implementation-friendly by the packet-header padding of mix-

ing coefficients [4] along with the success of a polynomial-time algorithm [5] and the

distributed random linear network coding [6], all in single-session scenario.

Thanks to these fundamental efforts, NC became an promising technique in mod-

ern communication systems. The numerous applications such as P2P file systems and

recent wireless testbeds [7,8] have also demonstrated that LNC can provide substan-

tial throughput gains over the traditional 802.11 protocols in a practical environment.

Several literatures also showed some potential extensions to the reliable communica-
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tions from a security perspective [9, 10]; over network errors and erasures [11–14];

to the broadcasting systems for the multi-resolution support [15, 16]; to the resilient

storage recovery [17, 18]; and even to the index coding problem [19, 20]

1.1 Limited Understandings in Multi-session Network Coding

Despite its great potentials, the NC problem itself is largely open in general,

especially where multiple flows (sessions) exist. Unlike single-session where all re-

ceivers want the same set of information, in multi-session scenario, receivers re-

quire different set of information from sources. Therefore, “how to mix informa-

tion” should be carefully designed over the entire network, otherwise an inevitable

interference from undesired senders may occur. Since the design needs to avoid inter-

ferences while satisfying the given traffic demands, our multi-session understandings

in optimal/near-optimal NC strategies have been limited: over some special network

topologies [21–23]; under restrictive rate constraints [24–26]; and by inner and outer

bounding approaches [22,27,28]. Even we restrict our focus on the linear NC problem,

the simplest scenarios of 2-unicast/multicast with single rates are only people have

solved completely [24, 29, 30]. There are some achievability results for larger than

single rates [25, 26] but still the LNC capacity for arbitrary 2-unicast/multicast has

not been resolved up to date. This is also one reason why the simple form of 2-unicast

instances, i.e., the famous Butterfly structure, has been exploited mostly in practical

implementations and theoretical developments [7,31–35]. Therefore in this thesis, we

propose two new frameworks that help us to characterize the multi-session NC prob-

lem. Both frameworks are built upon the linear structure of the packet-mixing nature,

and are designed to provide an tractable analysis of the notorious multi-session Net-

work Coding problems. Although it is known that there are some cases that the linear

network coding (LNC) is not sufficient to achieve the multi-session capacity [36], the

problem characterization based upon the linear structure will be invaluable in broad-

ening our currently-limited understandings and in practical viewpoints as well. From
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the following section, we will introduce these two linear frameworks and develop our

motivations in more depth.

1.2 Wireline Networks - Directed Acyclic Integer-Capacity Network

The NC problem in Wireline Networks has been considered in the Directed Acyclic

Integer-Capacity network model [3]. Unlike the error-prone wireless environment, a

packet transmission over a wired link (or edge) can be easily made error-free by

forward error correcting codes. We can thus exclusively focus on the information

delivery without worrying too much about erroneous receptions. There might be

some topological changes in the network (such as a temporal link failure), but we

focus on fixed topologies to understand the problem more clearly. We further assume

that the network is directed acyclic (there are no cycles) and follow the widely-used

instantaneous transmission model for the directed acyclic integer-capacity network [3].

1.2.1 Linear Network Coding : The Classic Algebraic Framework

Consider the following scenarios as shown in Fig. 1.1. The directed acyclic integer-

capacity network model and the corresponding algebraic framework [3] for the LNC

problem can be understood by looking into these examples. Fig. 1.1(a) illustrates the

famous Butterfly topology where d1 and d2 wants to receive packets from s1 and s2,

respectively. At each node, a packet transmitted through an outgoing link is a linear

combination of the packets from all incoming links. For example, a packet transmitted

through an link e is a linear combination of the packets from two incoming links,

whose coefficients are x5 and x6, respectively. At each node, we have such coefficients

for all incoming to outgoing relationships, and the collection of such coefficients in

the network is called local encoding kernels (or network variables). For example,

the network variables in Fig. 1.1(a) are {x1, ..., x12}. Then once transmitted, by

the instantaneous transmission model, each destination will see the following linear

combination of the packets X and Y whose coefficients are high-order polynomials
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s1 s2

d1d2

X

X+Y

X Y
X+Y X+Y

Y

(a)

s1 s2 s3

d1 d2 d3 d4

Y1 Y2

Y2

Y2
Y3

Y2+Y3

Y2+Y3
Y1+Y2

Y1+Y3
Y1+Y3Y1+Y2

Y2+2Y3
Y2+2Y3

Y2+Y3

Y3
Y1+Y3

Y3
Y2+2Y3

Y3

Y2+Y3

Y2+Y3 Y3

(b)

Fig. 1.1. (a) The Butterfly structure (2-unicast) with the corresponding network
variables {x1, ..., x12} and the resulting LNC transmission that satisfies the traffic
demand of (Rs1→d1 , Rs2→d2) = (1, 1); and (b) The 2-unicast and 1-multicast combi-
nation scenario and the resulting LNC transmission that satisfies the traffic demand
(Rs1→d2 , Rs2→{d1,d4}, Rs3→d3) = (1, {1, 1}, 1)

with respect to the network variables: (x1x9 + x2x5x7x10) · X + (x3x6x7x10) · Y at

d2; and (x2x5x8x11) · X + (x3x6x8x11 + x4x12) · Y at d1, respectively. The objective

of the LNC problem is to find a specific assignment of the network variables that

can satisfy the given traffic demand while being interference-free, i.e., solving the

following feasibility equations:

d1 : x3x6x8x11 + x4x12 = 0, x2x5x8x11 6= 0,

d2 : x1x9 + x2x5x7x10 = 0, x3x6x7x10 6= 0.

Note that the first column of equations are to be interference-free from the undesired

packets (removing interferences) while the second column of equations are to receive

the desired packets (satisfy the traffic demand).

In this example, we can easily find a solution that satisfies (Rs1→d1 , Rs2→d2) =

(1, 1): set −1 to both x9 and x12, and set 1 to all the other variables. The resulting
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packet transmissions are shown by a red color in Fig. 1.1(a). Notice that without

packet-mixing, an link e would be a bottleneck for each unicast. As a result, any

routing solutions cannot simultaneously meet the rate (1, 1) for this 2-unicast.

How about the scenario in Fig. 1.1(b)? For this 2-unicast and 1-multicast combi-

nation scenario, [37] has shown that (Rs1→d2 , Rs2→{d1,d4}, Rs3→d3) = (1, {1, 1}, 1) can
be LNC-achievable. The feasibility equations and the corresponding LNC solutions

(assignment of network variables) are left to the reader but one solution is shown by

a red color. Notice that both d2 and d3 do not want Y2 from s2, and we are canceling

Y2 at two edges e′ and e′′ to be interference-free, while satisfying the multicast traffic

from s2 to {d1, d4}.
As you can see from these examples, finding a solution (or algebraic variety) that

satisfies the feasibility equations directly tells us how to design an linear network code.

This classic algebraic framework [3] thus bridges a straight connection between a given

network information flow problem and an algebraic solution. Notice that it is easy to

check whether the given solution is feasible but not easy to come up with a solution

from the beginning. This is mainly due to the interference-free requirements of the

multi-session problem that must be zero in the feasibility equations, unlike single-

session where we only need to satisfy the non-zero-equations (satisfying the traffic

demand), which can be done with high probability by choosing the values of local

encoding kernels independently and randomly. It turned out that the complexity of

finding a algebraic solution in multi-session scenarios becomes NP-hard for arbitrary

communication demands [3, 38].

1.2.2 New Precoding-based Framework

To circumvent this NP-hard complexity, people recently focused on the analogy

between the Directed Acyclic Wireline Network and the Wireless Interference Chan-

nel that the instantaneous transmission is assumed in the directed acyclic model as

in wireless. Therefore, applying the techniques developed in Wireless Interference
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Channels was a natural sequence. Such applications are the linear deterministic

interference cancellation technique of 2-user Interference Channel [25,26] and the in-

terference alignment technique [39] to 3-unicast, called 3-unicast Asymptotic Network

Alignment (ANA) scheme [40, 41].

This brings a new perspective on the multi-session LNC problem. As there is

no control on wireless channels between two end points, the network designer can

focus on designing the precoding and decoding mappings at the source and destina-

tion nodes while allowing randomly generated local encoding kernels [6] within the

network. Compared to the classic algebraic framework that fully controls the local

encoding kernels [3], this precoding-based approach trades off the ultimate achievable

throughput with a distributed, implementation-friendly structure that exploits an al-

gebraic network channel by a pure random linear NC in the interior of the network.

These initial studies show that, under certain network topology and traffic demand,

the precoding-based NC can perform as good as a few widely-used LNC solutions.

Such results demonstrates a new balance between practicality and throughput en-

hancement.

However, due to different wireline channel characteristics to that of wireless, our

NC understanding is still nascent, especially in a graph-theoretic sense. Notice that

many known NC scenarios were characterized graph-theoretically. For example, if

there exists only a single session (s, {di}) in the network, the existence of a NC

solution is equivalent to that the rate being no larger than the minimum of min-cuts

from a source s to each destination di. Another example is the 2-unicast with single

rates. The existence of an LNC solution is equivalent to the conditions that the some

cuts or paths are properly placed in certain ways [24, 29, 30]. Moreover, such graph-

theoretic characterizations can be easily checked in polynomial time, which is not

the case and intractable for the algebraic conditions as discussed above. Therefore,

bridging a straight connection between an algebraic network channel and a graph-

theoretic structure will be an influential direction in enlarging our understandings.
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We believe that our work of establishing such connection will be a precursor along

this leap.

1.3 Wireless Networks - Broadcast Packet Erasure Channel

In Wireless Networks, a packet transmission over a link suffers from a severe

channel fading and thus a packet erasure is sometimes inevitable during delivery.

Unlike Wireline Networks where an edge can be easily made error-free, an erasure-

control mechanism such as Automatic Repeat-reQuest (ARQ) feedback is a common

practice in Wireless Networks. We thus assume the casual network-wide channel state

information feedback between nodes in the network. This can be accomplished by

each node broadcasting its packet reception status (ACK/NACK) over the network

via a very low-rate control channel or via piggybacking the forward traffic [42].

What makes the wireless multi-session LNC problem more intriguing is that, in

addition to the feedback, we need to jointly consider the transmission orders be-

tween nodes as well. Unlike Wireline Networks where the packet transmissions are

directive along the deployed links, in Wireless Networks, the transmission signals

are dispersed/broadcasted around. Moreover, unlike Wireline Networks where si-

multaneous reception from different incoming edges can be processed separately, in

Wireless Networks, simultaneous receptions are additive and thus may create severe

interference from undesired senders such as the Hidden Node problem. As a result,

the interference avoidance is a common baseline for most wireless advancements and

thus scheduling between nodes needs to be jointly considered. Moreover, if there are

multiple co-existing flows in a multi-hop network that go in different directions, then

each node sometimes has to assume different roles (say, being a sender and/or being

a relay) simultaneously. An optimal solution thus needs to balance the roles of each

node either through scheduling [35, 43] or through ingenious ways of coding and co-

operation [44, 45]. Also see the discussion in [46] for the very detailed case studies

for a 3-node network. As a result, the linear NC designer needs to jointly optimize
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not only “how to mix the available packets for delivery” but also “how to schedule

transmissions between nodes”, both of which depend on the feedback and the packet

erasure events of the wireless channel. Therefore, it becomes even harder to char-

acterize and to design the optimal/near-optimal LNC strategy. Due to the wireless

broadcasting nature, such erasure behaviors can be modeled by some probabilistic

arguments, termed Broadcast Packet Erasure Channel (PEC). For the following sub-

sections, we will look into some PEC example networks and develop these discussions

more deeply.

1.3.1 Linear Network Coding : Illustrative Examples

Fig. 1.2(a) illustrates the 2-user Broadcast PEC scenario where a common node

s would like to send different information to d1 and d2. If we let n be the total

time budget and would like to achieve a specific rate tuple (R1, R2), then there are

n(R1 +R2) packets that need to be delivered over the course of n time slots. For the

LNC design of “how to mix the available information”, such coding choices can be as

many as qn(R1+R2) if we use a packet size to be a finite field Fq. Moreover, sending a

specific coding choice out of qn(R1+R2) is coupled with the feedback and the reception

probabilities. Thus, one can see that the characterization problem in Wireless Packet

Erasure Channels are more convoluted that that of Wireline Networks. Recently, the

LNC capacity region of the 2-user Broadcast PEC was fully characterized and proven

that it is indeed the information-theoretic capacity [47]. Moreover, the LNC capacity

region for arbitrary K-receiver extension of Fig. 1.2(a) was also fully characterized

by the intelligent packet-evolution scheme [48].

Fig. 1.2(b) illustrates the 2-flow 1-hop relay scenario where two sources s1 and s2

would like to deliver packets to d1 and d2, respectively, via a relay node r. Unlike

the previous literature where there is no scheduling consideration between nodes (the

single source s is the only transmitting node), here we need to consider transmission

orders between s1, s2, and r. Namely, the scheduling design is coupled with the
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(a)

YX

X+Y

(b)

Fig. 1.2. The illustration of the wireless Packet Erasure Channel (PEC) scenarios:
(a) 2-user broadcast channel; and (b) 2-flow 1-hop relay channel (Wireless Butterfly).

coding choices of “how to mix the available information”, and also with the feedback

and the reception probabilities. It is not hard to see the immediate throughput

advantage because without Network Coding the relay r would require more time-

slots to transmit X and Y to each receiver. However, creating NC opportunities and

the use of smart coding choices is correlated to the scheduling decisions, the feedback,

and the reception probabilities as explained above. Recently, the LNC capacity region

and the achieving scheme of the 2-flow 1-hop relay network was fully characterized

even with the direct overhearing between each source-receiver pair [35, 49]. Due

to the inherent hardness of the problem, the network capacity understandings are

limited to some simpler scenarios, most of which involve only 1-hop transmissions,

say broadcast channels or multiple access channels, and/or with all co-existing flows

in parallel directions (i.e., flows not forming cycles).

1.3.2 New Space-based Framework

One critical reason for the successful characterization of the simple PEC scenarios

is that the network itself admits a strikingly simple solution that achieves the capac-

ity. For example, the capacity-achieving scheme of Fig. 1.2(a) is that the source s
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first transmits X and Y packets uncodedly, and then later perform the classic XOR

operation of sending a packet mixture [X + Y ], for those which X is overheard by d2

and Y is overheard by d1. For the case of Fig. 1.2(b), the capacity approaching solu-

tion is to similarly take advantage of the classic butterfly-styles operations as much

as possible at the relay r. Notice that there is a clear separation between the roles

of source, relay, and receiver in these examples. However in real scenarios, there is

no such distinct roles and nodes may communicate with each other in an arbitrary

way. For such complex network with arbitrary multi-hop traffics in-between, one can

imagine that an intelligent but rather simple solution would be extremely hard to find

as more coding choices, scheduling decisions, feedback, and reception probabilities are

convoluted with each other.

To circumvent this intrinsic hardness, we proposed a novel LNC framework, termed

the Space-based Framework [50]. This framework incorporates the joint design of

choosing the coding choices and the scheduling decisions into an easily-solvable lin-

ear programming (LP) problem. Specifically, the framework enables us to divide the

entire set of the LNC choices into some necessary subspaces and formulate the evolu-

tion of the rank of each subspace to the scheduling decisions over the course of total

time budget n. Once we carefully design the coding spaces to cover the entire LNC

operations in a lossless way, then the LP solver directly finds the LNC capacity outer

bound. This framework is innovative in a sense that not only it can be applied to

arbitrary PEC network, but also the LNC capacity outer bound can be found without

the need of finding any cut-condition.1 This exhaustive search-based approach was

previously not possible since there are already too many LNC design choices even in

the simpler examples as in Fig. 1.2. Moreover, each variable in the LP formulation

is associated to a subset of the entire linear space, i.e., an LNC operation that a

sender can perform. Therefore, a careful analysis of the LP structure can lead us to

design a simpler but intelligent LNC achievability strategy. Thanks to this frame-

work, the LNC capacity (and even information-theoretic capacity) of many scenarios

1The cut-condition is usually for the traditional information-theoretic approach where we first finds
a cut and an achievability scheme and later proves that both meet.
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and the corresponding achieving schemes have been found [42, 43, 50]. Motivated by

this Space-based Framework, this thesis characterizes the capacity and the simple

achievability scheme of the larger/complex PEC networks: the 3-node multi-session

PEC network with arbitrary traffic directions and the 2-flow smart repeater network.

1.4 Our Contributions

Our contributions consists of three parts. In the first part, this thesis, motivated by

the proposed Space-based Framework, characterizes the full Shannon capacity of the

3-node multi-session PEC network with the most general traffic demands, i.e., when

three nodes {1, 2, 3} are communicating with each other and each node is a source, a

relay, and a receiver simultaneously. Namely, there are six private-information flows

with rates (R1→2, R1→3, R2→1, R2→3, R3→1, R3→2), respectively, and three common-

information flows with rates (R1→23, R2→31, R3→12), respectively. We characterize the

9-dimensional Shannon capacity region within a gap that is inversely proportional

to the packet size (bits). The gap can be attributed to exchanging reception status

(ACK/NACK) and can be further reduced to zero if we allow such feedbacks to be

transmitted via a separate control channel. For normal-sized packets, say 12000 bits,

our results effectively characterize the capacity region for many important scenarios,

e.g., wireless access-point networks with client-to-client cooperative communications,

and wireless 2-way relay networks with packet-level coding and processing. Notice

that most existing works on packet erasure networks have studied either ≤ 2 co-

existing flows [7, 8, 35, 42, 43, 47] or all flows originating from the same node [43, 48,

50–54]. By characterizing the most general 9-dimensional Shannon capacity region

with arbitrary flow directions, this work significantly improves our understanding

for communications over the 3-node network. Technical contributions of this work

also includes a new converse for many-to-many network communications and a new

capacity-approaching scheme based on simple LNC operations.
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In the second part of contributions, this thesis, motivated by the proposed Space-

based Framework, characterizes the LNC capacity region of the 2-flow smart repeater

PEC network. Namely, we consider a 4-node 2-hop relay network with one source

s, two destinations {d1, d2}, and a common relay r inter-connected by two broad-

cast PECs. The smart repeater PEC network is a new topology by combining two

sources s1 and s2 in the 2-flow wireless butterfly PEC network of Fig. 1.2(b). Un-

like Fig. 1.2(b) where two separate sources s1 and s2 are not coordinating with each

other and thus the LNC encoding operation of each source is limited to mixing its

own packets at most, our single source s has no limitation for any LNC operation,

thereby mixing packets of different sessions freely. As a result, our smart repeater

problem is a strict generalization of the 2-flow wireless butterfly problem. In such a

setting, we effectively characterize the LNC capacity with a new capacity-approaching

scheme that utilizes the newly-identified LNC operations other than the previously

known classic butterfly-style operations. Technical contributions of this work also in-

cludes a queue-based analysis of our capacity-approaching LNC scheme and the new

correctness proof based on the properties of the queue invariance.

In the third part of contributions, this thesis, motivated by its practical advan-

tages over the classic linear NC framework, focuses exclusively on the Precoding-

based Framework and characterize its corresponding properties. To that end, we first

formulate the Precoding-based Framework that embraces the results of Wireless In-

terference Channels, and compare it to the classic algebraic framework [3]. We then

identify several fundamental properties which allow us to bridge the gap between

the network channel gains and the underlying network topology. We then use the

newly developed results to analyze the 3-unicast ANA scheme proposed in [40, 41].

Specifically, the existing results [40,41] show that the 3-unicast ANA scheme achieves

asymptotically half of the interference-free throughput for each transmission pair

when a set of algebraic conditions on the channel gains of the networks are satisfied.

Note that for the case of Wireless Interference Channels, these algebraic feasibility

conditions can be satisfied with close-to-one probability provided the channel gains
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are continuously distributed random variables [39]. For comparison, the “network

channel gains” are usually highly correlated2 discrete random variables and thus the

algebraic channel conditions do not always hold with close-to-one probability. More-

over, except for some very simple networks, checking whether the algebraic channel

conditions hold turns out to be computationally prohibitive. As a result, we need

new and efficient ways to decide whether the network of interest admits a 3-unicast

ANA scheme that achieves half of the interference-free throughput. Motivated by the

graph-theoretic characterizations of classic linear NC results, this thesis answers this

question by developing new graph-theoretic conditions that characterize the feasibil-

ity of the 3-unicast ANA scheme. The proposed graph-theoretic conditions can be

easily computed and checked within polynomial time.

1.5 Thesis Outline

In the next chapter, we formulate the wireless multi-session PEC problems of the

3-node network and the smart repeater network, which incorporates the broadcast

packet erasure channels with feedback and scheduling decisions all together. In Chap-

ter 3, we describe the 9-dimensional Shannon capacity of the 3-node packet erasure

network with a simple capacity-approaching LNC scheme. In Chapter 4, we propose

the LNC capacity outer bound of the smart repeater problem based on the Space-

based Framework, and provide a close-to-optimal LNC inner bound. In Chapter 5,

we formulate the Precoding-based Framework with some necessary graph-theoretic

and algebraic definitions. The comparison to the classic algebraic framework [3], and

some applications and fundamental properties of the Precoding-based Framework are

also discussed. In Chapter 6, we characterize the graph-theoretic feasibility condi-

tions of one application of the Pecoding-based Framework, the 3-unicast Asymptotic

Network Alignment (ANA) scheme. In Chapter 7, we conclude this thesis and discuss

the possible extensions and future works.

2The correlation depends heavily on the underlying network topology.
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2. MODEL FORMULATION FOR WIRELESS PACKET

ERASURE NETWORKS

In this chapter, we will first mathematically formulate the 1-to-K broadcast packet

erasure channel (PEC). Based on the PEC definition, we formulate the problems of

the 3-node wireless packet erasure network and the wireless smart repeater packet

erasure network, which incorporates the broadcast packet erasure channels with the

network-wide feedback, encoding/decoding descriptions, and the scheduling decisions

all together. We also define some useful channel probability notations.

2.1 The Broadcast Packet Erasure Channels

For any positive integer K, an 1-to-K broadcast packet erasure channel (PEC) is

defined as to take an input X from a finite field Fq with size q > 0 and output a K-

dimensional vector Y = (Y1, Y2, · · · , YK). We assume that the input is either received

perfectly or completely erased, i.e., each output Yk must be either the input X or an

erasure symbol ε, where Yk = ε means that the k-th receiver does not correctly receive

the input X . As a result, the reception status can be described by a K-dimensional

binary vector Z = (Z1, Z2, · · · , ZK) where Zk = 1 and ε represents whether the k-th

receiver successfully received the input X or not, respectively. Any given PEC can

then be described by its distribution of the binary reception status Z.

2.2 The 3-node Packet Erasure Network

Consider a network of three nearby nodes labeled as {1, 2, 3}, see Fig. 2.1(a).

For the ease of exposition, we will use (i, j, k) to represent one of three cyclically

shifted tuples of node indices {(1, 2, 3), (2, 3, 1), (3, 1, 2)}. The 3-node Packet Erasure
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(b) The 3-node Packet Erasure Network

Fig. 2.1. Illustrations of the wireless 3-node Packet Erasure Network (PEN). There
are nine co-existing flows possible in general.

Network (PEN) is then defined as the collection of three separate 1-to-2 broadcast

PECs, each from node i to the other two nodes j and k for all i ∈ {1, 2, 3}, see
Fig. 2.1(b).

The channel behaviors of the 3-node PEN can be described by the following def-

initions. For any time slot t, we use a 6-dimensional channel reception status vector

Z(t) to represent the reception status of the entire network:

Z(t) = (Z1→2(t), Z1→3(t), Z2→1(t), Z2→3(t), Z3→1(t), Z3→2(t)) ∈ {1, ε}6,

where Zi→h(t) = 1 and ε represents whether node h can receive the transmission

from node i or not, respectively. We assume that the 3-node PEN is memoryless and

stationary,1 i.e., we allow arbitrary joint distribution for the 6 coordinates of Z(t) but

assume that Z(t1) and Z(t2) are independently and identically distributed for any

t1 6= t2. We use pi→jk , Prob(Zi→j(t) = 1, Zi→k(t) = 1) to denote the probability

that the packet transmitted from node i is successfully received by both nodes j and

k; and use pi→jk to denote the probability Prob(Zi→j(t) = 1, Zi→k(t) = ε) that node-

i packet is successfully received by node j but not by node k. Probability pi→jk is

defined symmetrically. Define pi→j∨k , pi→jk+pi→jk+pi→jk as the probability that at

least one of nodes j and k receives the packet, and define pi→j , pi→jk +pi→jk (resp.

pi→k , pi→jk + pi→jk) as the marginal reception probability from node i to node j

1The 3-node PEN is a special case of the discrete memoryless network channel [44].
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(resp. node k). We also assume that the random process {Z(t) : ∀t} is independent

of any information messages.

Assume synchronized time-slotted transmissions. To model interference, we as-

sume that only one node can successfully transmit at each time slot t ∈ {1, · · · , n}. If
≥ 2 nodes transmit, then the transmissions of both nodes fail. More specifically, we

define the following scheduling decision binary variable σi(t) for any node i ∈ {1, 2, 3}.
Namely, σi(t) = 1 represents that node i decides to transmit at time t and σi(t) = 0

represents not transmitting. Any transmission is completely destroyed if there are ≥ 2

nodes transmitting simultaneously. For example, suppose node i decides to transmit

a packet Xi(t) ∈ Fq in time t (thus σi(t) = 1). Then, only when σj(t) = σk(t) = 0

can node i transmit without any interference. Moreover, only when Zi→h(t) = 1 will

node h 6= i receive Yi→h(t) = Xi(t). In all other cases, node h receives an erasure

Yi→h(t) = ε. To highlight this interference and erasure model, we sometimes write

Yi→h(t) = Xi(t) ◦ Zi→h(t) ◦ 1{σi(t)=1,σj (t)=σk(t)=0}. (2.1)

Over the 3-node PEN described above, we consider the following 9-dimensional

traffic flows: 6 private-information flows with rates (R1→2, R1→3, R2→1, R2→3, R3→1,

R3→2), respectively; and 3 common-information flows with rates (R1→23, R2→31, R3→12),

respectively. Namely, R1→23 represents the rate of the common-information message

from node 1 to both nodes 2 and 3. We use ~Ri∗ , (Ri→j, Ri→k, Ri→jk) to denote

the rates of all three 3 flows originated from node i, for all i ∈ {1, 2, 3}. We use a

9-dimensional rate vector ~R , (~R1∗, ~R2∗, ~R3∗) to denote the rates of all possible flow

directions.

Within a total budget of n time slots, node i would like to send nRi→h packets

(private-information messages), denoted by a row vector Wi→h, to node h 6= i, and

would like to send nRi→jk packets (common-information messages), denoted by a row

vector Wi→jk, to the other two nodes simultaneously. Each uncoded packet is chosen

independently and uniformly randomly from a finite field Fq with size q > 0.
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For the ease of exposition, we define Wi∗ , Wi→j ∪ Wi→k ∪Wi→jk as the col-

lection of all messages originated from node i. Similarly, we define W∗i , Wj→i ∪
Wj→ki ∪Wk→i ∪Wk→ij as the collection of all messages destined to node i. Some-

times we slightly abuse the above notation and define W{i,j}∗ , Wi∗ ∪ Wj∗ as the

collection of messages originated from either node i or node j. Similar “collection-

based” notation can also be applied to the received symbols and we can thus define

Y∗i(t) , {Yj→i(t), Yk→i(t)} andYi∗(t) , {Yi→j(t), Yi→k(t)} as the collection of all sym-

bols received and transmitted by node i during time t, respectively. For simplicity, we

also use brackets [·]t1 to denote the collection from time 1 to t. For example, [Y∗i,Z]
t−1
1

is shorthand for the collection {Yj→i(τ), Yk→i(τ),Z(τ) : ∀τ ∈ {1, · · · , t− 1}}.
To better understand the problem, we consider one of the following two scenarios.

Scenario 1: Motivated by the throughput benefit of the causal packet ACKnowl-

edgment feedback for erasure networks [20,35,42,43,47–50,53–57], in this scenario we

assume that the reception status is casually available to the entire network after each

packet transmission through a separate control channel for free. Such assumption can

be justified by the fact that the length of ACK/NACK is 1 bit, much smaller than

the size of a regular packet.

Scenario 2: In this scenario we assume that there is no inherent feedback mech-

anism. Any ACK/NACK signal, if there is any, has to be sent through the regular

forward channels along with information messages. As a result, any achievability

scheme needs to balance the amount of information and control messages. For exam-

ple, suppose a particular coding scheme chooses to divide the transmitted packet X

into the header and the payload. Then it needs to carefully decide what the content

of the control information would be and how many bits the header should have to

accommodate the control information. The timeliness of delivering the control mes-

sages is also critical since the control information, sent through the forward erasure

channel, may get lost as well. Therefore, the necessary control information may not

arrive in time. Such a setting in Scenario 2 is much closer to practice as it considers

the complexity/delay overhead of the coding solution. In Scenario 2, we also assume
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that the 3-node PEN is fully-connected, i.e, node i can always reach node j, possi-

bly with the help of the third node k, for any i 6= j pairs. The formal definition of

fully-connectedness is provided in Definition 3.2.1. Note that the fully-connectedness

is assumed only in Scenario 2. When the casual reception status is available for free

(Scenario 1), our results do not need the fully-connectedness assumption.

In sum, the causal ACK/NACK feedback can be transmitted for free in Scenario 1

but has to go through the forward channel when in Scenario 2. For the following, we

first focus on the detailed formulation under Scenario 2.

Given the rate vector ~R, a joint scheduling and network coding scheme is described

by 3n binary scheduling functions: ∀ t∈{1, · · · , n} and ∀ i∈{1, 2, 3},

σi(t) = f
(t)
SCH, i([Y∗i]

t−1
1 ) (2.2)

plus 3n encoding functions: ∀ t∈{1, · · · , n} and ∀ i∈{1, 2, 3},

Xi(t) = f
(t)
i (Wi∗, [Y∗i]

t−1
1 ), (2.3)

plus 3 decoding functions: ∀ i ∈ {1, 2, 3},

Ŵ∗i = gi(Wi∗, [Y∗i]
n
1 ). (2.4)

To refrain from using the timing-channel2 techniques [58], we also require the

following equality

I([σ1, σ2, σ3]
n
1 ; W{1,2,3}∗) = 0, (2.5)

where I(· ; ·) is the mutual information and W{1,2,3}∗ , W1∗ ∪W2∗ ∪W3∗ is all the

9-flow information messages as defined earlier.

Intuitively, at every time t, each node decides whether to transmit or not based

on what it has received in the past, see (2.2). Note that the received symbols [Y∗i]
t−1
1

2We believe that the use of timing channel techniques will not alter the capacity region much when
the packet size is large. One justification is that the rate of the timing channel is at most 3 bits per
slot, which is negligible compared to a normal packet size of 12000 bits.
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may contain both the message information and the control information. (2.5) ensures

that the “timing” of the transmission σi(t) cannot be used to carry3 the message

information. Once each node decides whether to transmit or not,4 it encodes Xi(t)

based on its information messages and what it has received from other nodes in the

past, see (2.3). In the end of time n, each node decodes its desired packets based on

its information messages and what it has received, see (2.4).

We can now define the capacity region.

Definition 2.2.1. Fix the distribution of Z(t) and finite field Fq. A 9-dimensional

rate vector ~R is achievable if for any ǫ > 0 there exists a joint scheduling and network

code scheme with sufficiently large n such that Prob(Ŵ∗i 6= W∗i) < ǫ for all i ∈
{1, 2, 3}. The capacity region is the closure of all achievable ~R.

2.2.1 Comparison between Scenarios 1 and 2

The previous formulation focuses on Scenario 2. The difference between Scenar-

ios 1 and 2 is that the former allows the use of causal ACK/NACK feedbacks for free.

As a result, for Scenario 1, we simply need to insert the causal network-wide channel

status information [Z]t−1
1 in the input arguments of (2.2) and (2.3), respectively; and

insert the overall network-wide channels status information [Z]n1 in the input argu-

ment of (2.4). The formulation of Scenario 1 thus becomes as follows: ∀ t∈{1, · · · , n}
and ∀ i∈{1, 2, 3},

σi(t) = f
(t)

SCH, i([Y∗i,Z]
t−1
1 ), (2.6)

Xi(t) = f
(t)

i (Wi∗, [Y∗i,Z]
t−1
1 ), (2.7)

Ŵ∗i = gi(Wi∗, [Y∗i,Z]
n
1 ), (2.8)

3For example, one (not necessarily optimal) way to encode is to divide a packet Xi(t) into the
header and the payload. The messages Wi∗ will be embedded in the payload while the header
contains control information such as ACK. If this is indeed the way we encode, then (2.5) requires
that transmit decision depend only on the control information in the header, not the messages in
the payload.
4If two nodes i and j decide to transmit simultaneously, then our channel model (2.1) automatically
leads to full collision and erases both transmissions.
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while we still impose no-timing channel information (2.5). Obviously, with more

information to use, the capacity region under Scenario 1 is a superset of that of

Scenario 2, which is why we use overlines in the above function descriptions. Following

this observation, we will outer bound the (larger) capacity of Scenario 1 and inner

bound the (smaller) capacity of Scenario 2 in the subsequent sections.

Without loss of generality, we can further replace the distributed scheduling com-

putation in (2.6) (each node i computes its own scheduling) by the following central-

ized scheduling function

σ(t) = f
(t)

SCH
([Z]t−1

1 ) ∈ {1, 2, 3}, (2.9)

that takes the values in the set of three nodes {1, 2, 3}. That is, σ(t) = i implies that

only node i is scheduled to transmit in time t.

To prove why we can replace (2.6) by (2.9) without loss of generality, we first

introduce the following lemma.

Lemma 2.2.1. Without loss of generality, we can replace (2.6) by the following form:

σi(t) = f
(t)

SCH, i([Z]
t−1
1 ), (2.10)

which is still a binary scheduling function but the input argument [Y∗i]
t−1
1 in (2.6) is

removed.

The proof of Lemma 2.2.1 is relegated to Appendix F. The intuition behind the

proof is to show that since the information equality (2.5) must hold, knowing the past

reception status [Z]t−1
1 is sufficient for the scheduling purpose.

Lemma 2.2.1 ensures that we can replace the scheduling decision (2.6) of each

individual node i by (2.10). We then observe that every node i makes its scheduling

decision based on the same input argument [Z]t−1
1 , which, in Scenario 1, is available

to all three nodes for free via a separate control channel. Therefore, it is as if there is

a centralized scheduler in Scenario 1 and the centralized scheduler will never induce
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Fig. 2.2. The 2-flow wireless Smart Repeater network

any scheduling conflict. As a result, we can further replace the individual scheduler

(2.10) by a centralized global scheduling function (2.9) where σ(t) = i implies that

node i is the only scheduled node in time t.

In sum, under Scenario 1, the joint network coding and scheduling solution is

described by (2.7), (2.8), and (2.9). Here we do not impose (2.5) anymore since the

centralized scheduler (2.9) satisfies (2.5) naturally.

2.3 The Smart Repeater Packet Erasure Network

The 2-flow wireless smart repeater network with broadcast PECs, see Fig. 2.2(b),

can be modeled as follows. Consider two traffic rates (R1, R2) and assume slotted

transmissions. Within a total budget of n time slots, source s would like to send nRk

packets, denoted by a row vector Wk, to destination dk for all k∈{1, 2} with the help

of relay r. Each packet is chosen uniformly randomly from a finite field Fq with size

q > 0. To that end, we denote W , (W1,W2) as an nRΣ-dimensional row vector of

all the packets, and define the linear space Ω , (Fq)
nRΣ as the overall message/coding

space.

To represent the reception status, for any time slot t ∈ {1, · · · , n}, we define two

channel reception status vectors:

Zs(t) = (Zs→d1(t), Zs→d2(t), Zs→r(t)) ∈ {1, ∗}3,

Zr(t) = (Zr→d1(t), Zr→d2(t)) ∈ {1, ∗}2,
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where “1” and “∗” represent successful reception and erasure, respectively. For ex-

ample, Zs→d1(t) = 1 and ∗ represents whether d1 can receive the transmission from

source s or not at time slot t. We then use Z(t) , (Zs(t),Zr(t)) to describe the

5-dimensional channel reception status vector of the entire network. We also assume

that Z(t) is memoryless and stationary, i.e., Z(t) is independently and identically

distributed over the time axis t.

We assume that either source s or relay r can transmit at each time slot, and

express the scheduling decision by σ(t) ∈ {s, r}. For example, if σ(t) = s, then

source s transmits a packet Xs(t) ∈ Fq; and only when Zs→h(t) = 1, node h (one of

{d1, d2, r}) will receive Ys→h(t) = Xs(t). In all other cases, node h receives an erasure

Ys→h(t) = ∗. The reception Yr→h(t) of relay r’s transmission is defined similarly.

Assuming that the 5-bit Z(t) vector is broadcast to both s and r after each packet

transmission through a separate control channel, a linear network code contains n

scheduling functions

∀ t ∈ {1, · · · , n}, σ(t) = fσ,t([Z]
t−1
1 ), (2.11)

where we use brackets [ · ]τ1 to denote the collection from time 1 to τ . Namely, at every

time t, scheduling is decided based on the network-wide channel state information

(CSI) up to time (t−1). If source s is scheduled, then it can send a linear combination

of any packets. That is,

If σ(t) = s, then Xs(t) = ctW
⊤ for some ct ∈ Ω, (2.12)

where ct is a row coding vector in Ω. The choice of ct depends on the past CSI vectors

[Z]t−1
1 , and we assume that ct is known causally to the entire network.5 Therefore,

decoding can be performed by simple Gaussian elimination.

5Coding vector ct can either be appended in the header or be computed by the network-wide causal
CSI feedback [Z]t−11 .



23

We now define two important linear space concepts: The individual message

subspace and the knowledge subspace. To that end, we first define el as an nRΣ-

dimensional elementary row vector with its l-th coordinate being one and all the

other coordinates being zero. Recall that the nRΣ coordinates of a vector in Ω can be

divided into 2 consecutive “intervals”, each of them corresponds to the information

packets Wk for each flow from source to destination dk. We then define the individual

message subspace Ωk:

Ωk , span{el : l ∈ “interval” associated to Wk}, (2.13)

That is, Ωk is a linear subspace corresponding to any linear combination of Wk

packets. By (2.13), each Ωk is a linear subspace of the overall message space Ω and

rank(Ωk) = nRk.

We now define the knowledge space for {d1, d2, r}. To that end, we first define the

reception subspace in the end of time t by

RSh(t) , span{cτ : ∀τ≤ t such that node h receives the linear

combination (cτ ·W⊤) successfully in time τ} (2.14)

where h∈{d1, d2, r}. For example, RSr(t) is the linear space spanned by the packets

successfully delivered from source to relay up to time t. RSd1(t) is the linear space

spanned by the packets received at destination d1 up to time t, either transmitted

by source or by relay. The knowledge space6 Sh(t) for h ∈ {d1, d2, r} can be simply

defined as

Sh(t) , RSh(t). (2.15)

For shorthand, we use S1(t) and S2(t) instead of Sd1(t) and Sd2(t), respectively. Then,

by the above definitions, we quickly have that destination dk can decode the desired

6The knowledge space Sh(t) is a superordinate concept that contains not only the reception subspace
RSh(t) but also the messages originated from node h, if any. In our problem of interest, the messages
are originated only from source and thus its meaning is identical to the reception subspace as (2.15).
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packets Wk as long as Sk(n) ⊇ Ωk. That is, when the knowledge space in the end of

time n contains the desired message space.

With the above linear space concepts, we now can describe the packet transmission

from relay. Recall that, unlike the source where the packets are originated, relay can

only send a linear mixture of the packets that it has known. Therefore, the encoder

description from relay can be expressed by

If σ(t)=r, then Xr(t)= ctW
⊤ for some ct∈ Sr(t− 1). (2.16)

For comparison, in (2.12), the source s chooses ct from Ω. We can now define the

LNC capacity region.

Definition 2.3.1. Fix the distribution of Z(t) and finite field Fq. A rate vector

(R1, R2) is achievable by LNC if for any ǫ > 0 there exists a joint scheduling and

LNC scheme with sufficiently large n such that Prob(Sk(n) ⊇ Ωk) > 1 − ǫ for all

k ∈ {1, 2}. The LNC capacity region is the closure of all LNC-achievable (R1, R2).

2.3.1 A Useful Notation

In the smart repeater network model, there are two broadcast PECs associated

with s and r, respectively. For shorthand, we call those PECs the s-PEC and the

r-PEC, respectively.

The distribution of the network-wide channel status vector Z(t) = (Zs(t),Zr(t))

can be described by the probabilities ps→T{d1,d2,r}\T
for all T ⊆ {d1, d2, r}, and

pr→U{d1,d2}\U
for all U ⊆ {d1, d2}. In total, there are 8 + 4 = 12 channel parame-

ters.7

For notational simplicity, we also define the following two probability functions

ps(·) and pr(·), one for each PEC. The input argument of ps is a collection of the

7By allowing some of the coordinates of Z(t) to be correlated (i.e., spatially correlated as the correla-
tion is between coordinates, not over the time axis), our setting can also model the scenario in which
destinations d1 and d2 are situated in the same physical node and thus have perfectly correlated
channel success events.
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elements in {d1, d2, r, d1, d2, r}. The function ps(·) outputs the probability that the

reception event is compatible to the specified collection of {d1, d2, r, d1, d2, r}. For

example,

ps(d2r) = ps→d1d2r
+ ps→d1d2r (2.17)

is the probability that the input of the source-PEC is successfully received by d2

but not by r. Herein, d1 is a dont-care receiver and ps(d2r) thus sums two joint

probabilities together (d1 receives it or not) as described in (2.17). Another example

is pr(d2) = pr→d1d2 + pr→d1d2
, which is the probability that a packet sent by r is

heard by d2. To slightly abuse the notation, we further allow ps(·) to take multiple

input arguments separated by commas. With this new notation, ps(·) then represents

the probability that the reception event is compatible to at least one of the input

arguments. For example,

ps(d1d2, r) = ps→d1d2r
+ ps→d1d2r

+ ps→d1d2r

+ ps→d1d2r
+ ps→d1d2r

That is, ps(d1d2, r) represents the probability that (Zs→d1, Zs→d2, Zs→r) equals one of

the following 5 vectors (1, ∗, ∗), (1, ∗, 1), (1, 1, 1), (∗, 1, 1), and (∗, ∗, 1). Note that

these 5 vectors are compatible to either d1d2 or r or both. Another example of this

ps(·) notation is ps(d1, d2, r), which represents the probability that a packet sent by s

is received by at least one of the three nodes d1, d2, and r.

2.4 Chapter Summary

In this chapter, we formulate the model of the 1-to-K broadcast packet era-

sure channel in Section 2.1. In Section 2.2, we construct a wireless 3-node network

model including the encoding/decoding and scheduling descriptions, and the broad-

cast packet erasure channels with feedback. The corresponding Shannon capacity
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region is also defined in Section 2.2. Based on the feedback mechanism, two scenarios

are considered, and their comparison is described in Section 2.2.1. In Section 2.3,

we also construct a wireless 2-flow smart repeater network model including the LNC

encoding/decoding and scheduling descriptions, and the broadcast packet erasure

channels with feedback. The corresponding LNC capacity region is also defined in

Section 2.3. A useful probability notations for the broadcast packet erasure channels

are defined in Section 2.3.1.
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3. ACHIEVING THE SHANNON CAPACITY OF THE

3-NODE PACKET ERASURE NETWORK

In Section 2.2, we formulated the problem of the wireless 3-node packet erasure net-

work (PEN) with feedback, encoding/decoding descriptions, and scheduling decisions

between the three nodes {1, 2, 3}. In this chapter, we propose the corresponding

outer and inner bound. To that end, we will first provide the information-theoretic

capacity outer bound of the 3-node PEN based upon Scenario 1. We then propose the

capacity-achieving LNC scheme in Scenario 1 and the similar capacity-approaching

inner bound in Scenario 2. In Scenario 1, both outer and inner bound will be further

proven to be matched. Since both bounds are sufficient to describe the capacity, the

LNC outer bound description based on the Space-based Framework will be relegated

to Appendix A. The full details and arguments of the Space-based Framework can

be found in [59]. Finally, we will discuss some related works as special examples and

demonstrate the numerical results including the capacity region comparison.

3.1 The Shannon Capacity Outer Bound

Proposition 3.1.1. For any fixed Fq, a 9-dimensional ~R is achievable under1 Sce-

nario 1 only if there exist 3 non-negative variables s(i) for all i ∈ {1, 2, 3} such that

jointly they satisfy the following three groups of linear conditions:

• Group 1, termed the time-sharing condition, has 1 inequality:

∑

∀ i∈{1,2,3}

s(i) ≤ 1. (3.1)

1Proposition 3.1.1 is naturally an outer bound for Scenario 2, see Section 2.2.1.
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• Group 2, termed the broadcast cut-set condition, has 3 inequalities: For all i ∈
{1, 2, 3},

Ri→j +Ri→k +Ri→jk ≤ s(i) · pi→j∨k. (3.2)

• Group 3, termed the 3-way multiple-access cut-set condition, has 3 inequalities: For

all i ∈ {1, 2, 3},

Rj→i +Rj→ki +Rk→i +Rk→ij ≤ s(j) · pj→i + s(k) · pk→i

−
(

pj→i

pj→k∨i
Rj→k +

pk→i

pk→i∨j
Rk→j

)

.

Proposition 3.1.1 considers arbitrary, possibly non-linear ways of designing the en-

coding/decoding and scheduling functions in (2.7), (2.8), and (2.9), and is derived by

entropy-based analysis. Proposition 3.1.1 can also be viewed as strict generalization

of the results of the simpler settings [48, 53].

The brief intuitions behind (3.1) to (3.3) are as follows. Each variable s(i) counts

the expected frequency (normalized over the time budget n) that node i is scheduled

for successful transmissions. As a result, (3.1) holds naturally. (3.2) is a simple cut-

set condition for broadcasting from node i. One main contribution of this work is

the derivation of the new 3-way multiple-access outer bound in (3.3). The LHS of

(3.3) contains all the information destined for node i. The term s(j)pj→i + s(k)pk→i

on the RHS of (3.3) is the amount of time slots that either node j or node k can

communicate with node i. As a result, it resembles a multiple-access cut condition

of a typical cut-set argument [60, Section 15.10]. What is special in our setting is

that, since node j may have some private-information for node k and vice versa,

sending those private-information has a penalty on the multiple access channel from

nodes {j, k} to node i. The last term on the RHS of (3.3) quantifies such penalty

that is inevitable regardless of what kind of coding schemes being used. The proof of

Proposition 3.1.1 and the detailed discussions are relegated to Section 3.4.

Remark: In addition to having a new penalty term on the RHS of (3.3), the 3-way

multiple-access cut-set condition (3.3) is surprising, not because that it upper bounds
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the combined information-flow rate from nodes {j, k} entering node i but because

that, unlike the traditional multiple-access upper bounds, we do not need to upper

bound the individual rate from node j (resp. k) to node i.

More specifically, a traditional multi-access channel capacity result will also upper

bound the rate Rj→i +Rj→ki by considering the cut from node j to node i (ignoring

node k completely). If we follow the above logic and write down naively the “cut

condition” from node j to i, then we will have

Rj→i +Rj→ki ≤ s(j) · pj→i −
pj→i

pj→k∨i
Rj→k. (3.3)

where Rj→i+Rj→ki is the rate from nodes j to i, s(j) ·pj→i is the successful time slots,

and
pj→i

pj→k∨i
Rj→k is the penalty term. One might expect that (3.3) is also a legitimate

outer bound if the naive cut condition arguments hold. It turns out that (3.3) is not

an outer bound and one can find some LNC solution that contradicts (3.3).

The reason why (3.3) is false is as follows. The Wj→i packets may not necessarily

go directly from node j to node i and it is possible that node k can also help relay

those packets. As a result, how frequently node k is scheduled can also affect the

number of Wj→i packets that one can hope to deliver from node j to node i. Since

(3.3) does not involve s(k), it does not consider the possibility of node k relaying the

packets for node j. In contrast, our outer bound (3.3) indeed captures such a subtle

but critical phenomenon by grouping all Rj→i, Rk→i, Rj→ki, Rk→ij, Rj→k, and Rk→j

as a whole and upper bounds it with the (weighted) sum of scheduling frequencies of

nodes j and k.

3.2 A LNC Capacity Achieving Scheme

Scenario 2 requires the network to be fully-connected, which is defined as follows.
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Definition 3.2.1. In Scenario 2, we assume the 3-node PEN is fully-connected in

the sense that the given channel reception probabilities satisfy either pi1→i2 > 0 or

min( pi1→i3, pi3→i2) > 0 for all distinct i1, i2, i3 ∈ {1, 2, 3}.

Namely, node i1 must be able to communicate with node i2 either through the di-

rect communication (i.e., pi1→i2 > 0) or through relaying (i.e., min(pi1→i3, pi3→i2) > 0).

Note that in Scenario 2, the control messages has to be sent through the regular

forward channel as well. The fully-connectedness assumption guarantees that feed-

back/control information can be sent successfully from one node to any other node,

either directly or through the help of another node.

We also need the following new math operator.

Definition 3.2.2. For any 2 non-negative values a and b, the operator nzmin{a, b},
standing for non-zero minimum, is defined as:

nzmin{a, b} =











max(a, b) if min(a, b) = 0,

min(a, b) if min(a, b) 6= 0.

Intuitively, nzmin{a, b} is the minimum of the strictly positive entries.

Proposition 3.2.1. For any fixed Fq, a 9-dimensional ~R is LNC-achievable in Sce-

nario 2 if there exist 15 non-negative variables t
(i)
[u] and {t(i)[c, l]}4l=1 for all i ∈ {1, 2, 3}

such that jointly they satisfy the following three groups of linear conditions:

• Group 1, termed the time-sharing condition, has 1 inequality:

∑

∀ i∈{1,2,3}

t
(i)
[u] + t

(i)
[c, 1] + t

(i)
[c, 2] + t

(i)
[c, 3] + t

(i)
[c, 4] ≤ 1− tFB, (3.4)

where tFB is a constant defined as

tFB ,
∑

∀ i∈{1,2,3}

3

log2(q) · nzmin{pi→j, pi→k}
. (3.5)
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• Group 2 has 3 inequalities: For all (i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)},

Ri→j +Ri→k +Ri→jk < t
(i)
[u] · pi→j∨k. (3.6)

• Group 3 has 6 inequalities: For all (i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)},

(

Ri→j +Ri→jk

) pi→jk

pi→j∨k

<
(

t
(i)
[c, 1] + t

(i)
[c, 3]

)

· pi→j +
(

t
(k)
[c, 2] + t

(k)
[c, 3]

)

· pk→j, (3.7)

(

Ri→k +Ri→jk

) pi→jk

pi→j∨k

<
(

t
(i)
[c, 1] + t

(i)
[c, 4]

)

· pi→k +
(

t
(j)
[c, 2] + t

(j)
[c, 4]

)

· pj→k. (3.8)

Proposition 3.2.2. Continue from Proposition 3.2.1, if we focus on Scenario 1 in-

stead, then the rate vector ~R is LNC-achievable if there exist 15 non-negative variables

t
(i)
[u] and {t(i)[c, l]}4l=1 for all i ∈ {1, 2, 3} such that (3.4), (3.6) to (3.8) hold while we set

tFB = 0 in (3.5).

In short, the constant term tFB in (3.5) quantifies the overhead of sending the

ACK/NACK feedbacks through the forward erasure channel in Scenario 2 and can

be set to 0 in Scenario 1.

The sketch of the proof for Proposition 3.2.2 (Scenario 1) is provided in Sec-

tion 3.5 while the detailed construction for Proposition 3.2.1 (Scenario 2) is relegated

to Appendix B.

Since both the outer bound and the achievable regions can be computed by an LP

solver, one can numerically verify that for all possible channel parameters, the rate

regions of Propositions 3.1.1 and 3.2.2 of Scenario 1 always match. We can actually

prove this observation by analyzing the underlying linear algebraic structures of the

two LP problems.

Proposition 3.2.3. The outer bound in Proposition 3.1.1 and the closure of the

achievable region in Proposition 3.2.2 match for all possible channel parameters {pi→jk,

pi→jk, pi→jk : ∀(i, j, k)}. They thus describe the corresponding 9-dimensional Shannon

capacity region under Scenario 1.

The proof of Proposition 3.2.3 is relegated to Appendix C.
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From the above discussions, one can see that even for the more practical Scenario 2,

in which there is no dedicated feedback control channels, Proposition 3.2.1 is indeed

capacity-approaching when the 3-node PEN is fully-connected. The gap to the outer

bound is inversely proportional to log2(q) and diminishes to zero if the packet size

log2(q) (bits) is large enough. In real life, the actual payload of each packet is roughly

104 bits and the gap is thus negligible unless the reception probabilities pi→j or pi→k

is extremely small.

3.3 Comments On The Fully-Connected Assumption

We first consider Scenario 1, which does not require the fully-connected assump-

tion. It is possible that in Scenario 1, we have pi→j∨k = 0 for some (i, j, k), which

implies that (3.7) and (3.8) being undefined. However, when pi→j∨k = 0, it is sim-

ply impossible to send any messages out of node i. As a result, we can replace the

(undefined) (3.7) and (3.8) by a hard condition Ri→j = Ri→k = Ri→jk = 0. Proposi-

tion 3.2.3 still holds after such a simple revision.

We now consider Scenario 2. We note that Proposition 3.2.1 holds only when the

network is fully-connected. Actually, when the network is not fully-connected, the

denominator of (3.5) may be zero and (3.5) becomes undefined. When the network is

not fully-connected, it is an interesting open problem what the actual capacity region

is going to be. Specifically, the outer bound (Proposition 3.1.1) still holds even when

the network is not fully-connected. However, there are reasons to believe that the

outer bound is not tight anymore. For example, suppose p2→3∨1 = 0, i.e., the PEC

from node 2 is completely erasure, there is no dedicated control channel, and any

feedback has to be sent through the forward channel, i.e., Scenario 2 but being not

fully-connected. In this example, node 2 is completely “in the dark”. Note that being

in the dark does not mean that we cannot send messages to node 2. For example,

we can use an MDS code to send messages from nodes 1 to node 2. When the MDS

code rate is slightly lower than the success probability p1→2, then node 2 can receive
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the correct messages with high probability without sending any ACK. However, when

node 2 is in the dark, neither node 1 nor node 3 can be made aware of the reception

status of node 2. Therefore, the classic network coding techniques in [48] do not apply

in this scenario. How to characterize the Shannon capacity region when some node is

in the dark is beyond the scope of this work and will be actively investigated in the

future.

Remark: The above “asymmetric” feedback scenario is theoretically interesting.

In practice, the PEC is usually used to model network communications, for which

ACK is often required for any transmission and also necessary for the purpose of

channel estimation. Therefore, if p2→3∨1 = 0 and node 2 is in the dark, then nodes

1 and 3 will give up communicating to node 2 immediately due to the lack of any

ACK feedback. The aforementioned MDS code approach will not be used when node

2 cannot acknowledge the transmission in any way.

3.4 Sketch of The Proof of The Shannon Outer Bound

We now provide the sketch of the proof of Proposition 3.1.1. Given any reception

probabilities and any ǫ > 0, consider a joint network coding and scheduling scheme

(2.7), (2.8), and (2.9) that can send 9 flows with rates ~R in n time slots with the

overall error probability no larger than ǫ. Based on the given scheme, define s(i) as

the normalized expected number of time slots for which node i is scheduled. That is,

s(i) ,
1

n
E

{

n
∑

t=1

1{σ(t)=i}

}

, (3.9)

where 1{·} is the indicator function. By the above definition, the computed scheduling

frequencies {s(1), s(2), s(3)} must satisfy the time-sharing condition (3.1).

We will now prove (3.2) and (3.3) of Proposition 3.1.1, respectively. To that end,

we assume that the logarithm of the mutual information and the entropy is of base
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q, the order of the underlying finite field Fq. For the case when the logarithm of the

entropy is base-2, we will distinguish it by using H2(·).
The inequality (3.2) can be proven by proving the following two inequalities sep-

arately:

I(Wi∗ ; [Y∗j ,Y∗k]
n
1 |W{j,k}∗, [Z]

n
1 )

≥ n

(

Ri→j +Ri→k +Ri→jk − 2ǫ− H2(2ǫ)

n log2 q

)

, (3.2A)

I(Wi∗ ; [Y∗j ,Y∗k]
n
1 |W{j,k}∗, [Z]

n
1 ) ≤ ns(i)pi→j∨k. (3.2B)

Intuitively, (3.2A) follows from the Fano’s inequality and (3.2B) follows from a

simple cut condition. By choosing ǫ→ 0, we have proven (3.2). The detailed deriva-

tion of (3.2A) and (3.2B) are relegated to Appendix D.

We now prove (3.3) by proving the following two inequalities:

I(W{j,k}∗ ; [Y∗i]
n
1 |Wi∗, [Z]

n
1 )

≥ n

(

Rj→i +Rk→i +Rj→ki +Rk→ij +
pj→i

pj→k∨i
Rj→k

+
pk→i

pk→i∨j
Rk→j − 6ǫ− 3H2(ǫ)

n log2 q

)

, (3.3A)

I(W{j,k}∗ ; [Y∗i]
n
1 |Wi∗, [Z]

n
1 ) ≤ n(s(j)pj→i + s(k)pk→i). (3.3B)

Intuitively, (3.3B) follows a simple cut condition. By choosing ǫ → 0, we have

proven (3.3). The detailed derivation of (3.3A) and (3.3B) are relegated to Ap-

pendix D.

As discussed in Section 3.1, (3.3) is inspired by the multiple-access channel (MAC)

cut-set bound. When considering the MAC, one usually focuses on all incoming traffic

entering node i, i.e., Rj→i, Rj→ki, Rk→i, and Rk→ij, and thus might be interested in

quantifying/bounding the following mutual information term:

I(Wj→i,Wj→ki,Wk→i,Wk→ij ; [Y∗i]
n
1 | Wi∗,Wj→k,Wk→j, [Z]

n
1 ). (3.10)
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Unfortunately, (3.10) does not take into the fact that node j has some pri-

vate information that need to be delivered to node k (those Wj→k packets) and

vice versa. Due to such an observation, we quantify the mutual information term

I(W{j,k}∗ ; [Y∗i]
n
1 |Wi∗, [Z]

n
1 ) instead of (3.10). Comparing I(W{j,k}∗ ; [Y∗i]

n
1 |Wi∗, [Z]

n
1 )

and (3.10), we can use the chain rule to show that

(3.10) = I(W{j,k}∗ ; [Y∗i]
n
1 |Wi∗, [Z]

n
1 )− I(Wj→k,Wk→j ; [Y∗i]

n
1 |Wi∗, [Z]

n
1 ),

and the difference I(Wj→k,Wk→j ; [Y∗i]
n
1 |Wi∗, [Z]

n
1 ) can be viewed as the amount of

the private information Wj→k and Wk→j that has been “leaked” to the other node

i. In some broad sense, (3.3) (or equivalent (3.3A)) characterizes a new lower bound

on the information leakage

I(Wj→k,Wk→j ; [Y∗i]
n
1 |Wi∗, [Z]

n
1 ) ≥

pj→i

pj→k∨i

Rj→k +
pk→i

pk→i∨j

Rk→j.

This is why in our discussion right after Proposition 3.1.1 we referred to the term

pj→i

pj→k∨i
Rj→k +

pk→i

pk→i∨j
Rk→j as the penalty for sending those private-information. Note

that similar information leakage arguments have been used in other channel models,

e.g., the wireless deterministic channels [61].

3.5 Sketch of The Correctness Proof

We only provide the so-called first-order analysis for the achievability of a LNC

solution.

We assume that all nodes know the channel reception probabilities, the total time

budget n, and the rate vector ~R they want to achieve in the beginning of time 0. As

a result, each node can compute the same 15 non-negative values t
(i)
[u] and {t(i)[c, l]}4l=1

for all i ∈ {1, 2, 3} satisfying Proposition 3.2.2.

Our construction consists of 2 stages. Stage 1: Each node, say node i, has n(Ri→j+

Ri→k +Ri→jk) unicast and multicast packets (i.e., Wi∗) that need to be sent to other
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nodes j and k. Assume that those packets are grouped together and indexed as l = 1

to n(Ri→j + Ri→k + Ri→jk). That is, the packet indices l = 1 to nRi→j correspond

to Wi→j packets, the packet indices l = nRi→j + 1 to n(Ri→j +Ri→k) correspond to

Wi→k packets, and so forth. Then in the beginning of time 1, node 1 chooses the first

packet (index 1) and repeatedly sends it uncodedly until at least one of nodes 2 and

3 receives it. Whether it is received or not can be known causally by network-wide

feedbacks Z(t−1). Then node 1 picks the next indexed packet and repeat the same

process until each of these n(R1→2+R1→3+R1→23) packets is heard by at least one of

nodes 2 and 3. By simple analysis, see [50], node 1 can finish the transmission in nt
(i)
[u]

slots since (3.6).2 We repeat this process for nodes 2 and 3, respectively.3 Stage 1

can be finished in n(
∑

i t
(i)
[u]) slots.

After Stage 1, the status of all packets is summarized as follows. Each of Wi→j

packets is heard by at least one of nodes j and k. Those that have already been

heard by node j, the intended destination, is delivered successfully and thus will not

be considered for future operations (Stage 2). We denote those Wi→j packets that are

overheard by node k only (not by node j) as W
(k)
i→j. In average, there are nRi→j

pi→jk

pi→j∨k

number of W
(k)
i→j packets. Since the causal feedback is available to all network nodes

(not only node i), by letting all three nodes perform some simple bookkeeping, any

one of the three network nodes (not only node i) is aware of the indices of all the

W
(k)
i→j packets. We denote the corresponding index set by I

(k)
i→j. Symmetrically, we

also have nRi→k
p
i→jk

pi→j∨k
number of W

(j)
i→k packets that was intended for node k but was

overheard only by node j in Stage 1, and all three nodes can individually create the

corresponding index set I
(j)
i→k.

Similarly for the common-information packets Wi→jk, each packet was heard by at

least one of nodes j and k in Stage 1. Those that have been heard by both nodes j and

2By the law of large numbers, we can ignore the randomness of the events and treat them as
deterministic when n is sufficiently large.
3Once node 1 has finished transmitting all its own packetsW1∗, node 2 can immediately take over and
start transmitting its own packets W2∗ because node 2 knows the value of n(R1→2 +R1→3+R1→23)
and from the instant, error-free, network-wide feedback, node 2 can count in the end of each time
slot how many packets node 1 finished transmission. By the same reason, node 3 can immediately
take over after node 2 has finished.
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k, is delivered successfully and thus will not be considered in Stage 2. We similarly

denote those Wi→jk packets that are heard by node k only (not by node j) as W
(k)
i→jk.

In average, there are nRi→jk
pi→jk

pi→j∨k
number of W

(k)
i→jk packets. Symmetrically, we

also have nRi→jk
p
i→jk

pi→j∨k
number of W

(j)
i→jk packets that were heard only by node j in

Stage 1. The corresponding index sets are denoted by I
(k)
i→jk and I

(j)
i→jk, respectively,

and they can be individually created by all three nodes through simple bookkeeping.

In sum, all three nodes individually know all 12 index sets {I(k)i→j, I
(k)
i→jk, I

(j)
i→k, I

(j)
i→jk :

∀(i, j, k)} after Stage 1. In addition, each node i knows the content of its own packets

Wi→j, Wi→k, and Wi→jk, and the content of what it has received from other nodes

(W
(i)
j→k, W

(i)
j→ki, W

(i)
k→j, W

(j)
k→ij) during Stage 1.

Stage 2 is the LNC phase, in which each node i will send a linear combination of

the overheard packets. That is, for each time t, node i sends a linear combination

Xi(t) = [W̃j + W̃k] with 4 possible ways of choosing the the constituent packets W̃j

and W̃k, which are detailed as follows.

[c, 1] : W̃j∈W
(k)
i→j ∪W

(k)
i→jk and W̃k∈W

(j)
i→k ∪W

(j)
i→jk,

[c, 2] : W̃j∈W
(i)
k→j ∪W

(i)
k→ij and W̃k∈W

(i)
j→k ∪W

(i)
j→ki,

[c, 3] : W̃j∈W
(k)
i→j ∪W

(k)
i→jk and W̃k∈W

(i)
j→k ∪W

(i)
j→ki,

[c, 4] : W̃j∈W
(i)
k→j ∪W

(i)
k→ij and W̃k∈W

(j)
i→k ∪W

(j)
i→jk.

To explain the intuition behind the 4 coding choices [c, 1] to [c, 4], we observe that

choice [c, 1] is the standard LNC operation for the 2-receiver broadcast channels [47]

since node i sends a linear sum that benefits both nodes j and k simultaneously, i.e.,

the sum of two packets, each overheard by an undesired receiver. Choice [c, 2] is the

standard LNC operation for the 2-way relay channels, since node i, as a relay for

the 2-way traffic from j → k and from k → j, respectively, mixes the packets from

two opposite directions and sends their linear sum. Choices [c, 3] and [c, 4] are the

new “hybrid” cases that are proposed in this work, for which we can mix part of

the broadcast traffic and part of the 2-way traffic. We argue that transmitting such
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a linear mixture again benefits both nodes simultaneously. For example, suppose

that coding choice [c, 3] is used, and the linear sum [W̃j + W̃k] is received by node

j. Since W̃k is a function of all packets originated from node j, node j can compute

W̃k by itself and then subtract it from the linear sum and derive the desired packet

W̃j . Similarly, if node k receives the linear sum, since it has overheard all packets

in W
(k)
i→j ∪W

(k)
i→jk, it can subtract W̃j and decode its desired W̃k. The argument for

coding choice [c, 4] is symmetric.

We now explain in details how to implement the above 4 coding choices for each

of the time slots in Stage 2. The best way to explain the implementation is to

temporarily view the overheard packets as being stored in a big queue. Namely, in

the beginning of Stage 2, all the packets in W
(k)
i→j ∪W

(k)
i→jk are put into a big queue.

Similarly, all the packets in W
(j)
i→k ∪W

(j)
i→jk, W

(i)
k→j ∪W

(i)
k→ij, and W

(i)
j→k ∪W

(i)
j→ki are

put into 3 big queues as well, one queue for each set of packets respectively. Then

coding choice [c, 1] means that node i takes the head-of-line packet from the queue

of W
(k)
i→j ∪ W

(k)
i→jk, and combines it with the head-of-line packet from the queue of

W
(j)
i→k∪W

(j)
i→jk. Coding choices [c, 2] to [c, 4] can be interpreted similarly by combining

the head-of-line packets from different queues.

Since each node i has 4 possible coding choices, we perform coding choice [c, l] for

exactly nt
(i)
[c, l] times sequentially for l=1 to 4. After sending the 4 coding choices for

a combined total of n
(

t
(i)
[c, 1]+ t

(i)
[c, 2]+ t

(i)
[c, 3]+ t

(i)
[c, 4]

)

time slots for node i, we set i = i+1

and repeat the same process until all three nodes have finished transmission. Totally,

Stage 2 takes
∑

i∈{1,2,3} n
(

t
(i)
[c, 1]+ t

(i)
[c, 2]+ t

(i)
[c, 3]+ t

(i)
[c, 4]

)

time slots. We now describe how

to manage the “queues” within each node during transmission.

Suppose that node i is performing the coding choice [c, 1] and chooses two head-

of-line packets W̃j ∈ W
(k)
i→j ∪ W

(k)
i→jk and W̃k ∈ W

(j)
i→k ∪ W

(j)
i→jk from the individual

queues, respectively. If the linear combination [W̃j + W̃k] is received by node j, then

node j will decode the desired W̃j by subtracting the overheard packet W̃k. As a

result, we remove the successfully delivered packet W̃j from its queue. Similarly,

if the combination [W̃j + W̃k] is received by node k, then node k can decode the
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desired packet W̃k and we remove W̃k from the corresponding queue. If any one of

the two queues is empty, say the queue corresponding to W
(k)
i→j ∪ W

(k)
i→jk is empty

during coding choice [c, 1], then we simply set W̃j = 0. Namely, in such a degenerate

case we choose to send an uncoded packet [0 + W̃k] instead of a linear combination

[W̃j + W̃k]. If both queues are empty, then we simply send a 0 packet. The same

queue management is applied to coding choices [c, 2] to [c, 4] as well.

Note that the above process requires very detailed bookkeeping at each node.

Namely, both nodes j and k needs to know the indices of the head-of-line packet

W̃j and W̃k while node i is executing Stage 2. So that they can know which of the

overheard packets it needs to subtract from the linear combination [W̃j + W̃k] when

received. This is possible since in the beginning of Stage 2, each node knows all 12

index sets: {I(k)i→j, I
(k)
i→jk, I

(j)
i→k, I

(j)
i→jk : ∀(i, j, k)}. Since the reception status [Z]t−1

1 is

available to all nodes for free, through detailed bookkeeping, each node (not only

node i but also nodes j and k) can successfully trace the status of the queues when

node i is executing Stage 2. In this way each node maintains a synchronized view of

the queue status of the other nodes and can thus know the indices of the head-of-line

packets that constitute the linear combination.

Another important point worth emphasizing is that the queues cannot be replen-

ished during Stage 2. Namely, if a packet is removed from the queue in one coding

operation, then it will be removed from the synchronized queues at all three nodes

and will not participate in any future coding operations. For example, the packets

in W
(k)
i→j ∪W

(k)
i→jk will participate in coding choice [c, 1] of node i, but they can also

participate in coding choice [c, 3] of node i, and coding choices [c, 2] and [c, 3] of node

k. If a packet in W
(k)
i→j ∪W

(k)
i→jk is successfully delivered through coding choice [c, 1]

of node i, then it will be removed from the queue and will not participate in any

subsequent coding choices [c, 3] of node i, and coding choices [c, 2] and [c, 3] of node k

in the future time slots. Again, this LNC design is possible since each node maintains

a synchronized view of the queue status of the other nodes with the help of the causal

feedback [Z]t−1
1 .
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(a) A 1-to-2 PEC

1

2

3

R1→2

R1→3

R1→23

(b) PEC w. receiver coordination

1 2 3
R1→3 R3→1

(c) A Two-way relay PEC

1 2 3
R1→3 R3→1

(d) A Two-way relay PEC
w. opportunistic routing

Fig. 3.1. Special examples of the 3-node Packet Erasure Network (PEN) considered
in this work. The rectangle implies the broadcast packet erasure channel.

Since W
(k)
i→j ∪W

(k)
i→jk participates in coding choices [c, 1] and [c, 3] of node i and

coding choices [c, 2] and [c, 3] of node k, (3.7) guarantees that the queue of W
(k)
i→j ∪

W
(k)
i→jk will be empty in the end of Stage 2, which means that we can finish sending

all W
(k)
i→j ∪W

(k)
i→jk packets and they will all successfully arrive at node j, the intended

destination.4 Symmetrically, (3.8) guarantees that the queue of W
(j)
i→k ∪W

(j)
i→jk will

be empty, which means that we can finish sending all W
(j)
i→k ∪W

(j)
i→jk packets to their

intended destination node k in the end of Stage 2. Finally, (3.4) guarantees that we

can finish Stages 1 and 2 in the allotted n time slots. The sketch of the proof is

complete.

3.6 Special Examples and Numerical Evaluation

In the following, we apply Propositions 3.1.1 and 3.2.2 to the four special exam-

ples. We also numerically evaluate the 9-dimensional capacity region for some specific

channel parameter values.

4Those W
(k)
i→jk packets are the common-information packets that are intended for both nodes j and

k. However, since our definition of W
(k)
i→jk counts only those that have already been received by

node k, we say herein their new intended destination is node j as instead.



41

The considered 3-node PEN contains many important practical and theoretically

interesting scenarios as sub-cases. Example 1: If we set the broadcast PECs of

nodes 2 and 3 to be always erasure (i.e., neither nodes can transmit anything), then

Fig. 2.1(b) collapses to Fig. 3.1(a), the 2-receiver broadcast PEC scenario. The ca-

pacity region (R1→2, R1→3, R1→23) derived in our Scenario 1 is identical to the existing

results in [47, 55]. Example 2: Instead of setting the PECs of nodes 2 and 3 to all

erasure, we set R2→1, R2→3, R3→1, R3→2, R2→31, R3→12 to be zeros. Namely, we still

allow nodes 2 and 3 to transmit but there is no information message emanating from

nodes 2 and 3. In this case, node 2 can potentially be a relay that helps forwarding

those node-1 packets destined for node 3 and node 3 can be a relay for flow 1→2, see

Fig. 3.1(b). This work then characterizes the Shannon capacity5(R1→2, R1→3, R1→23)

of a broadcast PEC with receiver coordination.

Example 3: If we set R1→2, R2→1, R2→3, R3→2, R1→23, R2→31, R3→12 to be

zeros and prohibit any direct communication between nodes 1 and 3, Fig. 2.1(b)

now collapses to Fig. 3.1(c), in which node 2 is a two-way relay for unicast flows

1→ 3 and 3→ 1. The results in this work thus characterizes the Shannon capacity

region (R1→3, R3→1) of this two-way relay network Fig. 3.1(c), which is identical to

the existing result in [23]. Example 4: If we additionally allow direct communication

between nodes 1 and 3, Fig. 2.1(b) now collapses to Fig. 3.1(d). Namely, when node 1

is sending packets to the relay node 2, the packets might be overheard directly by the

destination node 3. If indeed node 3 overhears the communication, then node 1 could

inform node 2 opportunistically that there is no need to forward that packet to node 3

anymore. Such a scheme is called opportunistic routing and testbed implementation

[8] has shown that opportunistic routing can potentially improve the throughput

by 20x. The results in this work thus characterize the Shannon capacity region

(R1→3, R3→1) of Fig. 3.1(d), which allows for the possibility of both opportunistic

routing and two-way-relay coding. The Shannon capacity region computed by this

work again matches the existing result in [35].

5In [43], the LNC capacity of Fig. 3.1(b) was characterized, but the most general Shannon capacity
region was unknown in [43].
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3.6.1 Example 1: The Simplest 1-to-2 Broadcast PEC

Consider the simplest setting of a 1-to-2 broadcast PEC with 2 private-information

flows of rates R1→2 and R1→3, and 1 common-information flow of rate R1→23. See

Fig. 3.1(a) for illustration. In this scenario, we assume that only node 1 can transmit

and nodes 2 and 3 can only listen and send ACK/NACK feedback after each packet

transmission. This simple 1-to-2 broadcast PEC can be viewed as a special example

of the general problem by setting p2→3∨1 = p3→1∨2 = 0, and by hardwiring the un-

used rates {R2→1, R2→3, R3→1, R3→2} and {R2→31, R3→12} to zeros. One can thus use

Proposition 3.1.1 to compute the 3-dimensional capacity region (R1→2, R1→3, R1→23)

of the 1-to-2 broadcast PEC. More explicitly, by setting s(1) = 1 and s(2) = s(3) = 0,

(3.3) with i = 2 leads to the following (3.11) and (3.3) with i = 3 leads to the following

(3.12):

R1→2 +R1→23 ≤ p1→2 −
p1→2

p1→2∨3

R1→3, (3.11)

R1→3 +R1→23 ≤ p1→3 −
p1→3

p1→2∨3
R1→2. (3.12)

As expected, the capacity region (R1→2, R1→3, R1→23) described by (3.11) and

(3.12) is identical to the existing 1-to-2 broadcast PEC capacity results in [47].

3.6.2 Example 2: 1-to-2 Broadcast PEC With Receiver Coordination

Another special example is the 1-to-2 broadcast PEC with receiver coordination,

see Fig. 3.1(b). In this scenario, node 1 still likes to communicate and send 3 flows

to nodes 2 and 3 with rates (R1→2, R1→3, R1→23). However, we allow nodes 2 and 3

to communicate with each other with the constraint that whenever node 2 (or node

3) transmits, node 1 has to remain silent. The communication between nodes 2 and

3 can be used either to relay some overheard packets to the intended destination, or

to send carefully designed coded packets that can further enhance the throughput.
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Similar to the previous example, such a scenario is a special case of the general

problem by setting p2→1 = p3→1 = 0, and by hardwiring {R2→1, R2→3, R3→1, R3→2}
and {R2→31, R3→12} to zeros. We can again use Proposition 3.1.1 to compute the

capacity region (R1→2, R1→3, R1→23) of the 1-to-2 broadcast PEC with receiver coor-

dination:

∑

∀ i∈{1,2,3}

s(i) ≤ 1, (3.13)

R1→2 +R1→3 + R1→23 ≤ s(1) · p1→2∨3, (3.14)

R1→2 +R1→23 +
p1→2

p1→2∨3
R1→3 ≤ s(3) · p3→2 + s(1) · p1→2, (3.15)

R1→3 +R1→23 +
p1→3

p1→2∨3
R1→2 ≤ s(1) · p1→3 + s(2) · p2→3, (3.16)

where (3.13) follows from (3.1); (3.14) follows from (3.2); and (3.15) and (3.16) follow

from (3.3).

Compared to the existing work [43], our results have characterized the more gen-

eral Shannon capacity region instead of linear capacity region while also considering

the possibility of co-existing common-information rate R1→23.

3.6.3 Example 3: Two-way Relay PEC

Another example is the two-way relay PEC as described in Fig. 3.1(c). Namely,

nodes 1 and 3 want to communicate with each other with rates (R1→3, R3→1), respec-

tively. The communication must be achieved via a relaying node 2. Such a scenario is

a special case of the general problem by simply hardwiring {R1→2, R2→1, R2→3, R3→2}
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and {R1→23, R2→31, R3→12} to zeros. We can again use Proposition 3.1.1 to compute

the capacity region (R1→3, R3→1):

∑

∀ i∈{1,2,3}

s(i) ≤ 1, (3.17)

R1→3 ≤ s(1) · p1→2, R3→1 ≤ s(3) · p3→2, (3.18)

R1→3 ≤ s(2) · p2→3, R3→1 ≤ s(2) · p2→1, (3.19)

where (3.17) and (3.18) follow from (3.1) and (3.2), respectively, and (3.19) follows

from (3.3). One can easily verify that the capacity region described by (3.17) to (3.19)

matches the existing results in [23].

3.6.4 Example 4: Two-way Relay PEC with Opportunistic Routing

For the same setting as in Example 3 but allowing the direct communications

between node 1 and node 3, see Fig. 3.1(d), we can also use Proposition 3.1.1 to

compute the two-way relay PEC capacity region (R1→3, R3→1) with opportunistic

routing:

∑

∀ i∈{1,2,3}

s(i) ≤ 1, (3.20)

R1→3 ≤ s(1)p1→2∨3, R3→1 ≤ s(3)p3→1∨2, (3.21)

R1→3 ≤ s(1)p1→3 + s(2)p2→3, (3.22)

R3→1 ≤ s(2)p2→1 + s(3)p3→1. (3.23)

One can verify that the capacity region described by (3.20) to (3.23) matches the

existing results in [35].
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Fig. 3.2. Comparison of the capacity region with different achievable rates

3.6.5 Numerical Evaluation

Consider a 3-node network with marginal channel success probabilities p1→2 =

0.35, p1→3 = 0.8, p2→1 = 0.6, p2→3 = 0.5, p3→1 = 0.3, and p3→2 = 0.75, respectively,

and we assume that all the erasure events are independent. That is, pi→j∨k = 1−(1−
pi→j)(1 − pi→k). To illustrate the 9-dimensional capacity region, we further assume

that the following 3 flows are of the same rate R1→2 = R1→3 = R1→23 = Ra and the

other 6 flows are of rate R2→1 = R2→3 = R3→1 = R3→2 = R2→31 = R3→12 = Rb.

We will use Proposition 3.1.1 to find the largest Ra and Rb value for this example

scenario.

Fig. 3.2 compares the Shannon capacity region of (Ra, Rb) with different achiev-

ability schemes. The smallest rate region is achieved by simply performing uncoded

direct transmission. The second achievability scheme combines the broadcast chan-

nel LNC in [47] with time-sharing among all three nodes. The third scheme performs

two-way relay channel (TWRC) coding in node 1 for those 3 → 2 and 2 → 3 flows

while allowing node 2 to relay the node 1’s packets destined for node 3 and vice versa.

The fourth scheme is derived from our achievability scheme in the proof of Proposi-

tion 3.2.2 except when we impose the restriction that the scheme can only use LNC

choices that were known previously. Namely, we allow all three nodes to perform
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the broadcast-based LNC and/or TWRC-based LNC operations (coding choices [c, 1]

and [c, 2] in Stage 2) but not the hybrid operations (coding choices [c, 3] and [c, 4])

proposed in this work. One can see that the result is strictly suboptimal. It shows

that the proposed hybrid operations are critical for achieving the Shannon capacity in

Propositions 3.1.1 and 3.2.2. The detailed rate region description of each sub-optimal

achievability scheme is described in Appendix E.

3.7 Chapter Summary

In this chapter, we discuss the capacity region of the 3-node network formulated

in Section 2.2. In Sections 3.1 and 3.2, we propose the Shannon capacity outer bound

and the simple LNC achievability scheme, respectively. In Section 3.3, we discuss the

fully-connected assumption for Scenario 1 and Scenario 2, and identify some possible

future work. In Section 3.4, we provide the proof sketch of the Shannon outer bound,

where the full detailed derivations is relegated to Appendix D. In Section 3.5, we

also provide the sketch of the correctness proof of our achievability scheme based on

the first-order analysis. The full detailed proof invoking the law of large numbers can

be found in Appendix B. In Section 3.6.5, we discuss the special examples of the 3-

node network and use the numerical results to demonstrate that the proposed simple

but capacity-achieving LNC scheme strictly outperforms existing results. The Space-

based Framework and the LNC capacity region descriptions of the 3-node packet

erasure network can also be found in Appendix A.
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4. APPROACHING THE LNC CAPACITY OF THE

SMART REPEATER PACKET ERASURE NETWORK

In Section 2.3, we formulated the problem of the wireless 2-flow smart repeater packet

erasure network with feedback, linear encoding/decoding, and scheduling between the

source s and the relay r. In this chapter, we investigate the LNC capacity region

(R1, R2) of the smart repeater network. The outer bound is proposed by leveraging

upon the algebraic structure of the underlying LNC problem. For the achievability

scheme, we show that the classic butterfly-style is far from optimality and propose new

LNC operations that lead to close-to-optimal performance. By numerical simulations,

we demonstrate that the proposed outer/inner bounds are very close, thus effectively

bracketing the LNC capacity of the smart repeater problem.

4.1 LNC Capacity Outer Bound

Recall that, since the coding vector ct has n(R1 + R2) number of coordinates,

there are exponentially many ways of jointly designing the scheduling σ(t) and the

coding vector choices ct over time when sufficiently large n and Fq are used. There-

fore, we will first simplify the aforementioned design choices by comparing ct to the

knowledge spaces Sh(t− 1), h ∈ {d1, d2, r}. Such a simplification allows us to derive

Proposition 4.1.1, which uses a linear programming (LP) solver to exhaustively search

over the entire coding and scheduling choices and thus computes an LNC capacity

outer bound. An LNC capacity inner bound will later be derived in Section 4.2 by

proposing an elegant LNC solution and analyze its performance.
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To that end, we use Sk as shorthand for Sk(t− 1), the destination dk knowledge

space in the end of time t−1. We first define the following 7 linear subspaces of Ω.

A1(t) , S1, A2(t) , S2, (4.1)

A3(t) , S1 ⊕ Ω1, A4(t) , S2 ⊕ Ω2, (4.2)

A5(t) , S1 ⊕ S2, (4.3)

A6(t) , S1 ⊕ S2 ⊕ Ω1, A7(t) , S1 ⊕ S2 ⊕ Ω2, (4.4)

where A⊕B , span{v : v ∈ A∪B} is the sum space of any A,B ⊆ Ω. In addition to

those seven subspaces Ai(t), i = 1, · · · , 7, we also define the following eight additional

subspaces involving Sr(t− 1):

Ai+7(t) , Ai(t)⊕ Sr for all i = 1, · · · , 7, (4.5)

A15(t) , Sr, (4.6)

where Sr is a shorthand notation for Sr(t− 1), the knowledge space of relay r in the

end of time t−1.

In total, there are 7 + 8 = 15 linear subspaces of Ω. We then partition the overall

message space Ω into 215 disjoint subsets by the Venn diagram generated by these 15

subspaces. That is, for any given coding vector ct, we can place it in exactly one of

the 215 disjoint subsets by testing whether it belongs to which A-subspaces. This is

always true regardless of the time index t, i.e., any coding vector ct transmitted by

either source or relay always lies in one of the 215 disjoint subsets while the regions

of disjoint subsets may change over the course of time. In the following discussion,

we often drop the input argument “(t)” when the time instant of interest is clear in

the context.
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We now use 15 bits to represent each disjoint subset of the overall message space

Ω. For any 15-bit string b = b1b2 · · · b15, we define “the coding type-b” by

TYPE
(s)
b

,

(

⋂

l:bl=1

Al

)

\
(

⋃

l:bl=0

Al

)

. (4.7)

The superscript “(s)” indicates that source s can send ct from any of these 215 types

since source s knows all W1 and W2 packets to begin with. Note that not all 215

disjoint subsets are feasible. For example, any TYPE
(s)
b

with b7 = 1 but b14 = 0

is always empty because any coding vector that lies in A7 = S1 ⊕ S2 ⊕ Ω2 cannot

lie outside the larger A14 = S1 ⊕ S2 ⊕ Sr ⊕ Ω2, see (4.4) and (4.5), respectively.

We say those always empty subsets are infeasible coding types and the rest is called

feasible coding types (FTs). By exhaustive computer search, we can prove that out of

215=32768 subsets, only 154 of them are feasible. Namely, the entire coding space Ω

can be viewed as a union of 154 disjoint coding types. Source s can choose a coding

vector ct from one of these 154 types. See (2.12).

For coding vectors that relay r can choose, we can further reduce the number

of possible placements of ct in the following way. By (2.16), we know that when

σ(t) = r, the ct sent by relay must belong to its knowledge space Sr(t − 1). Hence,

such ct must always lie in Sr(t−1), which is A15(t), see (4.6). As a result, any coding

vector ct sent by relay r must lie in those 154 subsets FTs that satisfy:

TYPE
(r)
b

, {TYPE(s)
b

: b ∈ FTs such that b15 = 1}. (4.8)

Again by computer search, there are 18 such coding types out of 154 subsets FTs. We

call those 18 subsets as relay’s feasible coding types (rFTs). Obviously, rFTs ⊆ FTs.

See Appendix G for the enumeration of those FTs and rFTs.

We can then derive the following upper bound.

Proposition 4.1.1. A rate vector (R1, R2) is in the LNC capacity region only if there

exists 154 non-negative variables x
(s)
b

for all b ∈ sFTs, 18 non-negative variables x
(r)
b



50

for all b ∈ rFTs, and 14 non-negative y-variables, y1 to y14, such that jointly they

satisfy the following three groups of linear conditions:

• Group 1, termed the time-sharing condition, has 1 inequality:

(

∑

∀b∈sFTs

x
(s)
b

)

+

(

∑

∀b∈rFTs

x
(r)
b

)

≤ 1. (4.9)
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• Group 2, termed the rank-conversion conditions, has 14 equalities:

y1 =

(

∑

∀b∈sFTs s.t. b1=0

x
(s)
b
· ps(d1)

)

+

(

∑

∀b∈rFTs s.t. b1=0

x
(r)
b
· pr(d1)

)

, (4.10)

y2 =

(

∑

∀b∈sFTs s.t. b2=0

x
(s)
b
· ps(d2)

)

+

(

∑

∀b∈rFTs s.t. b2=0

x
(r)
b
· pr(d2)

)

, (4.11)

y3 =

(

∑

∀b∈sFTs s.t. b3=0

x
(s)
b
· ps(d1)

)

+

(

∑

∀b∈rFTs s.t. b3=0

x
(r)
b
· pr(d1)

)

+R1, (4.12)

y4 =

(

∑

∀b∈sFTs s.t. b4=0

x
(s)
b
· ps(d2)

)

+

(

∑

∀b∈rFTs s.t. b4=0

x
(r)
b
· pr(d2)

)

+R2, (4.13)

y5 =

(

∑

∀b∈sFTs s.t. b5=0

x
(s)
b
· ps(d1, d2)

)

+

(

∑

∀b∈rFTs s.t. b5=0

x
(r)
b
· pr(d1, d2)

)

, (4.14)

y6 =

(

∑

∀b∈sFTs s.t. b6=0

x
(s)
b
· ps(d1, d2)

)

+

(

∑

∀b∈rFTs s.t. b6=0

x
(r)
b
· pr(d1, d2)

)

+R1, (4.15)

y7 =

(

∑

∀b∈sFTs s.t. b7=0

x
(s)
b
· ps(d1, d2)

)

+

(

∑

∀b∈rFTs s.t. b7=0

x
(r)
b
· pr(d1, d2)

)

+R2, (4.16)

y8 =

(

∑

∀b∈sFTs s.t. b8=0

x
(s)
b
· ps(d1, r)

)

, y9 =

(

∑

∀b∈sFTs s.t. b9=0

x
(s)
b
· ps(d2, r)

)

, (4.17)

y10 =

(

∑

∀b∈sFTs s.t. b10=0

x
(s)
b
· ps(d1, r)

)

+R1, (4.18)

y11 =

(

∑

∀b∈sFTs s.t. b11=0

x
(s)
b
· ps(d2, r)

)

+R2, (4.19)

y12 =

(

∑

∀b∈sFTs s.t. b12=0

x
(s)
b
· ps(d1, d2, r)

)

, (4.20)

y13 =

(

∑

∀b∈sFTs s.t. b13=0

x
(s)
b
· ps(d1, d2, r)

)

+R1, (4.21)

y14 =

(

∑

∀b∈sFTs s.t. b14=0

x
(s)
b
· ps(d1, d2, r)

)

+R2, (4.22)
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• Group 3, termed the decodability conditions, has 5 equalities:

y1 = y3, y2 = y4, y8 = y11, y9 = y11, (4.23)

y5 = y6 = y7 = y12 = y13 = y14 = (R1 +R2). (4.24)

The intuition is as follows. Consider any achievable (R1, R2) and the associated

LNC scheme. In the beginning of any time t, we can compute the knowledge spaces

S1(t−1), S2(t−1), and Sr(t−1) by (2.15) and use them to compute the A-subspaces

in (4.1)–(4.6). Then suppose that for time t, the given scheme chooses source s

to transmit a coding vector ct. By the previous discussions, we can classify which

TYPE
(s)
b

this ct belongs to, by comparing it to those 15 A-subspaces. After run-

ning the given scheme from time 1 to n, we can thus compute the variable x
(s)
b

,

1
n
E

[

∑n
t=1 1{ct∈TYPE(s)

b
}

]

for each TYPE
(s)
b

as the frequency of scheduling source s with

the chosen ct happening to be in TYPE
(s)
b
. Similarly for TYPE

(r)
b
, we can compute the

variable x
(r)
b

, 1
n
E

[

∑n
t=1 1{ct∈TYPE(r)

b
}

]

for each TYPE
(r)
b

as the frequency of schedul-

ing relay r with the chosen ct happening to be in TYPE
(r)
b
. Obviously, the computed

{x(s)
b
, x

(r)
b
} satisfy the time-sharing inequality (4.9). We then compute the y-variables

by

yl ,
1

n
E
[

rank
(

Ai(n)
)]

, ∀l ∈ {1, 2, · · · , 14}, (4.25)

as normalized expected ranks of A-subspaces in the end of time n. We now claim

that these variables satisfy (4.10) to (4.24). This claim implies that for any LNC-

achievable (R1, R2), there exists x
(s)
b
, x

(r)
b
, and y-variables satisfying Proposition 4.1.1,

which means that Proposition 4.1.1 constitutes an outer bound on the LNC capacity.

To prove that (4.10) to (4.22) are true,1 consider an A-subspace, say A3(t) =

S1(t− 1)⊕Ω1 = RSd1(t− 1)⊕Ω1 as defined in (4.2) and (2.15). In the beginning of

1For rigorous proofs, we need to invoke the law of large numbers and take care of the ǫ-error
probability. For ease of discussion, the corresponding technical details are omitted when discussing
the intuition of Proposition 4.1.1.
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time 1, destination d1 has not received any packet yet, i.e., RSd1(0) = {0}. Thus the
rank of A3(1) is rank(Ω1) = nR1.

The fact that S1(t−1) contributes to A3(t) implies that rank(A3(t)) will increase by

one whenever destination d1 receives a packet ctW
⊤ satisfying ct 6∈ A3(t). Whenever

source s sends a ct in TYPE
(s)
b

with b3 = 0, such ct is not in A3(t). Whenever

destination d1 receives it, rank(A3(t)) increases by 1. Moreover, whenever relay r

sends a ct in TYPE
(r)
b

with b3 = 0 and destination d1 receives it, rank(A3(t)) also

increases by 1. Therefore, in the end of time n, we have

rank(A3(n)) =

n
∑

t=1

1{
source s sends ct∈TYPE

(s)
b

with b3=0,
and destination d1 receives it

}

+
n
∑

t=1

1{
relay r sends ct∈TYPE

(r)
b

with b3=0,
and destination d1 receives it

}

+ rank(A3(0)).

(4.26)

Taking the normalized expectation of (4.26), we have proven (4.12). By similar rank-

conversion arguments, (4.10) to (4.22) can be shown to be true.

In the end of time n, since both destination d1 and d2 can decode the desired

packets W1 and W2, respectively, we thus have S1(n) ⊇ Ω1 and S2(n) ⊇ Ω2, or

equivalently Sk(n) = Sk(n) ⊕ Ωk for all k ∈ {1, 2}. This implies that the ranks of

A1(n) and A3(n), and the ranks of A2(n) and A4(n) are equal, respectively. Together

with (4.25), we thus have the first two equalities in (4.23). Similarly, one can prove

that the remaining equalities in (4.23) and (4.24) are satisfied as well. The claim is

thus proven.

4.2 LNC Capacity Inner Bound

In the smart repeater problem of our interest, if the r-PEC is weaker than the

s-PEC, then there is no need to do relaying since we can simply let s take over relay’s

operations. We thus assume
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Definition 4.2.1. The smart repeater network with two destinations {d1, d2} is strong-

relaying if

pr(d1) > ps(d1),

pr(d1d2) > ps(d1d2),

pr(d2) > ps(d2),

pr(d1d2) > ps(d1d2),

and pr(d1, d2) > ps(d1, d2),

i.e., the given r-PEC is stronger than the given s-PEC for all non-empty subsets of

destinations.

We now describe our capacity-approaching achievability scheme.

Proposition 4.2.1. A rate vector (R1, R2) is LNC-achievable if there exist 2 non-

negative variables ts and tr, (6× 2 + 8) non-negative s-variables:

{

sk
UC
, sk

PM1
, sk

PM2
, sk

RC
, sk

DX
, s

(k)
DX

: for all k ∈ {1, 2}
}

,

{

sCX;l (l=1, · · ·, 8)
}

,

and (3× 2 + 3) non-negative r-variables:

{

rkUC, r
(k)
DT
, r

[k]
DT

: for all k ∈ {1, 2}
}

,
{

rRC, rXT, rCX
}

,

such that jointly they satisfy the following five groups of linear conditions:
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• Group 1, termed the time-sharing conditions, has 3 inequalities:

1 > ts + tr, (4.27)

ts ≥
∑

k∈{1,2}

(

sk
UC

+sk
PM1

+sk
PM2

+sk
RC

+sk
DX

+s
(k)
DX

)

+
8
∑

l=1

sCX;l, (4.28)

tr ≥
∑

k∈{1,2}

(

rk
UC

+ r
(k)
DT

+ r
[k]
DT

)

+ rRC + r
XT

+ r
CX
. (4.29)

• Group 2, termed the packets-originating condition, has 2 inequalities: Consider any

i, j ∈ {1, 2} satisfying i 6= j. For each (i, j) pair (out of the two choices (1, 2) and

(2, 1)),

Ri ≥
(

si
UC

+ si
PM1

)

· ps(di, dj, r), (E)

• Group 3, termed the packets-mixing condition, has 4 inequalities: For each (i, j)

pair,

(

si
UC

+ si
PM1

)

· ps→didjr
≥ (sj

PM1
+ si

PM2
) · ps(di, dj) + ri

UC
· pr(di, dj), (A)

si
PM1

· ps→didjr
≥ si

RC
· ps(di, dj, r), (B)

and the following one inequality:

s1
PM1

·ps(d1, d2r) + s2
PM1

·ps(d2, d1r) + s1
PM2

·ps(d1d2) +

s2
PM2

·ps(d1d2)+
(

s1
RC

+s2
RC

)

·ps→d1d2r
≥ rRC ·pr(d1, d2). (M)
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• Group 4, termed the classic XOR condition by source only, has 4 inequalities: For

each (i, j) pair,

(

si
UC

+ si
RC

)

ps→didjr
≥
(

sj
PM2

+ si
DX

)

· ps(di, r) +

(sCX;1 + sCX;1+i) · ps(di, r) + sCX;4+i · ps(di, r), (S)

sj
RC

· ps→didjr
≥ s

(i)
DX

· ps(di, r) + r
(i)
DT

· pr(di, dj) +

(sCX;1+j + sCX;4) · ps(di, r) + sCX;6+i · ps(di, r). (T)

• Group 5, termed the XOR condition, has 3 inequalities:

4
∑

l=1

sCX;l · ps→d1d2r
≥ rXT · pr(d1, d2), (X0)

and for each (i, j) pair,

sj
PM2

·ps(didj, dir) +
(

siUC+s
i
RC+s

j
RC

+

4
∑

l=1

sCX;l

)

·ps→didjr

+
(

sCX;4+i + sCX;6+i + siDX + s
(i)
DX

)

· ps(dir)

+
(

ri
UC

+ rRC + r
(i)
DT

+ r
XT

)

· pr→didj

≥ (sCX;7−i + sCX;9−i) · ps(di) +
(

rCX+ r
[i]
DT

)

· pr(di). (X)

• Group 6, termed the decodability condition, has 2 inequalities: For each (i, j) pair,

(

siUC + sj
PM2

+
∑

k∈{1,2}

skRC +

8
∑

l=1

sCX;l + siDX + s
(i)
DX

)

· ps(di) +

(

ri
UC

+ rRC + r
XT

+ r
CX

+ r
(i)
DT

+ r
[i]
DT

)

· pr(di) ≥ Ri. (D)

The intuition is as follows. The proposed LNC inner bound is derived based on the

ideas of describing the packet movements in a queueing network, where movements

are governed by LNC operations. Each variable (except t-variables for time-sharing)

in Proposition 4.2.1 is associated with a specific LNC operation. Note that s-variables
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are associated with LNC operations performed by the source s, while r-variables are

associated with LNC operations performed by the relay r. The inequalities (E) to (D)

then describe the queueing process for packet movements, where the LHS and the RHS

of each inequality implies the packet insertion and removal conditions, respectively, of

the corresponding queue by the related LNC operations. For notational convenience,

we define the following queue notations associated with these 14 inequalities (E) to

(D):

Table 4.1: Queue denominations for the inequalities (E) to (D)

(E1): Q1
φ (B1): Q

m|2
{d2}|{r}

(S1): Q1
{d2}

(X0): QmCX

{r}

(E2): Q2
φ (B2): Q

m|1
{d1}|{r}

(T1): Q
(1)|1
{d2}|{r}

(X1): Q
[1]
{rd2}

(A1): Q1
{r} (M): Qmix (S2): Q2

{d1}
(X2): Q

[2]
{rd1}

(A2): Q2
{r} (T2): Q

(2)|2
{d1}|{r}

(D1): Q1
dec

(D2): Q2
dec

where we use the index-after-reference to distinguish the session (i.e., flow) of focus

of an inequality. For example, (E1) and (E2) are to denote the inequality (E) when

(i, j) = (1, 2) and (i, j) = (2, 1), respectively.

For example, suppose thatW1 = (X1, · · · , XnR1) packets andW2 = (Y1, · · · , YnR2)

packets are initially stored in queues Q1
φ and Q2

φ, respectively, at source s. The super-

script k ∈ {1, 2} indicates that the queue is for the packets intended to destination dk.

The subscript indicates that those packets have not been heard by any of {d1, d2, r}.
The LNC operation corresponding to the variable s1

UC
(resp. s2

UC
) is to send a session-

1 packet Xi (resp. a session-2 packet Yj) uncodedly. Then the inequality (E1) (resp.

(E2)) implies that whenever it is received by at least one of {d1, d2, r}, this packet is
removed from the queue of Q1

φ (resp. Q2
φ).

Depending on the reception status, the packet will be either remained in the same

queue or moved to another queue. For example, the use of s1
UC

(sending Xi ∈ W1

uncodedly from source) will takeXi fromQ1
φ and insert it into Q1

dec
when the reception

status is ps(d1), i.e., when the intended destination d1 correctly receives it. Similarly,

when the reception status is ps→d1d2r
, this packet will be inserted to the queue Q1

{r}
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according to the packet movement rule of (A1); inserted to Q1
{d2}

when ps→d1d2r
by

(S1); and inserted to Q
[1]
{rd2}

when ps→d1d2r
by (X1). Obviously when ps→d1d2r

, since

any node in {d1, d2, r} has not received at all, the packet Xi simply remains in Q1
φ.

Fig. 4.1 illustrates the queueing network represented by Proposition 4.2.1. The

detailed descriptions of the proposed LNC operations and the corresponding packet

movement process following the inequalities in Proposition 4.2.1 are relegated to Ap-

pendix H.1.

4.2.1 The Properties of Queues and The Correctness Proof

Each queue in the queueing network, see Fig. 4.1, is carefully designed to store

packets in a specific format such that the queue itself can represent a certain case to

be beneficial. In this subsection, we highlight the properties of the queues, which will

be later used to prove the correctness of our achievability scheme of Proposition 4.2.1.

To that end, we first describe the properties of Q1
φ, Q

1
dec

, Q1
{r}, and Q1

{d2}
since

their purpose is clear in the sense that the queue collects pure session-1 packets

(indicated by the superscript), but heard only by the nodes (in the subscript {·}) or
correctly decoded by the desired destination d1 (by the subscript dec). After that, we

describe the property of Qmix, and then explain Q
m|2
{d2}|{r}

, Q
(1)|1
{d2}|{r}

, and Q
[1]
{rd2}

focusing

on the queues related to the session-1 packets. For example, Q
m|2
{d2}|{r}

implies the queue

related to a session-1 packet that is mixed with a session-2 packet, where such mixture

is known by d2 but the session-2 packet is known by r as well. The properties of the

queues related to the session-2 packets, i.e., Q2
φ, Q

2
dec

, Q2
{r}, Q

2
{d1}

, Q
m|1
{d1}|{r}

, Q
(2)|2
{d1}|{r}

, and

Q
[2]
{rd1}

, will be symmetrically explained by simultaneously swapping (a) session-1 and

session-2 in the superscript; (b) X and Y ; (c) i and j; and (d) d1 and d2, if applicable.

The property of QmCX

{r} will be followed at last.

To help aid the explanations, we also define for each node in {d1, d2, r}, the recep-
tion list RL{d1}, RL{d2}, and RL{r}, respectively, that records how the received packet is

constituted. The reception list is a binary matrix of its column size fixed to n(R1+R2)
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Q1
φ Q2

φ

s1
PM1

s2
PM1

s1
UC

s2
UC

Q
m|2
{d2}|{r}

Q1
{r} Q2

{r} Q
m|1
{d1}|{r}

s1
RC

s2
RC

Q1
{d2}

Q1∗
{d2}

Q2∗
{d1}

Q2
{d1}

s1
PM2

s2
PM2

s1
DX

s2
DX

s1∗
DX

s2∗
DX

sCX;1sCX;2 sCX;3sCX;4

Qmix
Q

mCX

{r}

r1
UC

r2
UC

rRC r∗∗
XT

r1∗
DT

r2∗
DT

sCX;5 sCX;7 sCX;6sCX;8

Q
[1]
{rd2}

∗∗ Q
[2]
{rd1}

∗∗

r∗∗
CXr1∗∗

DT
r2∗∗
DT

Q1
dec

Q1
dec

Fig. 4.1. Illustrations of The Queueing Network described by the inequalities (E) to
(D) in Proposition 4.2.1. The upper-side-open rectangle represents the queue, and
the circle represents LNC encoding operation, where the blue means the encoding
by the source s and the red means the encoding by the relay r. The black outgoing
arrows from a LNC operation (or from a set of LNC operations grouped by a curly
brace) represent the packet movements process depending on the reception status,
where the southwest and southeast dashed arrows are especially for into Q1

dec
and

into Q2
dec

, respectively.
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but its row size being the number of received packets and thus variable (increasing)

over the course of total time slots. For example, suppose that d1 has received a pure

session-1 packet X1, a self-mixture [X1 +X2], and a cross-mixture [X3 + Y1]. Then

RL{d1} will be
nR1 nR2

1 0 · · · · · · · · · · · ·
1 1 0 · · · · · · · · · ·
0 0 1 0 · · · · · · · · ·

0 0 · · · · · · · · · · · ·
0 0 · · · · · · · · · · · ·
1 0 · · · · · · · · · · · ·

such that the first row vector represents the pure X1 received, the second row vector

represents the mixture [X1 + X2] received, and the third row vector represents the

mixture [X3 + Y1] received, all in a binary format. Namely, whenever a node receives

a packet, whether such packet is pure or not, a new n(R1 + R2)-dimensional row

vector is inserted into the reception list by marking the corresponding entries of Xi

or Yj as flagged (“1”) or not flagged (“0”) accordingly. From the previous example,

[X1 + X2] in the reception list RL{d1} means that the list contains a n(R1 + R2)-

dimensional row vector of exactly {1, 1, 0, · · · , 0}. We then say that a pure packet

is not flagged in the reception list, if the column of the corresponding entry contains

all zeros. From the previous example, the pure session-2 packet Y2 is not flagged in

RL{d1}, meaning that d1 has neither received Y2 nor any mixture involving this Y2.

Note that “not flagged” is a stronger definition than “unknown”. From the previous

example, the pure session-1 packet X3 is unknown to d1 but still flagged in RL{d1} as

d1 has received the mixture [X3+Y1] involving this X3. Another example is the pure

X2 that is flagged in RL{d1} but d1 knows this X2 as it can use the received X1 and the

mixture [X1 +X2] to extract X2. We sometimes abuse the reception list notation to

denote the collective reception list by RLT for some non-empty subset T ⊆ {d1, d2, r}.
For example, RL{d1,d2,r} implies the vertical concatenation of all RL{d1}, RL{d2}, and

RL{r}.

We now describe the properties of the queues.

• Q1
φ: Every packet in this queue is of a pure session-1 and unknown to any of

{d1, d2, r}, even not flagged in RL{d1,d2,r}. Initially, this queue contains all the session-1

packets W1, and will be empty in the end.
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• Q1
dec

: Every packet in this queue is of a pure session-1 and known to d1. Initially,

this queue is empty but will contain all the session-1 packets W1 in the end.

• Q1
{r}: Every packet in this queue is of a pure session-1 and known by r but

unknown to any of {d1, d2}, even not flagged in RL{d1,d2}.

• Q1
{d2}

: Every packet in this queue is of a pure session-1 and known by d2 but

unknown to any of {d1, r}, even not flagged in RL{d1,r}.

• Qmix: Every packet in this queue is of a linear sum [Xi + Yj] from a session-1

packet Xi and a session-2 packet Yj such that at least one of the following conditions

hold:

(a) [Xi + Yj] is in RL{d1}; Xi is unknown to d1; and Yj is known by r but unknown

to d2.

(b) [Xi + Yj] is in RL{d2}; Xi is known by r but unknown to d1; and Yj is unknown

to d2.

The detailed clarifications are as follows. For a NC designer, one important considera-

tion is to generate as many “all-happy” scenarios as possible in an efficient manner so

that single transmission benefits both destination simultaneously. One famous exam-

ple is the classic XOR operation that a sender transmits a linear sum [Xi + Yj] when

a session-1 packet Xi is not yet delivered to d1 but overheard by d2 and a session-2

packet Yj is not yet delivered to d2 but overheard by d1. Namely, the source s can

perform such classic butterfly-style operation of sending the linear mixture [Xi + Yj]

whenever such pair of Xi and Yj is available. Similarly, Qmix represents such an

“all-happy” scenario that the relay r can benefit both destinations simultaneously by

sending either Xi or Yj. For example, suppose that the source s has transmitted a

packet mixture [Xi + Yj] and it is received by d2 only. And assume that r already

knows the individual Xi and Yj butXi is unknown to d1, see Fig. 4.2(a). This example

scenario falls into the second condition of Qmix above. Then sending Xi from the relay

r simultaneously enables d1 to receive the desired Xi and d2 to decode the desired Yj

by subtracting the received Xi from the known [Xi+Yj ]. Qmix collects such all-happy
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mixtures [Xi + Yj] that has been received by either d1 or d2 or both. In the same

scenario, however, notice that r cannot benefit both destinations simultaneously, if r

sends Yj, instead of Xi. As a result, we use the notation [Xi + Yj] :W to denote the

specific packet W (known by r) that r can send to benefit both destinations. In this

second condition scenario of Fig. 4.2(a), Qmix is storing [Xi + Yj] :Xi.

• Qm|2
{d2}|{r}

: Every packet in this queue is of a linear sum [Xi + Yj ] from a session-

1 packet Xi and a session-2 packet Yj such that they jointly satisfy the following

conditions simultaneously.

(a) [Xi + Yj] is in RL{d2}.

(b) Xi is unknown to any of {d1, d2, r}, even not flagged in RL{d1,r}.

(c) Yj is known by r but unknown to any of {d1, d2}, even not flagged in RL{d1}.

The scenario is the same as in Fig. 4.2(a) when r not having Xi. In this scenario,

we have observed that r cannot benefit both destinations by sending the known Yj.

Q
m|2
{d2}|{r}

collects such unpromising [Xi + Yj] mixtures.

• Q(1)|1
{d2}|{r}

: Every packet in this queue is of a pure session-2 packet Yi such that there

exists a pure session-1 packet Xi that Yi is information equivalent to, and they jointly

satisfy the following conditions simultaneously.

(a) [Xi + Yi] is in RL{d1}.

(b) Xi is known by r but unknown to any of {d1, d2}.

(c) Yi is known by d2 (i.e. already in Q2
dec

) but unknown to any of {d1, r}, even not

flagged in RL{r}.

The concrete explanations are as follows. The main purpose of this queue is basically

the same as Q1
{d2}

, i.e., to store session-1 packet overheard by d2, so as to be used

by the source s for the classic XOR operation with the session-2 counterparts (e.g.,

any packet in Q2
{d1}

). Notice that any Xi ∈Q1
{d2}

is unknown to r and thus r cannot

generate the corresponding linear mixture with the counterpart. However, because
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r
Xi, Yj d1

d2 [Xi+Yj ]

(a) Example scenario for Qmix

r
Xi d1 [Xi+Yi]

d2 Yi

(b) Scenario for Yi∈Q
(1)|1
{d2}|{r}

It must be Yi∈Q2
dec

r
Xi d1

d2 Xi

(c) Case 1: Xi∈Q
[1]
{rd2}

r
Yi d1 [Xi+Yi]

d2 Yi

(d) Case 2: Yi∈Q
[1]
{rd2}

It must be Yi∈Q2
dec

r
[Wi+Wj ] d1 Wj

d2 [Wi+Wj ]

(e) Case 3: [Wi+Wj ]∈Q
[1]
{rd2}

r
[Wi+Wj ] d1 Wj

d2 Wi

(f) Scenario for [Wi+Wj]∈Q
mCX

{r}

Fig. 4.2. Illustrations of Scenarios of the Queues.

Xi is unknown to the relay, r cannot even naively deliver Xi to the desired destination

d1. On the other hand, the queue Q
(1)|1
{d2}|{r}

here not only allows s to perform the classic

XOR operation but also admits naive delivery from r. To that end, consider the

scenario in Fig. 4.2(b). Here, d1 has received a linear sum [Xi + Yi]. Whenever d1

receives Yi (session-2 packet), d1 can use Yi and the known [Xi + Yi] to decode the

desired Xi. This Yi is also known by d2 (i.e., already in Q2
dec

), meaning that Yi is no

more different than a session-1 packet overheard by d2 but not yet delivered to d1.

Namely, such Yi can be treated as information equivalent to Xi. That is, using this

session-2 packet Yi for the sake of session-1 does not incur any information duplicity

because Yi is already received by the desired destination d2.
2 For shorthand, we

denote such Yi as Yi ≡ Xi. As a result, the source s can use this Yi as for session-1

2This means that d2 does not require Yi any more, and thus s or r can freely use this Yi in the
network to represent not-yet-decoded Xi instead.
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when performing the classic XOR operation with a session-2 counterpart. Moreover,

r also knows the pure Xi and thus relay can perform naive delivery for d1 as well.

• Q[1]
{rd2}

: Every packet in this queue is of either a pure or a mixed packetW satisfying

the following conditions simultaneously.

(a) W is known by both r and d2 but unknown to d1.

(b) d1 can extract a desired session-1 packet when W is further received.

Specifically, there are three possible cases based on how the packet W ∈ Q
[1]
{rd2}

is

constituted:

Case 1: W is a pure session-1 packet Xi. That is, Xi is known by both r and d2 but

unknown to d1 as in Fig. 4.2(c). Obviously, d1 acquires this new Xi when it is

further delivered to d1.

Case 2: W is a pure session-2 packet Yi ∈ Q2
dec

. That is, Yi is already received by

d2 and known by r as well but unknown to d1. For such Yi, as similar to the

discussions of Q
(1)|1
{d2}|{r}

, there exists a session-1 packet Xi still unknown to d1

where Xi ≡ Yi, and their mixture [Xi + Yi] is in RL{d1}, see Fig. 4.2(d). One

can easily see that when d1 further receives this Yi, d1 can use the received Yi

and the known [Xi + Yi] to decode the desired Xi.

Case 3: W is a mixed packet of the form [Wi +Wj ] where Wi and Wj are pure but

generic that can be either a session-1 or a session-2 packet. That is, the linear

sum [Wi +Wj ] is known by both r and d2 but unknown to d1. In this case,

Wi is still unknown to d1 but Wj is already received by d1 so that whenever

[Wi + Wj] is delivered to d1, Wi can further be decoded. See Fig. 4.2(e) for

details. Specifically, there are two possible subcases depending on whether Wi

is of a pure session-1 or of a pure session-2:

– Wi is a session-1 packet Xi. As discussed above, Xi is unknown to d1

and it is obvious that d1 can decode the desired Xi whenever [Wi +Wj ] is

delivered to d1.
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– Wi is a session-2 packet Yi∈Q2
dec

. In this subcase, there exists a session-1

packet Xi (other than Wj in the above Case 3 discussions) still unknown

to d1 where Xi ≡ Yi. Moreover, [Xi + Yi] is already in RL{d1}. As a result,

d1 can decode the desired Xi whenever [Wi +Wj] is delivered to d1.

The concrete explanations are as follows. The main purpose of this queue is basically

the same as Q
(1)|1
{d2}|{r}

but the queue Q
[1]
{rd2}

here allows not only the source s but also the

relay r to perform the classic XOR operation. As elaborated above, we have three

possible cases depending on the form of the packet W ∈Q[1]
{rd2}

. Specifically, either a

pure session-1 packet Xi 6∈Q1
dec

(Case 1) or a pure session-2 packet Yi∈Q2
dec

(Case 2)

or a mixture [Wi +Wj ] (Case 3) will be used when either s or r performs the classic

XOR operation with a session-2 counterpart. For example, suppose that we have a

packet X ∈ Q[2]
{rd1}

(Case 2) as a session-2 counterpart. Symmetrically following the

Case 2 scenario of Q
[1]
{rd2}

in Fig. 4.2(d), we know that X has been received by both

r and d1. There also exists a session-2 packet Y still unknown to d2 where Y ≡ X ,

of which their mixture [X + Y ] is already in RL{d2}. For this session-2 counterpart

X , consider any packet W in Q
[1]
{rd2}

. Obviously, the relay r knows both W and X

by assumption. As a result, either s or r can send their linear sum [W +X ] as per

the classic pairwise XOR operation. Since d1 already knows X by assumption, such

mixture [W +X ], when received by d1, can be used to decode W and further decode

a desired session-1 packet as discussed above. Moreover, if d2 receives [W +X ], then

d2 can use the known W to extract X and further decode the desired Y since [X+Y ]

is already in RL{d2} by assumption.

• QmCX

{r} : Every packet in this queue is of a linear sum [Wi +Wj ] that satisfies the

following conditions simultaneously.

(a) [Wi +Wj ] is in RL{r}.

(b) Wi is known by d2 but unknown to any of {d1, r}.

(c) Wj is known by d1 but unknown to any of {d2, r}.
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where Wi and Wj are pure but generic that can be either a session-1 or a session-2

packet. Specifically, there are four possible cases based on the types of Wi and Wj

packets:

Case 1: Wi is a pure session-1 packet Xi and Wj is a pure session-2 packet Yj.

Case 2: Wi is a pure session-1 packet Xi and Wj is a pure session-1 packet Xj∈Q1
dec

.

For the latter Xj packet, as similar to the discussions of Q
(1)|1
{d2}|{r}

, there also exists

a pure session-2 packet Yj still unknown to d2 where Yj ≡ Xj and their mixture

[Xj + Yj] is already in RL{d2}. As a result, later when d2 decodes this Xj, d2

can use Xj and the known [Xj + Yj] to decode the desired Yj.

Case 3: Wi is a pure session-2 packet Yi ∈ Q2
dec

and Wj is a pure session-2 packet

Yj. For the former Yi packet, there also exists a pure session-1 packet Xi still

unknown to d1 where Xi ≡ Yi and [Xi + Yi] is already in RL{d1}. As a result,

later when d1 decodes this Yi, d1 can use Yi and the known [Xi + Yi] to decode

the desired Xi.

Case 3: Wi is a pure session-2 packet Yi ∈ Q2
dec

and Wj is a pure session-1 packet

Xj ∈Q1
dec

. For the former Yi and the latter Xj packets, the discussions follow

the Case 3 and Case 2 above, respectively.

The concrete explanations are as follows. This queue represents the “all-happy”

scenario as similar to the butterfly-style operation by the relay r, i.e., sending a

linear mixture [Wi +Wj ] using Wi heard by d2 and Wj heard by d1. Originally, r

must have known both individuals packets Wi and Wj to generate their linear sum.

However, the sender in fact does not need to know both individuals to perform this

classic XOR operation. The sender can still do the same operation even though it

knows the linear sum [Wi+Wj] only. This possibility only applies to the relay r as all

the messages including both individual packets are originated from the source s. As a

result, this queue represents such scenario that the relay r only knows the linear sum

instead of individuals, as in Fig. 4.2(f). More precisely, Cases 1 to 4 happen when
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Fig. 4.3. Comparison of LNC regions with different achievable rates

the source s performed one of four classic XOR operations sCX;1 to sCX;4, respectively,

and the corresponding linear sum is received only by r, see Appendix H.1 for details.

Based on the properties of queues, we now describe the correctness of Propo-

sition 4.2.1, our LNC inner bound. To that end, we first investigate all the LNC

operations involved in Proposition 4.2.1 and prove the “Queue Invariance”, i.e., the

queue properties explained above remains invariant regardless of an LNC operation

chosen. Such long and tedious investigations are relegated to Appendix H.1. Then,

the decodability condition (D), jointly with the Queue Invariance, imply thatQ1
dec

and

Q2
dec

will contain at least nR1 and nR2 number of pure session-1 and pure session-2

packets, respectively, in the end. This further means that, given a rate vector (R1, R2),

any t-, s-, and r-variables that satisfy the inequalities (E) to (D) in Proposition 4.2.1

will be achievable. The correctness proof of Proposition 4.2.1 is thus complete.

For readability, we also describe for each queue, the associated LNC operations

that moves packet into and takes packets out of, see the following Table 4.2.

4.3 Numerical Evaluation

Consider a smart repeater network with marginal channel success probabilities: (a)

s-PEC: ps(d1) = 0.15, ps(d2) = 0.25, and ps(r) = 0.8; and (b) r-PEC: pr(d1) = 0.75
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Table 4.2: Summary of the associated LNC operations for queues in Fig. 4.2

LNC operations 7→ Queue 7→ LNC operations

Q1
φ s1

UC
, s1

PM1

s1
UC

, s1
PM1

Q1
{r} s2

PM1
, s1

PM2
, r1

UC

s1
PM1

Q
m|2
{d2}|{r}

s1
RC

s1
UC

, s1
RC

Q1
{d2}

s2
PM2

, s1
DX

sCX;1, sCX;2, sCX;5

s2
RC

Q
(1)|1
{d2}|{r}

s
(1)
DX

, sCX;3
sCX;4, sCX;7, r

(1)
DT

s1
UC

, s2
PM2

, s1
RC
, s1

DX Q
[1]
{rd2}

(Case 1)
sCX;6, sCX;8

r
[1]
DT

, rCX

sCX;5, r
1
UC

, r
(1)
DT

, rRC

s2
PM2

, s2
RC

, s
(1)
DX Q

[1]
{rd2}

(Case 2)sCX;7, rRC
sCX;1, sCX;2 Q

[1]
{rd2}

(Case 3)sCX;3, sCX;4, rXT
s1
UC

, s1
PM2

, s1
RC
, s2

RC

Q1
dec

s1
DX

, s
(1)
DX

, {sCX;1 to sCX;8}
r1
UC

, r
(1)
DT

, r
[1]
DT

rRC, rXT, rCX

s1
PM1

, s2
PM1

, s1
PM2

, s2
PM2 Qmix rRC

s1
RC
, s2

RC

sCX;1, sCX;2, sCX;3, sCX;4 Q
mCX

{r} r
XT

Q2
φ s2
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, s2

PM1

s2
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, s2
PM1

Q2
{r} s1

PM1
, s2

PM2
, r2

UC

s2
PM1

Q
m|1
{d1}|{r}

s2
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s2
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, s2
RC

Q2
{d1}

s1
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, s2
DX

sCX;1, sCX;3, sCX;6

s1
RC Q

(2)|2
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s
(2)
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(2)
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s2
UC

, s1
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, s2
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, s2

DX Q
[2]
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r
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sCX;6, r
2
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, r
(2)
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, rRC

s1
PM2

, s1
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, s
(2)
DX Q

[2]
{rd1}

(Case 2)sCX;8, rRC
sCX;1, sCX;2 Q

[2]
{rd1}
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s2
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, s2
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, s2
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, r
(2)
DT

, r
[2]
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and pr(d2) = 0.85. And we assume that all the erasure events are independent. We

will use the results in Propositions 4.1.1 and 4.2.1 to find the largest (R1, R2) value

for this example scenario.

Fig. 4.3 compares the LNC capacity outer bound (Proposition 4.1.1) and the LNC

inner bound (Proposition 4.2.1) with different achievability schemes. The smallest

rate region is achieved by simply performing uncoded direct transmission without

using the relay r. The second achievability scheme is the 2-receiver broadcast channel

LNC from the source s in [47] while still not exploiting r at all. The third and fourth

schemes always use r for any packet delivery. Namely, both schemes do not allow

2-hop delivery from s. Then r in the third scheme uses pure routing while r performs

the 2-user broadcast channel LNC in the fourth scheme. The fifth scheme performs

the time-shared transmission between s and r, while allowing only intra-flow network

coding. The sixth scheme is derived from using only the classic butterfly-style LNCs

corresponding to sCX;l (l= 1, · · ·, 8), r
CX
, and r

XT
. That is, we do not allow s to

perform fancy operations such as sk
PM1

, sk
PM2

, sk
RC
, and rRC. One can see that the

result is strictly suboptimal.

In sum, one can see that our proposed LNC inner bound closely approaches the

LNC capacity outer bound in all angles. This shows that the newly-identified LNC

operations other than the classic butterfly-style LNCs are critical in approaching the

LNC capacity. The detailed rate region description of each sub-optimal achievability

scheme can be found in Appendix I.

Fig. 4.4 examines the relative gaps between the outer and inner bounds by choos-

ing the channel parameters ps(·) and pr(·) uniformly randomly while obeying the

strong-relaying condition in Definition 4.2.1. For any chosen parameter instance, we

use a linear programming solver to find the largest sum rate RΣ of the LNC outer

and inner bounds of Propositions 4.1.1 and 4.2.1, which are denoted by Rsum.outer

and Rsum.inner, respectively. We then compute the relative gap per each experiment,

(Rsum.outer − Rsum.inner)/Rsum.outer, and then repeat the experiment 10000 times, and

plot the cumulative distribution function (cdf) in unit of percentage. We can see that
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with more than 85% of the experiments, the relative gap between the outer and inner

bound is smaller than 0.08%.

4.4 Chapter Summary

In this chapter, we discuss the LNC capacity region of the smart repeater net-

work formulated in Section 2.3. In Sections 4.1 and 4.2, we propose the LNC outer

bound and the capacity-approaching LNC scheme with newly identified LNC op-

erations other than the previously well-known classic butterfly-style operations. In

Section 4.2.1, we provide the correctness proof of our LNC achievability scheme based

on the invariance property of the queueing network analysis. In Section 4.3, we use

the numerical results to describe the LNC capacity region, and demonstrate that the

proposed LNC achievability scheme is close-to-optimal.
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5. PRECODING-BASED FRAMEWORK FOR WIRELINE

DIRECTED ACYCLIC NETWORK

In this chapter, we present and define the Precoding-based Framework. As discussed

in Section 1.2, the LNC characterization problem in Wireline Networks is closely

related to an underlying network topology and its corresponding algebraic solution.

Thus we first start by defining some necessary graph-theoretic notations. The al-

gebraic formulation of the proposed Precoding-based framework and its comparison

to the classic LNC framework will follow in the subsequent sections. Based on our

new framework, we will explain the recent wireless applications, 2-unicast Linear

Deterministic Interference Channel (LDIC) [25, 26] and 3-unicast Asymptotic Net-

work Alignment (ANA) [40, 41]. The motivation and contributions of our work for

the second application, the 3-unicast ANA scheme, is further discussed. Finally, the

main results of this chapter, i.e., the fundamental properties of the Precoding-based

Framework, will follow in the subsequent section.

5.1 Graph-Theoretic Definitions

Consider a Directed Acyclic Integer-Capacity network (DAG) G=(V,E) where V

is the set of nodes and E is the set of directed edges. Each edge e∈E is represented

by e= uv, where u= tail(e) and v= head(e) are the tail and head of e, respectively.

For any node v ∈ V , we use In(v)⊂E to denote the collection of its incoming edges

uv∈E. Similarly, Out(v)⊂E contains all the outgoing edges vw∈E.
A path P is a series of adjacent edges e1e2 · · · ek where head(ei) = tail(ei+1) ∀ i∈

{1, ···, k−1}. We say that e1 and ek are the starting and ending edges of P , respectively.

For any path P , we use e∈P to indicate that an edge e is used by P . For a given

path P , xP y denotes the path segment of P from node x to node y. A path starting



72

from node x and ending at node y is sometimes denoted by Pxy. By slightly abusing

the notation, we sometimes substitute the nodes x and y by the edges e1 and e2 and

use e1Pe2 to denote the path segment from tail(e1) to head(e2) along P . Similarly,

Pe1e2 denotes a path from tail(e1) to head(e2). We say a node u is an upstream node

of a node v (or v is a downstream node of u) if u 6=v and there exists a path Puv, and

we denote it as u≺ v. If neither u≺ v nor u≻ v, then we say that u and v are not

reachable from each other. Similarly, e1 is an upstream edge of e2 if head(e1)� tail(e2)

(where�means either head(e1)≺ tail(e2) or head(e1)= tail(e2)), and we denote it by

e1 ≺ e2. Two distinct edges e1 and e2 are not reachable from each other, if neither

e1 ≺ e2 nor e1 ≻ e2. Given any edge set E1, we say an edge e is one of the most

upstream edges in E1 if (i) e ∈ E1; and (ii) e is not reachable from any other edge

e′ ∈ E1\e. One can easily see that the most upstream edge may not be unique. The

collection of the most upstream edges of E1 is denoted by upstr(E1). A k-edge cut

(sometimes just the “edge cut”) separating node sets U⊂V andW ⊂V is a collection

of k edges such that any path from any u∈U to any w∈W must use at least one of

those k edges. The value of an edge cut is the number of edges in the cut. (A k-edge

cut has value k.) We denote the minimum value among all the edge cuts separating

U and W as EC(U ;W ). By definition, we have EC(U ;W ) = 0 when U and W are

already disconnected. By convention, if U ∩W 6=∅, we define EC(U ;W )=∞. We also

denote the collection of all distinct 1-edge cuts separating U and W as 1cut(U ;W ).

5.2 Algebraic Formulation of The Precoding-based Framework

Given a network G=(V,E), consider the multiple-unicast problem in which there

are K coexisting source-destination pairs (sk, dk), k = 1, · · ·, K.1 Let lk denote the

number of information symbols that sk wants to transmit to dk. Each information

1Since an arbitrary multi-session communication requirement can be equivalently converted to the
corresponding multiple-unicast traffic demands, we formulate the Precoding-based Framework based
on multiple unicasts without loss of generality.
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symbol is chosen independently and uniformly from a finite field Fq with some suffi-

ciently large q.

Following the widely-used instantaneous transmission model for DAGs [3], we

assume that each edge is capable of transmitting one symbol in Fq in one time slot

without delay. We consider linear network coding over the entire network, i.e., a

symbol on an edge e ∈ E is a linear combination of the symbols on its adjacent

incoming edges In(tail(e)). The coefficients (also known as the network variables)

used for such linear combinations are termed local encoding kernels. The collection

of all local kernels xe′e′′ ∈Fq for all adjacent edge pairs (e
′, e′′) is denoted by x={xe′e′′ :

(e′, e′′)∈E2 where head(e′)= tail(e′′)}. See [3] for detailed discussion. Following this

notation, the channel gain me1;e2(x) from an edge e1 to an edge e2 can be written as

a polynomial with respect to x. More rigorously, me1;e2(x) can be rewritten as

me1;e2(x) =
∑

∀Pe1e2
∈Pe1e2





∏

∀ e′, e′′∈Pe1e2
where head(e′)=tail(e′′)

xe′e′′





where Pe1e2
denotes the collection of all distinct paths from e1 to e2.

By convention [3], we set me1;e2(x) = 1 when e1 = e2 and set me1;e2(x) = 0 when

e1 6= e2 and e2 is not a downstream edge of e1. The channel gain from a node u to a

node v is defined by an |In(v)|×|Out(u)| polynomial matrix Mu;v(x), where its (i, j)-th

entry is the (edge-to-edge) channel gain from the j-th outgoing edge of u to the i-th

incoming edge of v. When considering source si and destination dj, we use Mi;j(x)

as shorthand for Msi;dj
(x).

We allow the Precoding-based framework to code across τ number of time slots,

which are termed the precoding frame and τ is the frame size. The network variables

used in time slot t is denoted as x(t), and the corresponding channel gain from si to

dj becomes Mi;j(x
(t)) for all t = 1, · · ·, τ .

With these settings, let zi ∈ F
li×1
q be the set of to-be-sent information symbols

from si. Then, for every time slot t= 1, · · · , τ , we can define the precoding matrix
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V
(t)
i ∈F

|Out(si)|×li
q for each source si. Given the precoding matrices, each dj receives an

|In(dj)|-dimensional column vector y
(t)
j at time t:

y
(t)
j (x(t)) = Mj;j(x

(t))V
(t)
j zj +

K
∑

i=1
i 6=j

Mi;j(x
(t))V

(t)
i zi.

where we use the input argument “(x(t))” to emphasize that Mj;j and y
(t)
j are functions

of the network variables x(t).

This system model can be equivalently expressed as

yj = Mj;jVj zj +
K
∑

i=1
i 6=j

Mi;jVi zi, (5.1)

where Vi is the overall precoding matrix for each source si by vertically concatenating

{V(t)
i }τt=1, and yj is the vertical concatenation of {y(t)

j (x(t))}τt=1. The overall channel

matrix Mi;j is a block-diagonal polynomial matrix with {Mi;j(x
(t))}τt=1 as its diagonal

blocks. Note that Mi;j is a polynomial matrix with respect to the network variables

{x(t)}τt=1.

After receiving packets for τ time slots, each destination dj applies the overall

decoding matrix Uj ∈ F
lj×(τ ·|In(dj)|)
q . Then, the decoded message vector ẑj can be

expressed as

ẑj = Ujyj = UjMj;jVj zj +
K
∑

i=1
i 6=j

UjMi;jVi zi. (5.2)

The combined effects of precoding, channel, and decoding from si to dj isUjMi;jVi,

which is termed the network transfer matrix from si to dj. We say that the Precoding-

based NC problem is feasible if there exists a pair of precoding and decoding matrices

{Vi, ∀ i} and {Uj , ∀ j} (which may be a function of {x(t)}τt=1) such that when choos-
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ing each element of the collection of network variables {x(t)}τt=1 independently and

uniformly randomly from Fq, with high probability,

Satisfying the Demands: UjMi;jVi = I (the identity matrix) ∀ i = j,

Interference-Free: UjMi;jVi = 0 ∀ i 6= j.
(5.3)

Remark 1: One can easily check by the cut-set bound that a necessary con-

dition for the feasibility of a Precoding-based NC problem is for the frame size

τ≥maxk{lk/EC(sk; dk)}.
Remark 2: Depending on the time relationship of Vi and Uj with respect to the

network variables {x(t)}τt=1, a Precoding-based NC solution can be classified as causal

vs. non-causal and time-varying vs. time-invariant schemes.

For convenience to the reader, we have summarized in Table 5.1 several key defi-

nitions used in the Precoding-based Framework.

5.2.1 Comparison to The Classic Algebraic Framework

The authors in [3] established the algebraic framework for linear network coding,

which admits similar encoding and decoding equations as in (5.1) and (5.2) and the

same algebraic feasibility equations as in (5.3). This original work focuses on a single

time slot τ =1 while the corresponding results can be easily generalized for τ > 1 as

well. Note that τ >1 provides a greater degree of freedom when designing the coding

matrices {Vi, ∀ i} and {Uj , ∀ j}. Such time extension turns out to be especially critical

in a Precoding-based NC design as it is generally much harder (sometimes impossible)

to design {Vi, ∀ i} and {Uj, ∀ j} when τ =1. An example of this time extension will

be discussed in Section 5.2.3.

The main difference between the Precoding-based framework and the classic frame-

work is that the latter allows the NC designer to control the network variables x while

the former assumes that the entries of x are chosen independently and uniformly ran-

domly. One can thus view the Precoding-based NC as a distributed version of classic
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Table 5.1: Key definitions of the Precoding-based Framework

Notations for the Precoding-based Framework

K The number of coexisting unicast sessions

li The number of information symbols sent from si to di

x The network variables / local encoding kernels

me1;e2(x)
The channel gain from an edge e1 to an edge e2, which is a poly-
nomial with respect to x

Mu;v(x)
The channel gain matrix from a node u to a node v where its
(i, j)-th entry is the channel gain from j-th outgoing edge of u to
i-th incoming edge of v

τ The precoding frame size (number of time slot)

x(t) The network variables corresponding to time slot t

V
(t)
i The precoding matrix for si at time slot t

Mi;j(x
(t))

The channel gain matrix from si to dj at time slot t, shorthand
for Msi;dj

(x(t))

U
(t)
j

The decoding matrix for dj at time slot t

Vi
The overall precoding matrix for si for the entire precoding frame
t = 1, · · · , τ .

Mi;j
The overall channel gain matrix from si to dj for the entire pre-
coding frame t = 1, · · · , τ .

Uj
The overall decoding matrix for dj for the entire precoding frame
t = 1, · · · , τ .

NC schemes that trades off the ultimate achievable performance for more practical

distributed implementation (not controlling the behavior in the interior of the net-

work).

One challenge when using algebraic feasibility equations (5.3) is that given a net-

work code, it is easy to verify whether or not (5.3) is satisfied, but it is difficult to

decide whether there exists a NC solution satisfying (5.3), see [3, 38]. Only in some

special scenarios can we convert those algebraic feasibility equations into some graph-

theoretic conditions for which one can decide the existence of a feasible network code

in polynomial time. For example, if there exists only a single session (s1, d1) in the

network, then the existence of a NC solution satisfying (5.3) is equivalent to the time-

averaged rate l1/τ being no larger than EC(s1; d1). Moreover, if (l1/τ)≤ EC(s1; d1),

then we can use random linear network coding [6] to construct the optimal network

code. Another example is when there are only two sessions (s1, d1) and (s2, d2) with
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l1 = l2 = τ = 1. Then, the existence of a network code satisfying (5.3) is equiva-

lent to the conditions that the 1-edge cuts in the network are properly placed in

certain ways [24]. Except the scenarios taken as examples above, however, the alge-

braic conditions of many other scenarios are not interpreted as the graph-theoretic

arguments. Note that checking the algebraic conditions can be computationally in-

tractable. Motivated by the above observation, the main focus of this thesis is to

develop a fundamental graph-theoretic properties of the Precoding-based NC, which

can be utilized in characterizing the Precoding-based solutions. For the following sub-

sections, we will introduce two special instances of the Precoding-based framework

and present their corresponding algebraic conditions. We will demonstrate why such

fundamental connection from the algebraic to the graph-theoretic is in need.

5.2.2 A Special Scenario : The 2-unicast Linear Deterministic Interfer-

ence Channel (LDIC)

We now consider a special class of networks, called the 2-unicast LDIC network:

A network G is a 2-unicast LDIC network if (i) there are 2 source-destination pairs,

(si, di), i= 1, 2, where all source/destination nodes are distinct; (ii) |In(si)|= 0 and

|Out(si)| ≥ 1 ∀ i; (iii) |In(dj)| ≥ 1 and |Out(dj)| = 0 ∀ j; and (iv) dj can be reached

from si for all (i, j) pairs (including those with i=j). We use the notation G2LDIC to

emphasize that we are focusing on this 2-unicast LDIC network.

The authors in [25] derived the capacity of the wireless two-user MIMO deter-

ministic Interference Channel and applied this result to the above 2-unicast LDIC

network. An independent work [26] has been done on the same 2-unicast LDIC net-

work using the similar precoding and decoding techniques used in [25]. We present

the result of [25] since it is a superset.

Let the rates (R1, R2) to be ( l1
τ
, l2
τ
) and set τ = 1. Since τ = 1, we do not consider

the time-extension of the Precoding-based framework and thus the overall channel

matrix Mi;j from si to dj simply reduces to Mi;j(x), where x is the collection of
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variables in the given G2LDIC of interest. The authors in [25] proves the following

result.

Proposition 5.2.1 (page 7, [25]). For a sufficiently large finite field Fq, the 2-unicast

LDIC scheme achieves the rate tuple (R1, R2) with close-to-one probability if the fol-

lowing conditions are satisfied:

R1 ≤ EC(s1; d1), (5.4)

R2 ≤ EC(s2; d2), (5.5)

R1 +R2 ≤ EC({s1, s2}; d1) + EC(s2; {d1, d2})− EC(s2; d1), (5.6)

R1 +R2 ≤ EC({s1, s2}; d2) + EC(s1; {d1, d2})− EC(s1; d2), (5.7)

R1 +R2 ≤ rank









M1;1(x) M1;2(x)

M2;1(x) 0







+ rank









M2;1(x) M2;2(x)

0 M1;2(x)









− EC(s1; d2)− EC(s2; d1),

(5.8)

2R1 +R2 ≤ EC({s1, s2}; d1) + EC(s1; {d1, d2})

+ rank









M2;1(x) M2;2(x)

0 M1;2(x)







− EC(s1; d2)− EC(s2; d1),
(5.9)

R1 + 2R2 ≤ EC({s1, s2}; d2) + EC(s2; {d1, d2})

+ rank









M1;1(x) M1;2(x)

M2;1(x) 0







− EC(s1; d2)− EC(s2; d1),
(5.10)

where rank(A) denote the rank of a given matrix A.

We are not going to explain the network code construction to achieve a spe-

cific rates satisfying the above conditions (5.4) to (5.10).2 But note that, given a

G2LDIC, the characterization problem of the corresponding 2-unicast LDIC scheme

depends on some end-to-end edge-cut values and the ranks of two matrices of dimen-

sion (|In(s1)|+ |In(s2)|)× (|Out(d1)|+ |Out(d2)|), which appear in (5.8) to (5.10).

2The construction is based on the precoding and decoding at both ends using SVD technique, while
choosing the network variables x independently and uniformly randomly. See [25] for details.
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Since the network variables are chosen independently and uniformly randomly,

these ranks will have some fixed values with close-to-one probability given a network.

And such ranks needs to be of full-rank to be operated in the maximum possible

throughput. Since the edge-cut values (5.4) to (5.10) constitutes the capacity outer

bounds in a given network, knowing when these channel polynomial matrices become

full-rank or not will be of importance in revealing its relation to the currently-open

arbitrary 2-unicast LNC capacity and in achieving the largest throughput in this

2-unicast LDIC application. Therefore, knowing the close relationship of these alge-

braic conditions to some graph-theoretic conditions is critical in multi-session LNC

characterizations.

5.2.3 A Special Scenario : The 3-unicast Asymptotic Network Alignment

(ANA)

Before proceeding, we introduce some algebraic definitions. We say that a set of

polynomials h(x) = {h1(x), ..., hN(x)} is linearly dependent if and only if
∑N

k=1αk

hk(x) = 0 for some coefficients {αk}Nk=1 that are not all zeros. By treating h(x(k))

as a polynomial row vector and vertically concatenating them together, we have an

M×N polynomial matrix [h(x(k))]Mk=1. We call this polynomial matrix a row-invariant

matrix since each row is based on the same set of polynomials h(x) but with different

variables x(k) for each row k, respectively. We say that the row-invariant polynomial

matrix [h(x(k))]Mk=1 is generated from h(x). For two polynomials g(x) and h(x), we

say g(x) and h(x) are equivalent, denoted by g(x)≡h(x), if g(x)= c · h(x) for some

non-zero c ∈ Fq. If not, we say that g(x) and h(x) are not equivalent, denoted by

g(x) 6≡ h(x). We use GCD( g(x), h(x)) to denote the greatest common factor of the

two polynomials.

We now consider a special class of networks, called the 3-unicast ANA network:

A network G is a 3-unicast ANA network if (i) there are 3 source-destination pairs,

(si, di), i=1, 2, 3, where all source/destination nodes are distinct; (ii) |In(si)|=0 and
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|Out(si)|=1 ∀ i (We denote the only outgoing edge of si as esi , termed the si-source

edge.); (iii) |In(dj)|= 1 and |Out(dj)|= 0 ∀ j (We denote the only incoming edge of

dj as edj , termed the dj-destination edge.); and (iv) dj can be reached from si for all

(i, j) pairs (including those with i= j).3 We use the notation G3ANA to emphasize

that we are focusing on this 3-unicast ANA network. Note that by (ii) and (iii) the

matrix Mi;j(x) becomes a scalar, which we denote by mij(x) instead.

The authors in [40, 41] applied interference alignment to construct the precoding

matrices {Vi, ∀ i} for the above 3-unicast ANA network. Namely, consider the fol-

lowing parameter values: τ = 2n+1, l1 = n + 1, l2 = n, and l3 = n for some positive

integer n termed symbol extension parameter, and assume that all the network vari-

ables x(1) to x(τ) are chosen independently and uniformly randomly from Fq. The goal

is to achieve the rate tuple ( n+1
2n+1

, n
2n+1

, n
2n+1

) in a 3-unicast ANA network by applying

the following {Vi, ∀ i} construction method: Define L(x) = m13(x)m32(x)m21(x) and

R(x) = m12(x)m23(x)m31(x), and consider the following 3 row vectors of dimensions

n+1, n, and n, respectively. (Each entry of these row vectors is a polynomial with

respect to x but we drop the input argument x for simplicity.)

v
(n)
1 (x) = m23m32

[

Rn, Rn−1L, · · · , RLn−1, Ln
]

, (5.11)

v
(n)
2 (x) = m13m32

[

Rn, Rn−1L, · · · , RLn−1
]

, (5.12)

v
(n)
3 (x) = m12m23

[

Rn−1L, · · · , RLn−1, Ln
]

, (5.13)

where the superscript “(n)” is to emphasize the value of the symbol extension param-

eter n used in the construction. The precoding matrix for each time slot t is designed

to be V
(t)
i =v

(n)
i (x(t)). The overall precoding matrix (the vertical concatenation of V

(1)
i

to V
(τ)
i ) is thus Vi=[v

(n)
i (x(t))]2n+1t=1 .

3The above fully interfered setting is the worst case scenario. For the scenario in which there is
some dj who is not reachable from some si, one can devise an achievable solution by modifying the
solution for the worst-case fully interfered 3-ANA networks [40].
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The authors in [40, 41] prove that the above construction achieves the desired

rates ( n+1
2n+1

, n
2n+1

, n
2n+1

) if the overall precoding matrices {Vi, ∀ i} satisfy the following

six constraints:4

d1 : 〈M3;1V3 〉 = 〈M2;1V2 〉 (5.14)

S
(n)
1 ,

[

M1;1V1 M2;1V2

]

, and rank(S
(n)
1 )=2n+1 (5.15)

d2 : 〈M3;2V3 〉 ⊆ 〈M1;2V1 〉 (5.16)

S
(n)
2 ,

[

M2;2V2 M1;2V1

]

, and rank(S
(n)
2 )=2n+1 (5.17)

d3 : 〈M2;3V2 〉 ⊆ 〈M1;3V1 〉 (5.18)

S
(n)
3 ,

[

M3;3V3 M1;3V1

]

, and rank(S
(n)
3 )=2n+1 (5.19)

with close-to-one probability, where 〈A 〉 and rank(A) denote the column vector space

and the rank, respectively, of a given matrix A. The overall channel matrix Mi;j is a

(2n+1)× (2n+1) diagonal matrix with the t-th diagonal element mij(x
(t)) due to the

assumption of |Out(si)|= |In(dj)|= 1. We also note that the construction in (5.15),

(5.17), and (5.19) ensures that the square matrices {S(n)
i , ∀ i} are row-invariant.

The intuition behind (5.14) to (5.19) is straightforward. Whenever (5.14) is sat-

isfied, the interference from s2 and from s3 are aligned from the perspective of d1.

Further, by simple linear algebra we must have rank(M2;1V2)≤n and rank(M1;1V1)≤
n+ 1. (5.15) thus guarantees that (i) the rank of

[

M1;1V1 M2;1V2

]

equals to

rank(M1;1V1) + rank(M2;1V2) and (ii) rank(M1;1V1)=n+1. Jointly (i) and (ii) imply

that d1 can successfully remove the aligned interference while recovering all l1=n+1

information symbols intended for d1. Similar arguments can be used to justify (5.16)

to (5.19) from the perspectives of d2 and d3, respectively.

4Here the interference alignment is performed based on (s1, d1)-pair who achieves larger rate than
others. Basically, any transmission pair can be chosen as an alignment-basis achieving n+1

2n+1 , and
the corresponding precoding matrices and six constraints can be constructed accordingly.
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By noticing the special Vandermonde form of Vi, it is shown in [40,41] that (5.14),

(5.16), and (5.18) always hold. The authors in [41] further prove that if

L(x) 6≡R(x) (5.20)

and the following algebraic conditions are satisfied:

m11m23

n
∑

i=0

αi

(

L/R
)i 6= m21m13

n−1
∑

j=0

βj
(

L/R
)j

(5.21)

m22m13

n−1
∑

i=0

αi

(

L/R
)i 6= m12m23

n
∑

j=0

βj
(

L/R
)j

(5.22)

m33m12

n
∑

i=1

αi

(

L/R
)i 6= m13m32

n
∑

j=0

βj
(

L/R
)j

(5.23)

for all αi, βj∈Fq with at least one of αi and at least one of βj being non-zero, then the

constraints (5.15), (5.17), and (5.19) hold with close-to-one probability (recalling that

the network variables x(1) to x(τ) are chosen independently and uniformly randomly).

In summary, [40, 41] proves the following result.

Proposition 5.2.2 (page 3, [41]). For a sufficiently large finite field Fq, the 3-unicast

ANA scheme described in (5.11) to (5.13) achieves the rate tuple ( n+1
2n+1

, n
2n+1

, n
2n+1

) with

close-to-one probability if (5.20), (5.21), (5.22), and (5.23) hold simultaneously.

Therefore, whether we can use the 3-unicast ANA scheme depends on whether

the given G3ANA satisfies the algebraic conditions (5.20), (5.21), (5.22), and (5.23)

simultaneously.

However, it can be easily seen that directly verifying the above sufficient conditions

is computationally intractable. Moreover, they heavily depend on the given G3ANA

of interest. Note that in the setting of wireless interference channels, the individual

channel gains are independently and continuously distributed, for which one can prove

that the feasibility conditions (5.20), (5.15), (5.17), and (5.19) hold with probability

one [39]. For a network setting here, the channel gain polynomials mij(x) are no
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s1 s2

d1 d2

x1
x2

x3 x6

x7
x10

s3

d3

x11

x4

x5

x8
x9

x12

Fig. 5.1. Example G3ANA structure satisfying L(x)≡R(x) with x={x1, x2, ..., x12}.

Table 5.2: Key definitions of the 3-unicast ANA scheme

Notations for the 3-unicast ANA network

mij(x) The channel gain polynomial from si to dj

L(x) The product of three channel gains: m13(x)m32(x) m21(x)

R(x) The product of three channel gains: m12(x)m23(x) m31(x)

longer independently distributed for different (i, j) pairs and the correlation depends

on the underlying network topology. For example, one can verify that the 3-unicast

ANA network described in Fig. 5.1 always leads to L(x)≡R(x) even when all network

variables x are chosen uniformly randomly from an arbitrarily large finite field Fq.

For convenience to the reader, we have summarized in Table 5.2 several key defi-

nitions used in the 3-unicast ANA network.

5.2.4 A Critical Question

As discussed in the end of Sections 5.2.2 and 5.2.3, the channel relationship to

the given network topology is important in characterizing these applications. Since

the channel gains are finite field polynomials with respect to network variables, a

more important question would be “How the polynomials over the network variables

and graph theory are fundamentally related?” To answer these questions, we be-
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lieve that a deeper understanding of the proposed Precoding-based Framework will

play a key role. Along this investigation, we identify the several fundamental prop-

erties of the Precoding-based Framework which can bridge the gap between these

two separate worlds. Moreover using these fundamental properties, we characterize

graph-theoretically the algebraic feasibility conditions of one wireless application, the

3-unicast ANA scheme. More detailed discussions and contributions will follow in

Section 5.3.

5.3 Motivation of Studying the Precoding-based 3-unicast ANA network

and Detailed Summary of Contributions

As explained above, the classic algebraic framework [3] bridges between the satis-

fiability of a given network information flow and the solvability of the corresponding

algebraic feasibility equations (5.3), both of which depend on the given network of

interest. It is thus needless to say that the network structures and the existence of

a network code satisfying traffic demands are closely related. From the perspective

that the graph structures can be easily verifiable, the graph-theoretic characterization

plays an not only important but also practical pivot in broadening the understandings

of multi-session LNC problems.

The main challenge in the classic framework along this direction is that it is diffi-

cult to decide whether there exists a LNC solution satisfying the feasibility equations.

In the single-session (s, {di}) where there are no interferences, we only need to solve

non-zero-equations and thus the existence of a LNC solution can be characterized by

each min-cut value EC(s; di) being larger than equal to the rate. In the multi-session,

however, we also need to solve zero-equations to be interference-free. As a result, the

corresponding graph-theoretic characterization also needs to provide the properly lo-

cated special cuts that perform interference-removing along the network. This is the

reason why we have the complete graph-theoretic characterization only for the sim-

plest multi-session scenario of 2-unicast/multicast with single rates: by the existence
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of 1-edge cuts properly placed in certain ways [24, 29, 30]. The central control over

the local encoding kernels inside the network intricates graph-theoretic implications.

However, such graph-theoretic implications become critical in the Precoding-based

Framework that embraces the results of Wireless Interference Channels. Compared to

the classic framework, this framework exploits the pure random linear network coding

in the interior of the network while focusing on precoding and decoding designs for

the balanced performance as in Wireless Interference Channels. Hence, the channels

between sources and destinations determine the feasibility of such precoding-based

NC design. Moreover, they are now high-order polynomials over the network variables

and thus correlated to a given network. Therefore, knowing the relationship between

the channel polynomials and the underlying network structures becomes critical in

characterizing the feasibility of the precoding-based NC solutions over the network

of interest. Especially for the wireless applications such as the interference alignment

technique to 3-unicast, called the 3-unicast ANA scheme [40,41], such graph-theoretic

implications are practically crucial because its feasibility conditions are computation-

ally intractable to verify directly, see Proposition 5.2.2 for example. Considering the

fact that such feasibility conditions typically hold in the original wireless interference

channels with close-to-one probability (due to the continuously distributed wireless

random channel gains), studying the precoding-based 3-unicast ANA network, and

more fundamentally, the relationship between the network channel and the graph

structure is of importance in broadening the understandings of multi-session LNC

problems.

Our main contributions can be summarized as follows:

• The relationship between the network channel and the graph structures: We

develop the several fundamental properties of the Precoding-based Framework

which allows us to bridge the gap between the feasibility of the precoding-based

NC solutions and the given network.
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satisfies 

satisfies 

supports 
3-unicast ANA with n=11

supports 3-unicast ANA 
with arbitrary n>=2

Fig. 5.2. The complete graph-theoretic characterization for the feasibility of the 3-
unicast ANA scheme.

• The complete graph-theoretic characterization for the feasibility of the 3-unicast

ANA scheme: Using the properties, we characterize the feasibility conditions of

this interference alignment application by the existence of special edge-cuts or

the min-cut values as shown in Fig. 5.2, which can be checked in polynomial

time.

Note that our graph-theoretic characterization is bi-directions. Therefore, we can

answer that the following conjecture is not true:

Conjecture (Page 3, [41]): For any n value used in the 3-unicast ANA scheme

construction, if (5.20) and the following three conditions are satisfied simultaneously,

then (5.21) to (5.23) must hold.

EC({s1, s2}; {d1, d3})≥2 and EC({s1, s3}; {d1, d2})≥2, (5.24)

EC({s1, s2}; {d2, d3})≥2 and EC({s2, s3}; {d1, d2})≥2, (5.25)

EC({s1, s3}; {d2, d3})≥2 and EC({s2, s3}; {d1, d3})≥2. (5.26)
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5.4 Fundamental Properties of The Precoding-based Framework

5.4.1 Properties of The Precoding-based Framework

In this section, we characterize a few fundamental relationships between the chan-

nel and the underlying DAG G, which bridge the gap between the algebraic feasibility

of the precoding-based NC problem and the underlying network structure. These

properties hold for any precoding-based schemes and can be of benefit to future de-

velopment of any precoding-based solution. These newly discovered results will later

be used to prove the graph-theoretic characterizations of the 3-unicast ANA scheme.

In the following subsections, we state Propositions 5.4.1 to 5.4.3, respectively. In

Section 5.4.2, we discuss how these results can be applied to the existing 3-unicast

ANA scheme.

From Non-Zero Determinant to Linear Independence

Proposition 5.4.1. Fix an arbitrary value of N . Consider any set of N polynomials

h(x) = {h1(x), ..., hN(x)} and the polynomial matrix [h(x(k))]Nk=1 generated from

h(x). Then, assuming sufficiently large finite field size q, det([h(x(k))]Nk=1) is non-

zero polynomial if and only if h(x) is linearly independent.

The proof of Proposition 5.4.1 is relegated to Appendix J.1.

Remark: Suppose a sufficiently large finite field Fq is used. If we choose the

variables x(1) to x(N) independently and uniformly randomly from Fq, by Schwartz-

Zippel lemma, we have det([h(x(k))]Nk=1) 6= 0 with close-to-one probability if and only

if h(x) is linearly independent.

The implication of Proposition 5.4.1 is as follows. Similar to the seminal work [3],

most algebraic characterization of the precoding-based framework involves checking

whether or not a determinant is non-zero. For example, the first feasibility condi-

tion of (5.3) is equivalent to checking whether or not the determinant of the network

transfer matrix is non-zero. Also, (5.15), (5.17), and (5.19) are equivalent to checking
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whether or not the determinant of the row-invariant matrix S
(n)
i is non-zero. Propo-

sition 5.4.1 says that as long as we can formulate the corresponding matrix in a

row-invariant form, then checking whether the determinant is non-zero is equivalent

to checking whether the corresponding set of polynomials is linearly independent. As

will be shown shortly after, the latter task admits more tractable analysis.

The Subgraph Property of the Precoding-Based Framework

Consider a DAG G and recall the definition of the channel gain me1;e2(x) from e1

to e2, see Definition 5.2. For a subgraph G′ ⊆ G containing e1 and e2, let me1;e2(x
′)

denote the channel gain from e1 to e2 in G′.

Proposition 5.4.2 (Subgraph Property). Given a DAG G, consider an arbitrary,

but fixed, finite collection of edge pairs, {(ei, e′i) ∈ E2 : i ∈ I} where I is a finite index

set, and consider two arbitrary polynomial functions f : F
|I|
q 7→ Fq and g : F

|I|
q 7→

Fq. Then, f({mei;e′i
(x) : ∀ i ∈ I})≡ g({mei;e′i

(x) : ∀ i ∈ I}) if and only if for all

subgraphs G′ ⊆ G containing all edges in {ei, e′i : ∀ i ∈ I}, f({mei;e′i
(x′) : ∀ i ∈ I})≡

g({mei;e′i
(x′) : ∀ i ∈ I}).

The proof of Proposition 5.4.2 is relegated to Appendix J.1.

Remark: Proposition 5.4.2 has a similar flavor to the classic results [3] and [6].

More specifically, for the single multicast setting from a source s to the destinations

{dj}, the transfer matrix Udj
Mdj ;s

(x)Vs from s to dj is of full rank (i.e., the poly-

nomial det(Udj
Mdj ;s

(x)Vs) is non-zero in the original graph G) is equivalent to the

existence of a subgraph G′ (usually being chosen as the subgraph induced by a set of

edge-disjoint paths from s to dj) satisfying the polynomial det(Udj
Mdj ;s

(x′)Vs) being

non-zero.

Compared to Proposition 5.4.1, Proposition 5.4.2 further connects the linear de-

pendence of the polynomials to the subgraph properties of the underlying network.

For example, to prove that a set of polynomials over a given arbitrary network is
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linearly independent, we only need to construct a (much smaller) subgraph and prove

that the corresponding set of polynomials is linearly independent.

The Channel Gain Property

Both Propositions 5.4.1 and 5.4.2 have a similar flavor to the classic results of

the LNC framework [3]. The following channel gain property, on the other hand, is

unique to the precoding-based framework.

Proposition 5.4.3 (The Channel Gain Property). Consider a DAG G and two dis-

tinct edges es and ed. For notational simplicity, we denote head(es) by s and denote

tail(ed) by d. Then, the following statements must hold (we drop the variables x for

shorthand):

• If EC(s; d) = 0, then mes;ed = 0

• If EC(s; d) = 1, then mes;ed is reducible. Moreover, let N
∆
= |1cut(s; d)| denote

the number of 1-edge cuts separating s and d, and we sort the 1-edge cuts by

their topological order with e1 being the most upstream and eN being the most

downstream. The channel gain mes;ed can now be expressed as

mes;ed = mes;e1

(

N−1
∏

i=1

mei;ei+1

)

meN ;ed,

and all the polynomial factors mes;e1, {mei;ei+1
}N−1
i=1 , and meN ;ed are irreducible,

and no two of them are equivalent.

• If EC(s; d) ≥ 2 (including ∞), then mes;ed is irreducible.

The proof of Proposition 5.4.3 is relegated to Appendix J.3.

Remark: Proposition 5.4.3 only considers a channel gain between two distinct

edges. If es = ed, then by convention [3], we have mes;ed = 1.

Proposition 5.4.3 relates the factoring problem of the channel gain polynomial to

the graph-theoretic edge cut property. As will be shown afterwards, this observation
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enables us to tightly connect the algebraic and graph-theoretic conditions for the

precoding-based solutions.

5.4.2 Related Work: The 3-unicast ANA Scheme

In this section, we discuss how the properties of the precoding-based framework,

Propositions 5.4.1 to 5.4.3, can benefit our understanding of the 3-unicast ANA

scheme.

Application of The Properties of The Precoding-based Framework to The

3-unicast ANA Scheme

Proposition 5.4.1 enables us to simplify the feasibility characterization of the 3-

unicast ANA scheme in the following way. From the construction in Section 5.2.3,

the square matrix S
(n)
i can be written as a row-invariant matrix S

(n)
i = [h

(n)
i (x(t))]

(2n+1)
t=1

for some set of polynomials hi(x). For example, by (5.11), (5.12), and (5.15) we have

S
(n)
1 = [h

(n)
1 (x(t))]

(2n+1)
t=1 where

h
(n)
1 (x) = {m11m23m32R

n, m11m23m32R
n−1L,

· · · , m11m23m32L
n, m21m13m32R

n,

m21m13m32R
n−1L, · · · , m21m13m32RL

n−1 }.

(5.27)

Proposition 5.4.1 implies that (5.15) being true is equivalent to the set of polyno-

mials h
(n)
1 (x) is linearly independent. Assuming the G3ANA of interest satisfies (5.20),

h
(n)
1 (x) being linearly independent is equivalent to (5.21) being true. As a result, (5.21)

is not only sufficient but also necessary for (5.15) to hold with close-to-one probabil-

ity. By similar arguments (5.22) (resp. (5.23)) is both necessary and sufficient for

(5.17) (resp. (5.19)) to hold with high probability.

Proposition 5.4.2 enables us to find the graph-theoretic equivalent counterparts of

(5.21)– (5.23) of the Conjecture (p. 3, [41]).
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Corollary 5.4.1 (First stated in [41]). Consider a G3ANA and four indices i1, i2, j1,

and j2 satisfying i1 6= i2 and j1 6= j2. We have EC({si1 , si2}; {dj1, dj2})=1 if and only

if mi1j1mi2j2≡ mi2j1mi1j2.

The main intuition behind Corollary 5.4.1 can be stated as follows. When we

have EC({si1 , si2}; {dj1, dj2})=1, one can show that we must have mi1j1(x)mi2j2(x)=

mi2j1(x)mi1j2(x) by analyzing the underlying graph structure. On the other hand,

when we have EC({si1, si2}; {dj1, dj2}) 6= 1, we can construct a subgraph G′ satis-

fying mi1j1(x
′)mi2j2(x

′) 6≡mi2j1(x
′)mi1j2(x

′). Proposition 5.4.2 thus implies mi1j1(x)

mi2j2(x) 6≡mi2j1(x)mi1j2(x). A detailed proof of Corollary 5.4.1 is relegated to Ap-

pendix J.2.

Proposition 5.4.3 can be used to derive the following corollary, which studies the

relationship of the channel polynomials mij .

Corollary 5.4.2. Given a G3ANA, consider a source si to destination dj channel gain

mij. Then, GCD(mi1j1 , mi2j2)≡mi2j2 if and only if (i1, j1)=(i2, j2). Intuitively, any

channel gain mi1j1 from source si1 to destination dj1 cannot contain another source-

destination channel gain mi2j2 as its factor.

The intuition behind Corollary 5.4.2 is as follows. For example, suppose we ac-

tually have GCD(m11, m12)≡m12 and assume that EC(head(es1); tail(ed2))≥2. Then

we must have the d2-destination edge ed2 being an edge cut separating s1 and d1.

The reason is that (i) Proposition 5.4.3 implies that any irreducible factor of the

channel gain m11 corresponds to the channel gain between two consecutive 1-edge

cuts separating s1 and d1; and (ii) The assumption EC(head(es1); tail(ed2))≥2 implies

that m12 is irreducible. Thus (i), (ii), and GCD(m11, m12)≡ m12 together imply that

ed2 ∈ 1cut(s1; d1). This, however, contradicts the assumption of |Out(d2)|=0 for any

3-unicast ANA network G3ANA. The detailed proof of Corollary 5.4.2, which studies

more general case in which EC(head(es1); tail(ed2))=1, is relegated to Appendix J.2.
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5.5 Chapter Summary

In this chapter, we define and discuss the proposed Precoding-based Framework.

In Section 5.1, the related graph-theoretic notations are firstly defined. We then alge-

braically formulate the Precoding-based framework in Section 5.2. For the subsequent

subsections, the comparison to the classic LNC framework is discussed, with the in-

troductions of the recent wireless applications proposed by [25, 26, 40, 41]. The need

for the deeper understandings between the network channel gain and the underlying

graph structure is further motivated and our contributions are summarized in Sec-

tion 5.3. The corresponding fundamental properties of the proposed Precoding-based

Framework are provided in Section 5.4 including how they can benefit to understand

the 3-unicast ANA problem.
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6. GRAPH-THEORETIC CHARACTERIZATION OF THE

3-UNICAST ANA SCHEME

In Section 5.4, we investigated the basic relationships between the network channel

gain polynomials and the underlying DAG G for arbitrary precoding-based solutions.

In this chapter, we turn our attention to a specific precoding-based solution, the

3-unicast ANA scheme, and characterize graph-theoretically its feasibility conditions.

6.1 New Graph-Theoretic Notations and The Corresponding Properties

We begin by defining some new notations. Consider three indices i, j, and k in

{1, 2, 3} satisfying j 6=k but i may or may not be equal to j (resp. k). Given a G3ANA,

define:

Si;{j,k} , 1cut(si; dj) ∩ 1cut(si; dk)\{esi}

Di;{j,k} , 1cut(sj; di) ∩ 1cut(sk; di)\{edi}

as the 1-edge cuts separating si and {dj, dk} minus the si-source edge esi and the

1-edge cuts separating {sj , sk} and di minus the di-destination edge edi . When the

values of indices are all distinct, we use Si (resp. Di) as shorthand for Si;{j,k} (resp.

Di;{j,k}). The following lemmas prove some topological relationships between the edge

sets Si and Dj and the corresponding proofs are relegated to Appendix K.

Lemma 6.1.1. For all i 6=j, e′∈Si, and e
′′∈Dj, one of the following three statements

is true: e′≺e′′, e′≻e′′, or e′=e′′.

Lemma 6.1.2. For any distinct i, j, and k in {1, 2, 3}, we have (Di ∩Dj)⊂Sk.

Lemma 6.1.3. For all i 6=j, e′∈Si\Dj, and e
′′∈Dj, we have e′≺e′′.
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Lemma 6.1.4. For any distinct i, j, and k in {1, 2, 3}, Dj ∩ Dk 6= ∅ if and only if

both Si ∩Dj 6=∅ and Si ∩Dk 6=∅.

Lemma 6.1.5. For all i 6= j and e′′ ∈ Di ∩ Dj, if Si ∩ Sj 6= ∅, then there exists

e′∈Si ∩ Sj such that e′�e′′.

Lemma 6.1.6. Consider four indices i, j1, j2, and j3 taking values in {1, 2, 3} for

which the values of j1, j2 and j3 must be distinct and i is equal to one of j1, j2 and

j3. If Si;{j1,j2} 6= ∅ and Si;{j1,j3} 6= ∅, then the following three statements are true: (i)

Si;{j1,j2} ∩ Si;{j1,j3}6=∅; (ii) Si;{j2,j3}6=∅; and (iii) Si6=∅.

Remark: All the above lemmas are purely graph-theoretic. If we swap the roles

of sources and destinations, then we can also derive the (s, d )-symmetric version of

these lemmas. For example, the (s, d )-symmetric version of Lemma 6.1.2 becomes

(Si ∩ Sj)⊆Dk. The (s, d )-symmetric version of Lemma 6.1.5 is: For all i 6= j and

e′′∈Si ∩ Sj, if Di ∩Dj 6=∅, then there exists e′∈Di ∩Dj such that e′�e′′.
Lemmas 6.1.1 to 6.1.6 discuss the topological relationship between the edge sets

Si and Dj. The following lemma establishes the relationship between Si (resp. Dj)

and the channel gains.

Lemma 6.1.7. Given a G3ANA, consider the corresponding channel gains as defined

in Section II-D. Consider three indices i, j1, and j2 taking values in {1, 2, 3} for

which the values of j1 and j2 must be distinct. Then, GCD(mij1, mij2)≡1 if and only

if Si;{j1,j2}=∅. Symmetrically, GCD(mj1i, mj2i)≡1 if and only if Di;{j1,j2}=∅.

The proof of Lemma 6.1.7 is relegated to Appendix K.

6.2 The Graph-Theoretic Characterization of L(x) 6≡R(x)

A critical condition of the 3-unicast ANA scheme [40, 41] is the assumption that

L(x) 6≡ R(x), which is the fundamental reason why the Vandermonde precoding

matrix Vi is of full (column) rank. However, for some networks we may have L(x)≡
R(x), for which the 3-unicast ANA scheme does not work (see Fig. 5.1). Next, we
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prove the following graph-theoretic condition that fully characterizes whether L(x)≡
R(x).

Proposition 6.2.1. For a given G3ANA, we have L(x)≡ R(x) if and only if there

exists a pair of distinct indices i, j∈{1, 2, 3} satisfying both Si∩Sj 6=∅ and Di∩Dj 6=∅.

Proof of the “⇐” direction of Proposition 6.2.1: Without loss of generality, sup-

pose S1 ∩ S26=∅ and D1 ∩D26=∅ (i.e., i=1 and j=2). By Lemma 6.1.5, we can find

two edges e′∈S1∩S2 and e
′′∈D1∩D2 such that e′�e′′. Also note that Lemma 6.1.2

and its (s, d )-symmetric version imply that e′ ∈D3 and e′′ ∈ S3. Then by Proposi-

tion 5.4.3, the channel gains mij(x) for all i 6= j can be expressed by (we omit the

variables x for simplicity):

m13=mes1 ;e
′me′;ed3

m12=mes1 ;e
′me′;e′′me′′;ed2

m32=mes3 ;e
′′me′′;ed2

m23=mes2 ;e
′me′;ed3

m21=mes2 ;e
′me′;e′′me′′;ed1

m31=mes3 ;e
′′me′′;ed1

where the expressions of m12 and m21 are derived based on the facts that e′ � e′′

and {e′, e′′}⊂1cut(s1; d2) ∩ 1cut(s2; d1). By plugging in the above 6 equalities to the

definitions of L = m13m32m21 and R = m12m23m31, we can easily verify that L≡R.
The proof of this direction is complete. �

Remark: In the example of Fig. 5.1, one can easily see that e′ ∈ S1 ∩ S2 and

e′′ ∈D1 ∩ D2. Hence, the above proof shows that the example network in Fig. 5.1

satisfies L(x)≡R(x) without actually computing the polynomials L(x) and R(x).

We will now focus on proving the necessity. Before proceeding, we state and prove

the following lemma.

Lemma 6.2.1. If the G3ANA of interest satisfies L(x)≡R(x), then Si6=∅ and Dj 6=∅
for all i and j, respectively.

Proof of Lemma 6.2.1: We prove this by contradiction. Suppose S1= ∅. Denote

the most upstream 1-edge cut separating head(es1) and d2 by e12 (we have at least
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the d2-destination edge ed2). Also denote the most upstream 1-edge cut separating

head(es1) and d3 by e13 (we have at least the d3-destination edge ed3). Since S1=∅ and

by the definition of the 3-unicast ANA network, it is obvious that e12 6= e13. Moreover,

both of the two polynomialsmes1 ;e12
(a factor ofm12) andmes1 ;e13

(a factor ofm13) are

irreducible and non-equivalent to each other. Therefore, these two polynomials are

coprime. If we plug in the two polynomials into L(x)≡R(x), then it means that one

of the following three cases must be true: (i) me13;ed3
contains mes1 ;e12

as a factor; (ii)

m32 contains mes1 ;e12
as a factor; or (iii) m21 contains mes1 ;e12

as a factor. However,

(i), (ii), and (iii) cannot be true as |In(s1)|=0 and by Proposition 5.4.3. The proof is

thus complete by applying symmetry. �

Proof of the “⇒” direction of Proposition 6.2.1: Suppose the G3ANA of inter-

est satisfies L(x)≡R(x). By Lemma 6.2.1, we know that Si 6= ∅ and Dj 6= ∅ for all i

and j. Then it is obvious that EC(head(esi); tail(edj ))= 1 for all i 6= j because if (for

example) EC(head(es1); tail(ed2))≥2 then both S1 and D2 will be empty by definition.

Thus by Proposition 5.4.3, we can express each channel gain mij (i 6= j) as a prod-

uct of irreducibles, each corresponding to the channel gain between two consecutive

1-edge cuts (including esi and edj ) separating si and dj. We now consider two cases.

Case 1: Si ∩ Dj = ∅ for some i 6= j. Assume without loss of generality that

S2 ∩D1=∅ (i.e., i=2 and j=1). Let e∗2 denote the most downstream edge in S2 and

let e∗1 denote the most upstream edge in D1. Since S2 ∩D1=∅, the edge e∗2 must not

be in D1. By Lemma 6.1.3, we have e∗2≺e∗1.
For the following, we will prove {e∗2, e∗1} ⊂ 1cut(s1; d2). We first notice that by

definition, e∗2∈S2⊂1cut(s2; d1) and e
∗
1∈D1⊂1cut(s2; d1). Hence by Proposition 5.4.3,

we can express m21 as m21 = mes2 ;e
∗

2
me∗2;e

∗

1
me∗1;ed1

. Note that by our construction

e∗2≺e∗1 we have me∗2;e
∗

1
6≡1.

We now claim GCD(me∗2;e
∗

1
, m23m31)≡1, i.e., m23m31 cannot contain any factor of

me∗2;e
∗

1
. We will prove this claim by contradiction. Suppose GCD(me∗2;e

∗

1
, m23)6≡1, i.e.,

m23 contains an irreducible factor of me∗2;e
∗

1
. Since that factor is also a factor of m21,

by Proposition 5.4.3, there must exist at least one edge e satisfying (i) e∗2 ≺ e� e∗1;
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and (ii) e ∈ 1cut(s2; d1) ∩ 1cut(s2; d3). These jointly implies that we have an S2

edge in the downstream of e∗2. This, however, contradicts the assumption that e∗2

is the most downstream edge of S2. By a symmetric argument, we can also show

that m31 must not contain any irreducible factor of me∗2;e
∗

1
. The proof of the claim

GCD(me∗2;e
∗

1
, m23m31)≡1 is complete. Since the assumption L(x)≡R(x) implies that

GCD(me∗2;e
∗

1
, R) = me∗2;e

∗

1
, we must have GCD(me∗2;e

∗

1
, m12) =me∗2;e

∗

1
. This implies by

Proposition 5.4.3 that {e∗2, e∗1}⊂1cut(s1; d2).

For the following, we will prove that e∗2∈1cut(s1; d3). To that end, we consider the

factor me∗2;ed3
of the channel gain m23. This is possible by Proposition 5.4.3 because

e∗2 ∈ S2 ⊂ 1cut(s2; d3). Then similarly following the above discussion, we must have

GCD(m21, me∗2;ed3
)≡ 1 otherwise there will be an S2 edge in the downstream of e∗2.

Since the assumption L(x)≡R(x) means that GCD(L, me∗2;ed3
)=me∗2;ed3

, this further

implies that GCD(m13m32, me∗2;ed3
) = me∗2;ed3

.

Now consider the most upstream 1cut(s2; d3) edge that is in the downstream of

e∗2, and denote it as eu (we have at least the d3-destination edge ed3). Obviously,

e∗2 ≺ eu � ed3 and me∗2 ;eu
is an irreducible factor of me∗2;ed3

. Then we must have

GCD(m32, me∗2;eu
)≡ 1 and the reason is as follows. If not, then by me∗2;eu

being irre-

ducible we have e∗2 ∈ 1cut(s3; d2). Then every path from s3 to tail(e∗1) must use e∗2,

otherwise s3 can reach e∗1 without using e∗2 and finally arrive at d2 since e∗1 can reach

d2 (we showed in the above discussion that e∗1∈1cut(s1; d2)). This contradicts the pre-

viously constructed e∗2 ∈ 1cut(s3; d2). Therefore, we must have e∗2 ∈ 1cut(s3; tail(e
∗
1)).

Since e∗1 ∈ D1 ⊂ 1cut(s3; d1), this in turn implies that e∗2 is also an 1-edge cut sep-

arating s3 and d1. However, note by the assumption that e∗2 ∈ S2 ⊂ 1cut(s2; d1).

Thus, e∗2 will belong to D1, which contradicts the assumption that e∗1 is the most

upstream D1 edge. We thus have proven GCD(m32, me∗2;eu
)≡ 1. Since we showed

that GCD(m13m32, me∗2;ed3
) =me∗2;ed3

, this further implies that the irreducible factor

me∗2;eu
of me∗2;ed3

must be contained by m13 as a factor. Therefore, we have proven

that e∗2 ∈ 1cut(s1; d3). Symmetrically applying the above argument using the factor

mes3 ;e
∗

1
of the channel gain m31, we can also prove that e∗1∈1cut(s3; d2).
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Thus far, we have proven that e∗2 ∈ 1cut(s1; d2) and e∗2 ∈ 1cut(s1; d3). However,

e∗2=es1 is not possible since e∗2, by our construction, is a downstream edge of es2 but

es1 is not (since |In(s1)|=0). As a result, we have proven e∗2∈S1. Recall that e
∗
2 was

chosen as one edge in S2. Therefore, S1 ∩ S2 6= ∅. Similarly, we can also prove that

e∗1∈D1 ∩D2 and thus D1 ∩D26=∅. The proof of Case 1 is complete.

Case 2: Si∩Dj 6=∅ for all i 6=j. By Lemma 6.1.4 and its (s, d )-symmetric version,

we must have Si∩Sj 6=∅ and Di∩Dj 6=∅ ∀ i 6= j. The proof of Case 2 is complete. �

6.3 The Graph-Theoretic Conditions of the Feasibility of the 3-unicast

ANA Scheme

Proposition 6.2.1 provides the graph-theoretic condition that characterizes whether

or not the G3ANA of interest satisfies the algebraic condition of (5.20), which implies

that (5.14), (5.16), and (5.18) hold simultaneously with close-to-one probability. How-

ever, to further ensure the feasibility of the 3-unicast ANA scheme, det(S
(n)
i ) must be

non-zero polynomial (see (5.15), (5.17), and (5.19)) for all i∈{1, 2, 3}. As a result, we

need to prove the graph-theoretic characterization for the inequalities det(S
(n)
i ) 6= 0.

Note by Proposition 5.4.1 that the condition det(S
(n)
i ) 6= 0 is equivalent to for all

i ∈ {1, 2, 3} the set of polynomials h
(n)
i (x) is linearly independent, where h

(n)
1 (x) is

defined in (5.27) and h
(n)
2 (x) and h

(n)
3 (x) are defined as follows:

h
(n)
2 (x) = {m22m13m32R

n, m22m13m32R
n−1L,

· · · , m22m13m32RL
n−1, m12m23m32R

n,

m12m23m32R
n−1L, · · · , m12m23m32L

n },

(6.1)

h
(n)
3 (x) = {m33m12m23R

n−1L, · · · ,

m33m12m23RL
n−1, m33m12m23L

n,

m13m23m32R
n, m13m23m32R

n−1L,

· · · , m13m23m32L
n }.

(6.2)
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Thus in this subsection, we prove a graph-theoretic condition that characterizes

the linear independence of h
(n)
i (x) for all i∈{1, 2, 3} when n=1 and n≥2, respectively.

Consider the following graph-theoretic conditions:

Si ∩ Sj=∅ or Di ∩Dj=∅ ∀ i, j ∈ {1, 2, 3}, i 6= j, (6.3)

EC({s1, s2}; {d1, d3})≥2, EC({s1, s3}; {d1, d2})≥2, (6.4)

EC(s1; d1)≥1 on G3ANA\
{

upstr
(

(S2∩D3)∪(S3∩D2)
)}

, (6.5)

EC({s1, s2}; {d2, d3})≥2, EC({s2, s3}; {d1, d2})≥2, (6.6)

EC(s2; d2)≥1 on G3ANA\
{

upstr
(

(S1∩D3)∪(S3∩D1)
)}

, (6.7)

EC({s1, s3}; {d2, d3})≥2, EC({s2, s3}; {d1, d3})≥2, (6.8)

EC(s3; d3)≥1 on G3ANA\
{

upstr
(

(S1∩D2)∪(S2∩D1)
)}

. (6.9)

Note that (i) (6.3) is equivalent to L(x) 6≡R(x) by Proposition 6.2.1; (ii) (6.4),

(6.6), and (6.8) are equivalent to (5.24) to (5.26) by Corollary 5.4.1; and (iii) (6.5),

(6.7), and (6.9) are the new conditions that help characterize (5.21) to (5.23).

To further simplify the analysis, we consider the following set of polynomials:

k
(n)
1 (x) = {m11m23m31L

n, m11m23m31L
n−1R,

· · · , m11m23m31LR
n−1, m21m13m31L

n,

m21m13m31L
n−1R, · · · , m21m13m31R

n },

(6.10)

where k
(n)
1 (x) is obtained by swapping the roles of s1 and s2 (resp. s3), and the roles of

d1 and d2 (resp. d3) to the expression of h
(n)
2 (x) in (6.1) (resp. h

(n)
3 (x) in (6.2)). Note

that R = m12m23m31 becomes L = m13m32m21 and vice versa by such swap operation.

Once we characterize the graph-theoretic conditions for the linear independence of

k
(n)
1 (x), then the characterization for h

(n)
2 (x) and h

(n)
3 (x) being linearly independent

will be followed symmetrically.1

Proposition 6.3.1. For a given G3ANA, when n=1, we have

1In Section 5.2.3, (s1, d1)-pair was chosen to achieve larger rate than other pairs when aligning
the interference. Thus the feasibility characterization for the other transmission pairs, (s2, d2) and
(s3, d3) who achieve the same rate, becomes symmetric.
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(H1) h
(1)
1 (x) is linearly independent if and only if G3ANA satisfies (6.3) and (6.4).

(K1) k
(1)
1 (x) is linearly independent if and only if G3ANA satisfies (6.3), (6.4), and

(6.5).

Moreover when n≥2, we have

(H2) h
(n)
1 (x) is linearly independent if and only if G3ANA satisfies (6.3), (6.4), and

(6.5).

(K2) k
(n)
1 (x) is linearly independent if and only if G3ANA satisfies (6.3), (6.4), and

(6.5).

Remark: Proposition 6.3.1 proves that the conjecture in [41] holds only for the

linearly independent h
(1)
1 (x). In general, it is no longer true for the case of n≥2 and

even for n= 1. This coincides with the recent results [62], which show that for the

case of n≥2, the conjecture in [41] no longer holds.

Proof of Proposition 6.3.1: Similar to most graph-theoretic proofs, the proofs of

(H1), (K1), (H2), and (K2) involve detailed discussion of several subcases. To struc-

ture our proof, we first define the following logic statements. Each statement could

be true or false. We will later use these statements to complete the proof.

• H1: h
(n)
1 (x) is linearly independent for n=1.

• K1: k
(n)
1 (x) is linearly independent for n=1.

• H2: h
(n)
1 (x) is linearly independent for some n≥2.

• K2: k
(n)
1 (x) is linearly independent for some n≥2.

• LNR: L(x) 6≡R(x).
• G1: m11m23 6≡ m21m13 and m11m32 6≡ m31m12.

• G2: EC(s1; d1) ≥ 1 on G3ANA\
{

upstr
(

(S2∩D3)∪(S3∩D2)
)}

.

One can clearly see that proving Statement (H1) is equivalent to proving “LNR∧
G1 ⇔ H1” where “∧” is the AND operator. Similarly, proving Statements (K1), (H2),

and (K2) is equivalent to proving “LNR∧G1∧G2 ⇔ K1”, “LNR∧G1∧G2 ⇔
H2”, and “LNR∧G1∧G2 ⇔ K2”, respectively.
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The reason why we use the notation of “logic statements” (e.g., H1, LNR, etc.)

is that it enables us to break down the overall proof into proving several smaller

“logic relationships” (e.g, “LNR∧G1 ⇔ H1”, etc.) and later assemble all the logic

relationships to derive the final results. The interested readers can thus separate the

verification of the proof of each individual logic relationship from the examination

of the overall structure of the proof of the main results. The proof of each logic

relationship is kept no longer than one page and is independent from the proof of any

other logic relationship. This allows the readers to set their own pace when going

through the proofs.

To give an insight how the proof works, here we provide the proof of “LNR∧G1

⇐ H1” at the bottom. All the other proofs are relegated to the appendices. Specif-

ically, we provide the general structured proofs for the necessity direction “⇐” in

Appendix M. Applying this result, the proofs of “LNR∧G1∧G2 ⇐ H2, K1, K2”

are provided in Appendix M.3. Similarly, the general structured proofs for the suffi-

ciency direction “⇒” is provided in Appendix N. The proofs of “LNR∧G1 ⇒ H1”

and “LNR∧G1∧G2 ⇒ K1, H2, K2” are provided in Appendix N.4.

The proof of “LNR∧G1 ⇐ H1”: We prove the following statement instead:

(¬LNR)∨ (¬G1) ⇒ (¬H1) where ¬ is the NOT logic operator and “∨” is the OR

operator. From the expression of h
(n)
1 (x) in (5.27), consider h

(1)
1 (x) which contains 3

polynomials:

h
(1)
1 (x) = {m11m23m32R, m11m23m32L, m21m13m32R }. (6.11)

Suppose G3ANA satisfies (¬LNR)∨ (¬G1), which means G3ANA satisfies either

L(x) ≡ R(x) or m11m23≡ m21m13 or m11m32≡ m31m12. If L(x) ≡ R(x), then we

notice that m11m23m32R≡ m11m23m32L and h
(1)
1 (x), defined in (6.11), is thus linearly

dependent. If m11m23≡m21m13, then we notice that m11m23m32R≡ m21m13m32R.

Similarly if m11m32≡m31m12, then we have m11m23m32L≡ m21m13m32R. The proof

is thus complete. �
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6.4 Chapter Summary

In this chapter, we characterize the graph-theoretic conditions for the feasibility

of the 3-unicast ANA scheme. In Section 6.1, we first define the new graph-theoretic

notations that are useful for the characterization. In Section 6.2, we then char-

acterize the first algebraic feasibility condition of the 3-unicast ANA scheme in a

graph-theoretic sense. The full graph-theoretic characterization of all the remain-

ing algebraic feasibility conditions are fully described in Section 6.3, where the main

proofs can be found in Appendices L to N.



103

7. CONCLUSION AND FUTURE WORK

In this thesis, we first studied the 3-node wireless packet erasure network that incor-

porates feedback, NC encoding/decoding descriptions, and scheduling decisions all

together. In this model, we considered the most general traffic setting: six private-

information flows and three common-information flows in total, and characterized the

corresponding 9-dimensional Shannon capacity region within a gap that is inversely

proportional to the packet size. The gap can be attributed to exchanging reception

status (ACK/NACK) between three nodes. When the causal feedback can be com-

municated for free, we further proved that the proposed simple LNC inner bound

achieves the capacity. In the second part, we studied the smart repeater packet era-

sure network and effectively bracketed the LNC capacity region by proposing the outer

and inner bounds. The outer bound was developed based following the principles of

the proposed Space-based Framework, which can jointly optimize the LNC operations

and scheduling decisions simultaneously for the best possible LNC throughput. For

an inner bound, we have identified a new way of encoding packet mixtures that is

critical to approach the LNC capacity in a close-to-optimal sense. In the third part,

we studied the general class of precoding-based LNC schemes in wireline directed

acyclic integer-capacity networks. The Precoding-based Framework focuses on de-

signing the precoding and decoding mappings at the sources and destinations while

using randomly generated local encoding kernels within the network. One example

of the precoding-based structure is the 3-unicast ANA scheme, originally proposed

in [40,41]. In this thesis, we have identified new graph-theoretic relationships for the

precoding-based NC solutions, and based on the findings on the general precoding-

based NC, we have further characterized the graph-theoretic feasibility conditions of

the 3-unicast ANA scheme.
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In the 3-node wireless network setting, when the casual ACK/NACK feedback ex-

changes must be through the forward erasure channel (Scenario 2), we have observed

in Section 3.3 that the fully-connected assumption is critical to operate the capacity-

achieving LNC scheme. In other words, when the network is not fully-connected,

the proposed LNC strategy might not be in a right play. Therefore, it would be an

interesting extension to study how the actual capacity region is going to be when the

network admits such asymmetric feedback scenario. For the smart repeater network

setting, we have described the corresponding LNC capacity region. However, the true

capacity outer bound based on information-theoretic arguments is still open to be de-

scribed. Considering the fact that “Linearity” was shown not sufficient to achieve the

multi-session capacity in general [36], it would be an interesting future work to see

whether the regions described by LNC operations and by the information-theoretic

arguments can be matched or not.
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A. LNC CAPACITY REGION OF THE 3-NODE PACKET

ERASURE NETWORK

In this appendix, we describe the LNC capacity region of the 3-node PEN. To that

end, we first re-formulate the problem definition in Section 2.2 into the linear NC

version. Namely, the encoding/decoding descriptions and the capacity definition in

Section 2.2 will be re-formulated to the LNC equivalents as in the smart repeater

problem formulation of Section 2.3. Then the LNC outer bound will be constructed

based on the proposed Space-based Framework. To highlight the central idea of the

Space-based Framework, here we only consider the 6-dimensional private information

rates (R1→2, R1→3, R2→1, R2→3, R3→1, R3→2) and ignore the 3-dimensional common in-

formation rates (R1→23, R2→31, R3→12). The total 9-dimensional LNC capacity outer

bound construction can be followed similarly. Moreover, here we focus only on Sce-

nario 1 such that the casual ACK/NACK can be communicated for free. As similar

to Proposition 3.2.3, we further show that the constructed LNC outer bound matches

with the simple LNC achievability scheme of Proposition 3.2.2 for all possible channel

parameters.

A.1 The Space-based Formulation of Linear NC

Let W be an nRΣ-dimensional row vector defined by

W , (W1→2,W1→3,W2→1,W2→3,W3→1,W3→2). (A.1)
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That is, W is the collection of all the information packets for the 6-dimensional traffic

~R. Define Ω , (Fq)
nRΣ as the overall message/coding space. Then, a network code is

called linear if (2.3) can be rewritten as

If σ(t) = i, then Xi(t) = ctW
⊤ for some ct ∈ Ω, (A.2)

where ct is a row coding vector in Ω. We assume that ct is known causally to the

entire network. 1

We now define two important concepts: The individual message subspace and the

reception subspace. To that end, we first define el as an nRΣ-dimensional elementary

row vector with its l-th coordinate being one and all the other coordinates being zero.

Recall that the nRΣ coordinates of a vector in Ω can be divided into 6 consecutive

“intervals”, each of them corresponds to the information packets Wi→h for the uni-

cast flow from node i to node h 6= i. For example, from (A.1), the third interval

corresponds to the packets W2→1. We then define the individual message subspace

Ωi→j :

Ωi→j , span{el : l ∈ “interval” associated to Wi→j}, (A.3)

That is, Ωi→j is a linear subspace corresponding to any linear combination of Wi→j

packets. By (A.3), each Ωi→j is a linear subspace of Ω and rank(Ωi→j) = nRi→j .

For each node i ∈ {1, 2, 3}, the reception subspace in the end of time t is defined

by

RSi(t) , span{cτ : ∀τ≤ t s.t. στ 6= i, Zστ→i(τ)=1,

and Yστ→i(τ)=Xστ (τ)=cτW
⊤}.

(A.4)

1Coding vector ct can either be appended in the header or be computed by the network-wide causal
CSI feedback Z(t).
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That is, RSi(t) is the linear subspace spanned by the coding vectors cτ corresponding

to the packets that are sent by node στ 6= i and have successfully arrived at node i

by the end of time t. We now define the knowledge space Si(t) by

Si(t) , Ωi→j ⊕ Ωi→k ⊕ RSi(t), (A.5)

where A⊕B , span{v : v ∈ A∪B} is the sum space of any A,B ⊆ Ω. Basically, Si(t)

represents the “overall knowledge” available at node i, which contains those that are

originated from node i, i.e., Ωi→j ⊕ Ωi→k, and those overheard by node i until time

t, i.e., RSi(t). By the above definitions, we quickly have that node i can decode the

desired packets Ŵh→i, h 6= i, as long as Si(n) ⊇ Ωh→i. That is, when the knowledge

space in the end of time n contains the desired message space.

Note that each node can only send a linear mixture of the packets that it cur-

rently “knows.” Therefore, we can further strengthen the encoding part (A.2) by the

following statement:

If σ(t)= i, then Xi(t)= ctW
⊤ for some ct∈ Si(t− 1). (A.6)

We can now define the LNC capacity region.

Definition A.1.1. Fix the distribution of Z(t) and finite field Fq. A 6-dimensional

rate vector ~R is achievable by LNC if for any ǫ > 0 there exists a joint scheduling

and LNC scheme with sufficiently large n such that Prob(Ŵi→h 6= Wi→h) < ǫ for all

i ∈ {1, 2, 3} and h 6= i. The LNC capacity region is the closure of all LNC-achievable

~R.

A.2 The LNC Capacity outer bound

Since the coding vector ct has nRΣ number of coordinates, there are exponentially

many ways of jointly designing the scheduling σ(t) and the coding vector choices

ct over time when sufficiently large n and Fq are used. We will first simplify the
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aforementioned design choices by comparing ct to the knowledge spaces Si(t − 1)

described previously. Such a simplification allows us to derive Proposition A.2.1,

which uses a linear programming (LP) solver to exhaustively search over the entire

coding and scheduling choices and thus computes an LNC capacity outer bound.

Recall that (i, j, k)∈{(1, 2, 3), (2, 3, 1), (3, 1, 2)}, the cyclically shifted node indices.

For example, if i = 2, then j = 3 and k = 1. We also use Si as shorthand for Si(t−1),

the node-i knowledge space in the end of time t − 1. For all i ∈ {1, 2, 3}, define the

following seven linear subspaces of Ω:

A
(i)
1 (t) , Si, A

(i)
2 (t) , Si ⊕ Ωj→i, (A.7)

A
(i)
3 (t) , Si ⊕ Ωk→i, A

(i)
4 (t) , Si ⊕ Ωj→i ⊕ Ωk→i, (A.8)

A
(i,j)
1 (t) , Si ⊕ Sj , A

(i,j)
2 (t) , Si ⊕ Sj ⊕ Ωk→i, (A.9)

A
(i,j)
3 (t) , Si ⊕ Sj ⊕ Ωk→j. (A.10)

Since the knowledge spaces Si evolves over time, see (A.5), the above “A-subspaces”

also evolves over time.

There are in total 7 × 3 = 21 linear subspaces of Ω. We often drop the input

argument “(t)” when the time instant of interest is clear in the context. We then

partition the overall message space Ω into 221 disjoint subsets by the Venn diagram

generated by these 21 subspaces. That is, for any given coding vector ct, we can place

it in exactly one of the 221 disjoint subsets by testing whether it belongs to which

A-subspaces.

We can further reduce the possible placement of ct in the following way. By (A.6),

we know that when σ(t) = i, node i selects ct from its knowledge space Si(t − 1).

Hence, such ct must always lie in any A-subspace that Si appears in the definition.

There are 10 such A-subspaces: A
(i)
1 to A

(i)
4 ; A

(i,j)
1 to A

(i,j)
3 ; and A

(k,i)
1 to A

(k,i)
3 . As
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a result, for any coding vector ct sent by node i, we only needs to check whether ct

belongs to which of the following 11 remaining A-subspaces:

Ä
(i)
1 , A

(j)
1 , Ä

(i)
2 , A

(j)
2 , Ä

(i)
3 , A

(j)
3 , Ä

(i)
4 , A

(j)
4 ,

Ä
(i)
5 , A

(k)
1 , Ä

(i)
6 , A

(k)
2 , Ä

(i)
7 , A

(k)
3 , Ä

(i)
8 , A

(k)
4 ,

Ä
(i)
9 , A

(j,k)
1 , Ä

(i)
10 , A

(j,k)
2 , Ä

(i)
11 , A

(j,k)
3 . (A.11)

In (A.11), we rename those 11 remaining A-subspace by Ä
(i)
1 to Ä

(i)
11 for easier future

reference. For example when i = 3, such 11 subspaces Ä
(3)
1 to Ä

(3)
11 are A

(1)
1 to A

(1)
4 ;

A
(2)
1 to A

(2)
4 ; and A

(1,2)
1 to A

(1,2)
3 , respectively. For any 11-bitstring b = b1b2 · · · b11, we

define “the coding type-b of node i” by

TYPE
(i)
b

, Si ∩
(

⋂

l:bl=1

Ä
(i)
l

)

\
(

⋃

l:bl=0

Ä
(i)
l

)

. (A.12)

Namely, the Si(t− 1) that node i can choose ct from at time t is now further divided

into 211 = 2048 disjoint subsets, depending on whether ct belongs to Ä
(i)
l or not for

l = 1 to 11. For example, TYPE
(1)
169 (i.e., type-00010101001 of node 1) contains the

ct in S1 that is in the intersection of {Ä(1)
4 , Ä

(1)
6 , Ä

(1)
8 , Ä

(1)
11 } but not in the union of

{Ä(1)
1 , Ä

(1)
2 , Ä

(1)
3 , Ä

(1)
5 , Ä

(1)
7 , Ä

(1)
9 , Ä

(1)
10 }. By (A.11) and (A.12), we can write

TYPE
(1)
169 , S1∩

(

A
(2)
4 ∩ A(3)

2 ∩ A(3)
4 ∩A(2,3)

3

)

\
(

A
(2)
1 ∪A(2)

2 ∪A(2)
3 ∪A(3)

1 ∪ A(3)
3 ∪ A(2,3)

1 ∪ A(2,3)
2

)

.

In sum, any ct chosen by node i must fall into one of the 211 = 2048 subsets TYPE
(i)
b

defined by (A.11) and (A.12).

We can further strengthen the above observation by proving that 1996 (out of

2048) subsets are empty. For example, TYPE
(i)
1024 (i.e., type-10000000000) is always

empty since there is no such vector that can be inside Ä
(i)
1 , A

(j)
1 but not in Ä

(i)
2 , A

(j)
2

because we clearly have A
(j)
2 ⊃ A

(j)
1 by definition (A.7). By eliminating all the empty
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subsets, ct chosen by node i can only be in one of 52 (out of 2048) subsets. We call

those 52 subsets the Feasible Coding Types (FTs) and they are enumerated as follows.

FTs ,{0, 1, 2, 3, 7, 9, 11, 15, 31, 41, 43, 47, 63, 127, 130, 131, 135, 139, 143, 159, 171, 175,

191, 255, 386, 387, 391, 395, 399, 415, 427, 431, 447, 511, 647, 655, 671, 687, 703,

767, 903, 911, 927, 943, 959, 1023, 1927, 1935, 1951, 1967, 1983, 2047}. (A.13)

Since the coding choices are finite (52 per node and totally 3 nodes), we can derive

the following upper bound using those 52× 3=156 feasible types that fully cover Ω

at any time t.

Proposition A.2.1. A 6-dimensional rate vector ~R is in the LNC capacity region

only if there exists 52× 3 non-negative variables x
(i)
b

for all b ∈ FTs and i ∈ {1, 2, 3}
and 7× 3 non-negative y-variables, y

(i)
1 to y

(i)
4 , y

(i,j)
1 to y

(i,j)
3 for all i ∈ {1, 2, 3}, such

that jointly they satisfy the following three groups of linear conditions:

• Group 1, termed the time-sharing condition, has 1 inequality:

(

∑

∀b∈FTs

x
(1)
b

)

+

(

∑

∀b∈FTs

x
(2)
b

)

+

(

∑

∀b∈FTs

x
(3)
b

)

≤ 1. (A.14)
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• Group 2, termed the rank-conversion conditions, has 21 equalities: For all i ∈
{1, 2, 3}, and distinct indices j and k in {1, 2, 3}\i by circular-shifted way,

y
(i)
1 =

(

∑

∀b∈FTs w. b5=0

x
(j)
b

)

· pj→i +

(

∑

∀b∈FTs w. b1=0

x
(k)
b

)

· pk→i +Ri→j +Ri→k, (A.15)

y
(i)
2 =

(

∑

∀b∈FTs w. b6=0

x
(j)
b

)

· pj→i +

(

∑

∀b∈FTs w. b2=0

x
(k)
b

)

· pk→i +Ri→j +Ri→k +Rj→i,

(A.16)

y
(i)
3 =

(

∑

∀b∈FTs w. b7=0

x
(j)
b

)

· pj→i +

(

∑

∀b∈FTs w. b3=0

x
(k)
b

)

· pk→i +Ri→j +Ri→k +Rk→i,

(A.17)

y
(i)
4 =

(

∑

∀b∈FTs w. b8=0

x
(j)
b

)

· pj→i +

(

∑

∀b∈FTs w. b4=0

x
(k)
b

)

· pk→i

+Ri→j +Ri→k +Rj→i +Rk→i,

(A.18)

y
(i,j)
1 =

(

∑

∀b∈FTs w. b9=0

x
(k)
b

)

· pk→i∨j +Ri→j +Ri→k +Rj→i + Rj→k, (A.19)

y
(i,j)
2 =

(

∑

∀b∈FTs w. b10=0

x
(k)
b

)

· pk→i∨j +Ri→j +Ri→k +Rj→i +Rj→k +Rk→i, (A.20)

y
(i,j)
3 =

(

∑

∀b∈FTs w. b11=0

x
(k)
b

)

· pk→i∨j +Ri→j +Ri→k +Rj→i +Rj→k +Rk→j. (A.21)

• Group 3, termed the decodability conditions, has 6 equalities:

∀ i ∈ {1, 2, 3}, y
(i)
1 = y

(i)
2 = y

(i)
3 = y

(i)
4 , (A.22)

∀ i ∈ {1, 2, 3}, y
(i,j)
1 = y

(i,j)
2 = y

(i,j)
3 = RΣ. (A.23)

The intuition is as follows. Consider any achievable ~R and the associated LNC

scheme. For any time t, suppose the given scheme chooses node i to transmit a

coding vector ct. By the previous discussions, we can examine this ct to see which

TYPE
(i)
b

it belongs to by looking at the corresponding A-subspaces in the end of t−1.

Then after running the given scheme from time 1 to n, we can compute the variable
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x
(i)
b

, 1
n
E

[

∑n
t=1 1{ct∈TYPE(i)

b
}

]

for each TYPE
(i)
b

as the frequency of scheduling node

i with the chosen ct happening to be in TYPE
(i)
b
. Since each ct belongs to exactly

one of the 52× 3=156 feasible coding types, the time-sharing condition (A.14) holds

naturally. We then compute the y-variables by

y
(i)
l ,

1

n
E

[

rank
(

A
(i)
l (n)

)

]

, ∀l ∈ {1, 2, 3, 4}, (A.24)

y
(i,j)
l ,

1

n
E

[

rank
(

A
(i,j)
l (n)

)

]

, ∀l ∈ {1, 2, 3},

as normalized expected ranks of A-subspaces in the end of time n. We now claim

that these variables satisfy (A.15) to (A.23). This claim implies that for any LNC-

achievable ~R, there exists x
(i)
b

and y-variables satisfying Proposition A.2.1, which

means that Proposition A.2.1 constitutes an outer bound on the LNC capacity.

To prove that (A.15)–(A.21) are true,2 consider an A-subspace, say A
(1)
3 (t) =

S1(t− 1)⊕ Ω3→1 = RS1(t− 1)⊕ Ω1→2 ⊕ Ω1→3 ⊕ Ω3→1 as defined in (A.8) and (A.5)

when (i, j, k) = (1, 2, 3). In the beginning of time 1, node 1 has not received any packet

yet, i.e., RS1(0) = {0}. Thus the rank of A
(1)
3 (1) is rank(Ω1→2 ⊕ Ω1→3 ⊕ Ω3→1) =

nR1→2 + nR1→3 + nR3→1.

The fact that S1(t−1) contributes to A
(1)
3 (t) implies that rank(A

(1)
3 (t)) will increase

by one whenever node 1 receives a packet ctW
⊤ satisfying ct 6∈ A

(1)
3 (t). Since A

(1)
3 (t)

is labeled as Ä
(2)
7 , see (A.11) with (i, j, k) = (2, 3, 1), whenever node 2 sends a ct

in TYPE
(2)
b

with b7 = 0, such ct is not in A
(1)
3 (t). Whenever node 1 receives it,

rank(A
(1)
3 (t)) increases by 1. On the other hand, A

(1)
3 (t) is also labeled as Ä

(3)
3 , see

(A.11) with (i, j, k) = (3, 1, 2). Hence, whenever node 3 sends a ct in TYPE
(3)
b

with

2For rigorous proofs, we need to invoke the law of large numbers and take care of the ǫ-error
probability. For ease of discussion, the corresponding technical details are omitted when discussing
the intuition of Proposition A.2.1.
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b3=0 and node 1 receives it, rank(A
(1)
3 (t)) also increases by 1. Therefore, in the end

of time n, we have

rank(A
(1)
3 (n)) =

n
∑

t=1

1{
node 2 sends ct∈TYPE

(2)
b

with b7=0,
and node 1 receives it

}

+

n
∑

t=1

1{
node 3 sends ct∈TYPE

(3)
b

with b3=0,
and node 1 receives it

}

+ rank(A
(1)
3 (0)).

(A.25)

Taking the normalized expectation of (A.25), we have proven (A.17) for i = 1. By

similar rank-conversion arguments, (A.15)–(A.21) are true for all i ∈ {1, 2, 3}.
In the end of time n, since every node i ∈ {1, 2, 3} can decode the desired packets

Wj→i and Wk→i, we thus have Si(n) ⊇ Ωj→i and Si(n) ⊇ Ωk→i, or equivalently

Si(n) = Si(n) ⊕ Ωj→i ⊕ Ωk→i. This implies that the ranks of A
(i)
1 (n) to A

(i)
4 (n) in

(A.7) and (A.8) are all equal. Together with (A.24), we thus have (A.22). Similarly,

one can prove that (A.23) is satisfied as well. The claim is thus proven.

A.3 The Match Proof

We now prove that both the constructed LNC outer bound of Proposition A.2.1

and the simple LNC achievability scheme of Proposition 3.2.2 in Scenario 1 meets

regardless of channel parameters.

Proposition A.3.1. The outer and inner bounds in Propositions A.2.1 and 3.2.2

match for all channel parameters and they thus describe the 6-dimensional LNC ca-

pacity region.

Remark: One important implication is that for the 3-node 6-flow setting, we do

not need to resort to any “exotic” LNC operation. Instead, 4 simple coding choices

described in Section 3.5 are sufficient to achieve the optimal LNC capacity under any

channel parameters.
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A.3.1 Proof of Proposition A.3.1

For the readability, we rewrite the original 52 Feasible Types (FTs) defined in

(A.13) that each node i ∈ {1, 2, 3} can transmit:

FTs ,{000, 001, 002, 003, 007, 011, 013, 017, 037, 051,

053, 057, 077, 0F7, 102, 103, 107, 113, 117, 137,

153, 157, 177, 1F7, 302, 303, 307, 313, 317, 337,

353, 357, 377, 3F7, 507, 517, 537, 557, 577, 5F7,

707, 717, 737, 757, 777, 7F7, F07, F17, F37, F57,

F77, FF7}, (A.26)

where each 3-digit index b1b2b3 represent a 11-bitstring b of which b1 is a hexadec-

imal of first four bits, b2 is a hexadecimal of the next four bits, and b3 is octal of

the last three bits. It should be clear from the context whether we are representing b

as a decimal index, e.g., TYPE
(1)
169

, or as a 3-digit index based on hexadecimal/octal,

e.g., TYPE
(1)
FF7

.

For the notational convenience, we often use FTs(·, ·, ·) to denote some collec-

tion of coding types in FTs. For example, FTs(F, ·, ·) , {b ∈ FTs with b1 = F },
corresponding to the collection of coding types in FTs with b1 = b2 = b3 = b4 = 1.

Without loss of generality, we also assume that pi→j > 0 and pi→k > 0 for all

(i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)} since the case that any one of them is zero can be

viewed as a limiting scenario and the polytope of the LP problem in Proposition A.2.1

is continuous with respect to the channel success probability parameters.

We now introduce the following three lemmas.
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Lemma A.3.1. Given any rate vector ~R and the associated {x(i)
b
}-variables satisfy-

ing Proposition A.2.1, the following equalities, (A.27) to (A.36), always hold for all

(i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}.

Rk→i +Rk→j =

(

∑

∀b∈FTs w. b9=0

x
(k)
b

)

· pk→i∨j, (A.27)

Rk→j =

(

∑

∀b∈FTs w. b10=0

x
(k)
b

)

· pk→i∨j, (A.28)

Rk→i =

(

∑

∀b∈FTs w. b11=0

x
(k)
b

)

· pk→i∨j, (A.29)





∑

∀b∈FTs(·,·,0)

x
(k)
b



 =





∑

∀b∈FTs(·,·,3)

x
(k)
b



 . (A.30)

Rj→i +Rk→i =

(

∑

∀b∈FTs w. b5=0,b8=1

x
(j)
b

)

· pj→i +

(

∑

∀b∈FTs w. b1=0,b4=1

x
(k)
b

)

· pk→i, (A.31)

Rj→i =

(

∑

∀b∈FTs w. b5=0,b6=1

x
(j)
b

)

· pj→i +

(

∑

∀b∈FTs w. b1=0,b2=1

x
(k)
b

)

· pk→i, (A.32)

Rk→i =

(

∑

∀b∈FTs w. b5=0,b7=1

x
(j)
b

)

· pj→i +

(

∑

∀b∈FTs w. b1=0,b3=1

x
(k)
b

)

· pk→i, (A.33)





∑

b∈FTs(·,7,·)

x
(j)
b



 · pj→i+





∑

b∈FTs(7,·,·)

x
(k)
b



 · pk→i

=





∑

b∈FTs(·,1,·)

x
(j)
b



 · pj→i +





∑

b∈FTs(1,·,·)

x
(k)
b



 · pk→i.

(A.34)
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(

∑

∀b∈FTs w. b10=0

x
(k)
b

)

·pk→i∨j =

(

∑

∀b∈FTs w. b5=0,b6=1

x
(k)
b

)

·pk→j +

(

∑

∀b∈FTs w. b1=0,b2=1

x
(i)
b

)

·pi→j,

(A.35)
(

∑

∀b∈FTs w. b11=0

x
(k)
b

)

·pk→i∨j =

(

∑

∀b∈FTs w. b5=0,b7=1

x
(j)
b

)

·pj→i +

(

∑

∀b∈FTs w. b1=0,b3=1

x
(k)
b

)

·pk→i.

(A.36)

The proof is relegated to Appendix A.3.2.

The following Lemma A.3.2 implies that we can impose special structure on the

{x(i)
b
}-variables satisfying Proposition A.2.1. For that, let us denote

FTs , {051, 302, 337, 357, 3F7, 537, 557, 5F7, F37, F57}, (A.37)

of which contains only 10 types out of 52 feasible coding types of the original FTs.

Lemma A.3.2. Given any ~R and the associated 156 non-negative values {x(i)
b
} sat-

isfying Proposition A.2.1, we can always find another set of 156 non-negative values

{ẍ(i)
b
} such that ~R and {ẍ(i)

b
} jointly also satisfy Proposition A.2.1 and

ẍ
(i)
b

= 0 for all b ∈ FTs\FTs. (A.38)

That is, without loss of generality, we can assume only those {x(i)
b
} with b ∈ FTs

may have non-zero values. The proof of this lemma is relegated to Appendix A.3.3.

Lemma A.3.3. Given any ~R and the associated 156 non-negative values {ẍ(i)
b
} that

satisfy Proposition A.2.1 and (A.38), we can always find 15 non-negative values t
(i)
[u]

and {t(i)[c, l]}4l=1 for all i ∈ {1, 2, 3} such that jointly satisfy three groups of linear con-

ditions in Proposition 3.2.2 (when replacing all strict inequality < by ≤).

The proof of this lemma is relegated to Appendix A.3.4.

One can clearly see that Lemmas A.3.2 and A.3.3 jointly imply that the outer

bound in Proposition A.2.1 matches the closure of the inner bound in Proposi-

tion 3.2.2. The proof of Proposition A.3.1 is thus complete.
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A.3.2 Proof of Lemma A.3.1

We prove the equalities (A.27) to (A.30) as follows.

Proof. These equalities can be derived by using (A.19)–(A.21) and (A.23) in Propo-

sition A.2.1. Since y
(i,j)
1 = y

(i,j)
2 = y

(i,j)
3 = RΣ by (A.23), substituting RΣ to the

left-hand side of (A.19)–(A.21), respectively, we have

Rk→i +Rk→j =

(

∑

∀b∈FTs w. b9=0

x
(k)
b

)

· pk→i∨j,

Rk→j =

(

∑

∀b∈FTs w. b10=0

x
(k)
b

)

· pk→i∨j,

Rk→i =

(

∑

∀b∈FTs w. b11=0

x
(k)
b

)

· pk→i∨j,

which are equivalent to (A.27), (A.28), and (A.29), respectively.

We now prove the relationship (A.30). Substituting (A.28) and (A.29) to the

left-hand side of (A.27), we then have

(

∑

∀b∈FTs w. b10=0

x
(k)
b

+
∑

∀b∈FTs w. b11=0

x
(k)
b

)

· pk→i∨j =

(

∑

∀b∈FTs w. b9=0

x
(k)
b

)

· pk→i∨j. (A.39)

Note that for any type-b, whenever b10 = 0 (resp. b11 = 0), b9 is also zero.

This is because Ä
(i)
9 ⊂ Ä

(i)
10 (resp. Ä

(i)
9 ⊂ Ä

(i)
11 ) regardless of node index i, see (A.11).

Therefore, (A.39) can be further reduced to

(

∑

∀b∈FTs w. b9=0,b10=0,b11=0

x
(k)
b

)

· pk→i∨j =

(

∑

∀b∈FTs w. b9=0,b10=1,b11=1

x
(k)
b

)

· pk→i∨j. (A.40)

Dividing pk→i∨j on both sides of (A.40), we finally have (A.30). The proof is thus

complete. �

We prove the equalities (A.31) to (A.34) as follows.
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Proof. These equalities can be derived by using the decodability equality (A.22) in

Proposition A.2.1, i.e., y
(i)
1 = y

(i)
2 = y

(i)
3 = y

(i)
4 . First from y

(i)
1 = y

(i)
4 and by (A.15)

and (A.18), one can easily see that we have

Rj→i +Rk→i =

(

∑

∀b∈FTs w. b5=0,b8=1

x
(j)
b

)

· pj→i +

(

∑

∀b∈FTs w. b1=0,b4=1

x
(k)
b

)

· pk→i,

which is equivalent to (A.31). This is because for any type-b, if b8 = 0 (resp. b4 = 0),

then b5 (resp. b1) must be zero as well due to the fact that Ä
(i)
5 ⊂ Ä

(i)
8 (resp. Ä

(i)
1 ⊂

Ä
(i)
4 ) regardless of node index, see (A.11). Similarly from the facts that Ä

(i)
5 ⊂ Ä

(i)
6 ,

Ä
(i)
1 ⊂ Ä

(i)
2 , and by (A.15) and (A.16), y

(i)
1 = y

(i)
2 implies

Rj→i =

(

∑

∀b∈FTs w. b5=0,b6=1

x
(j)
b

)

· pj→i +

(

∑

∀b∈FTs w. b1=0,b2=1

x
(k)
b

)

· pk→i,

which is equivalent to (A.32).

Moreover, from the facts that Ä
(i)
5 ⊂ Ä

(i)
7 , Ä

(i)
1 ⊂ Ä

(i)
3 ), and by (A.15) and (A.17),

y
(i)
1 = y

(i)
3 implies

Rk→i =

(

∑

∀b∈FTs w. b5=0,b7=1

x
(j)
b

)

· pj→i +

(

∑

∀b∈FTs w. b1=0,b3=1

x
(k)
b

)

· pk→i, (A.41)

which is equivalent to (A.33).

We now prove the relationship (A.34). Substituting (A.32) and (A.33) to the

left-hand side of (A.31), we thus have

(

∑

∀b∈FTs w. b5=0,b6=1

x
(j)
b

+
∑

∀b∈FTs w. b5=0,b7=1

x
(j)
b

)

· pj→i

+

(

∑

∀b∈FTs w. b1=0,b2=1

x
(k)
b

+
∑

∀b∈FTs w. b1=0,b3=1

x
(k)
b

)

· pk→i

=

(

∑

∀b∈FTs w. b5=0,b8=1

x
(j)
b

)

· pj→i +

(

∑

∀b∈FTs w. b1=0,b4=1

x
(k)
b

)

· pk→i.
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Note that for any type-b, whenever b6 = 1 (resp. b7 = 1), b8 must be one due to

the fact that Ä
(i)
6 ⊂ Ä

(i)
8 (resp. Ä

(i)
7 ⊂ Ä

(i)
8 ). The same argument holds such that for

any type-b, whenever b2 = 1 (resp. b3 = 1), we have b4 = 1. Then the above equality

further reduces to

(

∑

∀b∈FTs w. b5=0,b6=1,b7=1,b8=1

x
(j)
b

)

· pj→i +

(

∑

∀b∈FTs w. b1=0,b2=1,b3=1,b4=1

x
(k)
b

)

· pk→i

=

(

∑

∀b∈FTs w. b5=0,b6=0,b7=0,b8=1

x
(j)
b

)

· pj→i +

(

∑

∀b∈FTs w. b1=0,b2=0,b3=0,b4=1

x
(k)
b

)

· pk→i,

which is equivalent to (A.34). The proof is thus compelte. �

We prove the equalities (A.35) and (A.36) as follows.

Proof. By cyclic symmetry, we can rewrite (A.32) as follows.

Rk→j =

(

∑

∀b∈FTs w. b5=0,b6=1

x
(k)
b

)

· pk→j +

(

∑

∀b∈FTs w. b1=0,b2=1

x
(i)
b

)

· pi→j. (A.42)

Then, (A.35) is a direct result of (A.28) and (A.42). Similarly, (A.36) is a direct

result of (A.29) and (A.33). The proof is thus complete. �

A.3.3 Proof of Lemma A.3.2

Before proving this lemma, we introduce the following “weight-movement” oper-

ator.

1. For any 2 non-negative values a and b, the operator a→ b implies that we keep

decreasing a and increasing b by the same amount until a = 0. Namely, after

the operator, the new a and b values are

anew = 0, bnew = b+ a.
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2. For any 3 non-negative values a, b, and c, the operator {a, b}→ c implies that

we keep decreasing a and b simultaneously and keep increasing c by the same

amount until at least one of a and b being 0. Namely, after the operator, the

new a, b, and c values are

anew = a−min{a, b}, bnew = b−min{a, b},

cnew = c+min{a, b}.

3. For any 4 non-negative values a, b, c, and d, the operator {a, b}→{c, d} implies

that we keep decreasing a and b simultaneously and keep increasing c and d

simultaneously by the same amount until at least one of a and b being 0. Namely,

after the operator, we have

anew = a−min{a, b}, bnew = b−min{a, b},

cnew = c+min{a, b}, dnew = d+min{a, b}.

4. We can also concatenate the operators. For example, for any three non-negative

values a, b, and c, the operator a→b→c implies that

anew = 0, bnew = 0, cnew = c+ (a+ b).

5. Sometimes, we do not want to “move the weight to the largest possible degree”

as was defined previously. To that end, we define the operator a
∆→b:

anew = a−∆, bnew = b+∆.

where ∆ (≤ a) is the amount of weight being moved from a to b.

6. Finally, a→∅ means anew = 0 and a
∆−→ ∅ means anew = a−∆.
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We now prove Lemma A.3.2. Given ~R and {x(i)
b
}-values satisfying Proposi-

tion A.2.1, let us denote the corresponding values of y-variables in the rank-conversion

conditions (A.15)–(A.21) as {y}.
Recall that each coding type TYPE

(i)
b

of node i corresponds to a specific subset

of its knowledge space Si, governed by 11 A-subspaces Ä
(i)
1 to Ä

(i)
11 , see (A.11). As a

result, by the rank conversion equalities (A.15)–(A.21), the bitstring b of each TYPE
(i)
b

will determine the contribution from the value x
(i)
b

to the associated 11 y-values: y
(j)
1

to y
(j)
4 ; y

(k)
1 to y

(k)
4 ; and y

(j,k)
1 to y

(j,k)
3 . For example, any vector ct of TYPE

(i)
7F7

(i.e.,

type-01111111111 of node i), does not belong to Ä
(i)
1 . By (A.11) and (A.7)–(A.10),

we know that Ä
(i)
1 = A

(j)
1 (t) = Sj(t − 1). As a result, whenever a TYPE

(i)
7F7

coding

vector, sent by node i at time t, is succesfully received by node j, the rank of Sj(t−1)

will increase by 1. Therefore, the value x
(i)
7F7

(the frequency of using type-7F7 of node

i) contributes to y
(j)
1 (the normalized expected rank of A

(j)
1 (n) in the end of time

n) by x
(i)
7F7

· pi→j. Any change of the value x
(i)
7F7

will thus change the corresponding

value y
(j)
1 accordingly as described in the rank conversion equalities (A.15)–(A.21) in

Proposition A.2.1.

The above intuition/explanation turns out to be very helpful when discussing the

LP problem. Also, since all {y}-values can always be calculated from the given {x(i)
b
}-

values by (A.15)–(A.21), all our discussion can be focused on the given {x(i)
b
}-values,

and all {y}-values can be automatically computed. The proof of Lemma A.3.2 is done

by proving the following intermediate claims.

Intermediate Claim 1: For any ~R and the corresponding 156 non-negative values

{x(i)
b
} satisfying Proposition A.2.1, we can always find another set of 156 non-negative

values {ẍ(i)
b
} such that ~R and {ẍ(i)

b
} jointly satisfy Proposition A.2.1 and

ẍ
(i)
b

= 0, ∀ i ∈ {1, 2, 3} and ∀b ∈ {FF7, F07, 0F7, 007} . (A.43)

Proof of Intermediate Claim 1: The proof is done by explicit construction. We se-

quentially perform the following weight movement operations for all i ∈ {1, 2, 3}:
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x
(i)
FF7

→∅; x(i)
F07

→∅; x(i)
0F7

→∅; and x(i)
007

→∅. After the weight movement, (A.43) is obvi-

ously true for the new values of {x(i)
b
}. What remains to prove that the time-sharing

condition (A.14) and the decodability conditions (A.22)–(A.23) still hold (when com-

puting the new {y}-values using the new {x(i)
b
}-values) after the weight movement.

To that end, we prove that (A.14), (A.22), and (A.23) hold after each of the weight

movement operations. We first observe that x
(i)
FF7

→ ∅ does not change any y-value

because the coding type-11111111111 does not participate in the rank conversion

process. As a result, after x
(i)
FF7

→∅, the decodability conditions (A.22)–(A.23) still

hold. Since x
(i)
FF7

→∅ reduces the value of x
(i)
FF7

, the time sharing condition (A.14) still

holds.

We now consider x
(i)
F07

→ ∅. Since F07 = 11110000111 in 11-bitstring, it means

that x
(i)
F07

contributes to the ranks of Ä
(i)
5 to Ä

(i)
8 . By (A.11), x

(i)
F07

contributes3 to the

values of y
(k)
1 to y

(k)
4 , the ranks of A

(k)
1 to A

(k)
4 in the end of time n, respectively. By

(A.15)–(A.18), the operation x
(i)
F07

→∅ will decrease each of y
(k)
1 to y

(k)
4 by the same

amount (x
(i)
F07

· pi→k). Therefore, after x
(i)
F07

→ ∅, the new values of y
(k)
1 to y

(k)
4 still

satisfy the decodability equality (A.22). Note that x
(i)
F07

does not contribute to any of

y
(j,k)
1 to y

(j,k)
3 and therefore (A.23) still holds after x

(i)
F07

→∅.
By similar arguments, the operation x

(i)
0F7

→ ∅ will decrease y
(j)
1 to y

(j)
4 by the

same amount (x
(i)
0F7

· pi→j) while keeping all y
(k)
1 to y

(k)
4 and y

(j,k)
1 to y

(j,k)
3 unchanged.

Therefore the decodability condition (A.22) still holds. By similar arguments, the

operation x
(i)
007

→ ∅ will decrease y
(j)
1 to y

(j)
4 by the same amount of (x

(i)
007

· pi→j)

and decrease y
(k)
1 to y

(k)
4 by the same amount (x

(i)
007

· pi→k) while keeping all y
(j,k)
1 to

y
(j,k)
3 unchanged. Therefore the decodability conditions (A.22) and (A.23) still hold.

Intermediate Claim 1 is thus proven. �

Intermediate Claim 2: For any ~R vector and the 156 corresponding non-negative

{x(i)
b
}-values satisfying Proposition A.2.1 and (A.43), we can always find another set of

3This argument can also be made by directly examining equalities (A.15)–(A.21). In (A.15)–(A.21),
we can see that only in (A.15)–(A.18) we use the b5 to b8 values to determine the contribution of

{x(i)
b
, x

(j)
b

, x
(k)
b

}. Since y
(i)
1 to y

(i)
4 are contributed by x

(j)
F07

, we thus know that only y
(k)
1 to y

(k)
4 are

contributed by x
(i)
F07

.



128

156 non-negative values {ẍ(i)
b
} such that ~R and {ẍ(i)

b
} jointly satisfy Proposition A.2.1

and (A.43), plus

ẍ
(i)
b

= 0, ∀ i ∈ {1, 2, 3} and ∀b ∈







000, 003, 013, 053, 103,

113, 153, 303, 313, 353







. (A.44)

Proof of Intermediate Claim 2: Consider any {x(i)
b
}-values satisfying Proposition A.2.1

and (A.43). Since Proposition A.2.1 holds, Lemma A.3.1 implies that (A.30) holds

as well. When we count the non-zero coding types in (A.30) (those not in (A.43)),

we immediately have

x
(i)
000

= x
(i)
003

+ x
(i)
013

+ x
(i)
053

+ x
(i)
103

+ x
(i)
113

+ x
(i)
153

+ x
(i)
303

+ x
(i)
313

+ x
(i)
353
. (A.45)

Then, we sequentially perform the following operations:

{x(i)
003
, x

(i)
000

}→{x(i)
001
, x

(i)
002

},

{x(i)
013
, x

(i)
000

}→{x(i)
002
, x

(i)
011

},

{x(i)
053
, x

(i)
000

}→{x(i)
002
, x

(i)
051

},

{x(i)
103
, x

(i)
000

}→{x(i)
001
, x

(i)
102

},

{x(i)
113
, x

(i)
000

}→{x(i)
011
, x

(i)
102

},

{x(i)
153
, x

(i)
000

}→{x(i)
051
, x

(i)
102

},

{x(i)
303
, x

(i)
000

}→{x(i)
001
, x

(i)
302

},

{x(i)
313
, x

(i)
000

}→{x(i)
011
, x

(i)
302

},

{x(i)
353
, x

(i)
000

}→{x(i)
051
, x

(i)
302

}.

By (A.45), one can easily verify that after the above operations, we have (A.44).

Thus it is left to show that after these operations the linear conditions of Proposi-

tion A.2.1 are still satisfied.
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First notice that the time-sharing condition (A.14) is still satisfied since weight-

moving operation decreases weights of two entries and increases the weights of another

two entries by the same amount. We now argue that after each of the totally 9

weight-moving operations, the associated y-values remain unchanged. Take the last

weight-moving operation {x(i)
353
, x

(i)
000

}→{x(i)
051
, x

(i)
302

} for example. The corresponding

coding types are

TYPE
(i)
353

in 11-bitstring = 0011 0101 011,

TYPE
(i)
000

in 11-bitstring = 0000 0000 000,

TYPE
(i)
051

in 11-bitstring = 0000 0101 001,

TYPE
(i)
302

in 11-bitstring = 0011 0000 010.

Let bl(353) denote the l-th bit of the 11-bitstring 353 = 00110101011, and similarly

bl(000), bl(051), and bl(302) denote the l-th bit of 11-bitstrings 000, 051, and 302,

respectively. One can see that for any l, the set {bl(353), bl(000)} is identical, as

a set, to the set {bl(051), bl(302)} for all l = 1 to 11. Namely, when performing

{x(i)
353
, x

(i)
000

} → {x(i)
051
, x

(i)
302

}, for all l = 1 to 11, the impact on the rank of Ä
(i)
l by

decreasing simultaneously the two entries {x(i)
353
, x

(i)
000

} is offset completely by increas-

ing simultaneously the two entries {x(i)
051
, x

(i)
302

}. For example, bit b1 (when l = 1)

corresponds to Ä
(i)
1 = A

(j)
1 and we have b1(353) = 0 and b1(000) = 0. Therefore,

if we separate the weight-moving operation {x(i)
353
, x

(i)
000

} → {x(i)
051
, x

(i)
302

} into the de-

creasing half and the increasing half, then during the decreasing half, the y
(j)
1 -value

will decrease by min{x(i)
353
, x

(i)
000

} · pi→j due to the decrease of x
(i)
353

and then decrease

by another min{x(i)
353
, x

(i)
000

} · pi→j due to the decrease of x
(i)
000

. On the other hand,

during the increasing half, the y
(j)
1 value will increase by min{x(i)

353
, x

(i)
000

} · pi→j due

to the increase of x
(i)
051

and then increase by another min{x(i)
353
, x

(i)
000

} · pi→j due to the

increase of x
(i)
302

. The amounts of increase and decrease perfectly offset each other

since {b1(353), b1(000)} = {0, 0} = {b1(051), b1(302)}.
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In sum, by similar reasoning, all the y-values will remain the same after each of

the above 9 weight-moving operations. The proof is thus complete. �

Intermediate Claim 3: For any ~R vector and the 156 corresponding non-negative

{x(i)
b
}-values satisfying Proposition A.2.1 and (A.43) to (A.44), we can always find

another set of 156 non-negative values {ẍ(i)
b
} such that ~R and {ẍ(i)

b
} jointly satisfy

Proposition A.2.1 and (A.43) to (A.44), plus for all i ∈ {1, 2, 3},




∑

b∈FTs(·,7,·)

x
(i)
b



 =





∑

b∈FTs(·,1,·)

x
(i)
b



 ,





∑

b∈FTs(7,·,·)

x
(i)
b



 =





∑

b∈FTs(1,·,·)

x
(i)
b



 .

(A.46)

Proof of Intermediate Claim 3: Since the node indices are cyclically decided, we will

prove the following equivalent forms:





∑

b∈FTs(·,7,·)

x
(j)
b



 =





∑

b∈FTs(·,1,·)

x
(j)
b



 , (A.47)





∑

b∈FTs(7,·,·)

x
(k)
b



 =





∑

b∈FTs(1,·,·)

x
(k)
b



 , (A.48)
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based on the equality (A.34) of Lemma A.3.1. For shorthand, define the following 4

non-negative terms of (A.34) as follows:

term1 ,





∑

b∈FTs(·,7,·)

x
(j)
b



 · pj→i,

term2 ,





∑

b∈FTs(7,·,·)

x
(k)
b



 · pk→i,

term3 ,





∑

b∈FTs(·,1,·)

x
(j)
b



 · pj→i,

term4 ,





∑

b∈FTs(1,·,·)

x
(k)
b



 · pk→i.

Using the above 4 terms, (A.34) can be rewritten by

term1 + term2 = term3 + term4. (A.49)

Recall that we assume both pj→i > 0 and pk→i > 0. Consider the following three

cases depending on the values of term1 and term3.

Case 1: term1 = term3. By (A.49), we also have term2 = term4. By the definitions

of term1 to term4, both (A.47) and (A.48) hold automatically.

Case 2: term1 < term3. Since each term is strictly non-negative, we thus have

term3 > 0. Also by (A.49), we must also have term2 > term4 and thus term2 > 0.

In the following, we will describe a set of weight-moving operations such that after

moving the weights among {x(j)
b
, x

(k)
b
}, the new {x(j)

b
, x

(k)
b
} satisfy Proposition A.2.1,

(A.43), and (A.44); and the gap term3 − term1 computed using the new {x(j)
b
} is

strictly smaller than the gap computed by the old {x(j)
b
} while term3 ≥ term1. We

can thus iteratively perform the weight movements until term1 = term3. The final

{x(j)
b
, x

(k)
b
} then satisfy (A.46) now.
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The desired weight-moving operations are described as follows. Since term3 > 0,

we can find an 11-bitstring bterm3 ∈ FTs(·, 1, ·) such that x
(j)
bterm3

> 0. Similarly, since

term2 > 0, we can find a bterm2 ∈ FTs(7, ·, ·) such that x
(k)
bterm2

> 0. We then define

∆ = min
{

x
(j)
bterm3

· pj→i, x
(k)
bterm2

· pk→i, term3 − term1

}

.

Obviously, we have ∆ > 0 since we assume pj→i > 0 and pk→i > 0 for all (i, j, k).

We then compute ∆term3 = ∆/pj→i and ∆term2 = ∆/pk→i. By the definition of ∆, we

have 0 < ∆term3 ≤ x
(j)
bterm3

and 0 < ∆term2 ≤ x
(k)
bterm2

.

Then, we perform the following weight-moving operations:

x
(j)
bterm3

∆term3−−−→ x
(j)
bterm3⊕ 040

, (OP1)

x
(k)
bterm2

∆term2−−−→ x
(k)
bterm2⊕ 400

, (OP2)

where ⊕ is bit-wise exclusive or. For example, if bterm3 = 117 which belongs to

FTs(·, 1, ·), then bterm3⊕040 = 157 which now belongs to FTs(·, 5, ·) instead. Similarly,

if bterm2 = 737, then bterm2 ⊕ 400 = 337, which now belongs to FTs(3, ·, ·).
We now argue that after moving the weights among {x(j)

b
, x

(k)
b
}, the new {x(j)

b
, x

(k)
b
}

satisfy Proposition A.2.1, (A.43), and (A.44); and the gap term3 − term1 computed

using the new {x(j)
b
} is strictly smaller than the gap computed by the old {x(j)

b
} while

term3 ≥ term1. To that end, we first argue that after the above weight movements,

both (A.43) and (A.44) still hold. The reason is that since bterm2 ⊕ 400 ∈ FTs(3, ·, ·)
and bterm3⊕040 ∈ FTs(·, 5, ·), we never move any weight to the frequencies {x(j)

b
, x

(k)
b
}

satisfying (A.43). As a result, (A.43) still holds after the above weight movements.

Since bterm2 ⊕ 400 ∈ FTs(3, ·, ·), it may look possible that we can increase the weight

of x
(k)
303

, x
(k)
313

, and x
(k)
353

in (A.44) by the weight-moving operation (OP2). However,

to increase the weight of x
(k)
303

, x
(k)
313

, and x
(k)
353

, it means that we must have bterm2 ∈
{703, 713, 753} to begin with. However, they are not in the feasible coding types FTs,

see (A.26). As a result, after (OP2) movement, (A.44) still holds. Since x
(j)
bterm3

⊕ 040 ∈
FTs(·, 5, ·), it may look possible that we can increase the weight of x

(j)
053

, x
(j)
153

, and x
(j)
353
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in (A.44) by the weight-moving operation (OP1). However, to increase the weight

of x
(j)
053

, x
(j)
153

, and x
(j)
353

, it means that we must have bterm3 ∈ {013, 113, 313} to begin

with. However, since we choose bterm3 such that x
(j)
bterm3

> 0, and the original {x(j)
b
}-

values satisfy (A.44), it is impossible to have bterm3 ∈ {013, 113, 313}. As a result,

after (OP1) movement, (A.44) still holds.

We now consider the conditions in Proposition A.2.1. We first notice that it is

clear that after moving the weights, the time-sharing condition of Proposition A.2.1

still holds because at every iteration we only “move” the weights on the frequencies

{x(j)
b
, x

(k)
b
} without changing the overall sum. We now examine whether other condi-

tions of Proposition A.2.1 are still satisfied after the above modification process. For

that, we argue that the above process keeps all the y-values unchanged. To see that,

suppose (i, j, k) = (1, 2, 3) without loss of generality. Since the 11-bitstring 040 has

only 6-th bit being 1 and all the other bits being 0, the (OP1) operation will change

only the rank of Ä
(j)
6 , i.e., Ä

(2)
6 when (i, j, k) = (1, 2, 3). By (A.11), Ä

(2)
6 = A

(1)
2 and

thus only y
(1)
2 will be affected by this operation. Since we are moving the weight of

∆term3 from x
(2)
bterm3

(the 6-th bit of bterm3 is 0 since bterm3 ∈ FTs(·, 1, ·)) to x(2)
bterm3⊕ 040

(the 6-th bit of bterm3 ⊕ 040 is 1), y
(1)
2 will be decreased by (∆term3 · p2→1), which is

equal to ∆. On the other hand since the 11-bitstring 400 has only the 2nd bit being

1 and all the other bits being 0, the (OP2) operation will change only the rank of

Ä
(k)
2 , i.e., Ä

(3)
2 when (i, j, k) = (1, 2, 3). By (A.11), Ä

(3)
2 = A

(1)
2 and thus again only

y
(1)
2 will be affected by this operation. Since we are moving the weight of ∆term2 from

x
(3)

bterm2
(the 2nd bit of bterm2 is 1 since bterm2 ∈ FTs(7, ·, ·)) to x(3)

bterm2⊕ 400
(the 2nd bit

of bterm2 ⊕ 400 is 0), y
(1)
2 will be increased by (∆term2 · p3→1), which is equal to ∆.

The impacts of the two weight-moving operations (OP1) and (OP2) on y
(1)
2 perfectly

offset each other. As a result, any of y-values are unchanged.

In the following, we will prove that (OP1) will decrease the value of term3 by

∆ while keeping the values of term1, term2, and term4 unchanged; and (OP2) will

decrease the value of term2 by ∆ while keeping the values of term1, term3, and term4

unchanged. Thus after performing (OP1) and (OP2), the gap term3−term1 computed
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by the new {x(j)
b
}-values decreases by ∆ and we still have term3 ≥ term1 by the

definition of ∆ while satisfying (A.49). We first observe that (OP1) manipulates only

{x(j)
b
}, thus term2 and term4 will not be affected since both are based on {x(k)

b
} of

another node index. Also notice that bterm3 ∈ FTs(·, 1, ·) if and only if bterm3 ⊕ 040 ∈
FTs(·, 5, ·). Therefore, the weight movement (OP1) does not change the value of

term1 since term1 involves only those frequencies with b ∈ FTs(·, 7, ·). Finally, since

bterm3 ∈ FTs(·, 1, ·) and bterm3 ⊕ 040 ∈ FTs(·, 5, ·), the (OP1) movement will decrease

the value of term3 and the decrease amount will be ∆term3 · pj→i = ∆. The statement

that (OP2) decreases the value of term2 by ∆ while keeping the values of term1, term3,

and term4 unchanged can be proved similarly. The proof of Case 2 is thus complete.

Case 3: term1 > term3. Since each term is strictly non-negative, we thus have

term1 > 0 and by (A.49), we must also have term4 > 0. Again, we will describe a set

of weight-moving operations such that after moving the weights among {x(j)
b
, x

(k)
b
},

the new {x(j)
b
, x

(k)
b
} satisfy Proposition A.2.1, (A.43), and (A.44); and the gap term1−

term3 computed using the new {x(j)
b
} is strictly smaller than the gap computed by the

old {x(j)
b
} while satisfying (A.49) and term1 ≥ term3. We can thus iteratively perform

the weight movements until term1 = term3. The final {x(j)
b
, x

(k)
b
} thus satisfy (A.46).

The desired weight-moving operations are described as follows. Since term1 > 0,

we can find an 11-bitstring bterm1 ∈ FTs(·, 7, ·) such that x
(j)
bterm1

> 0. Similarly, since

term4 > 0, we can find a bterm4 ∈ FTs(1, ·, ·) such that x
(k)

bterm4
> 0. We then define

∆ = min
{

x
(j)

bterm1
· pj→i, x

(k)

bterm4
· pk→i, term1 − term3

}

.

We then compute ∆term1 = ∆/pj→i and ∆term4 = ∆/pk→i. Then, we perform the

following weight-moving operations:

x
(j)
bterm1

∆term1−−−→ x
(j)
bterm1⊕ 040

, x
(k)
bterm4

∆term4−−−→ x
(k)
bterm4⊕ 400

.

By almost identical reasonings as in the discussion of Case 2, we can prove that

after the above modification process, we have that the new {x(j)
b
, x

(k)
b
} satisfy Propo-



135

sition A.2.1, (A.43), and (A.44); and the gap term1 − term3 computed using the new

{x(j)
b
} is strictly smaller than the gap computed by the old {x(j)

b
} while satisfying

(A.49) and term1 ≥ term3. The proof of Case 3 is thus complete. �

Intermediate Claim 4: For any ~R vector and the 156 corresponding non-negative

{x(i)
b
}-values satisfying Proposition A.2.1 and (A.43) to (A.46), we can always find

another set of 156 non-negative values {ẍ(i)
b
} such that ~R and {ẍ(i)

b
} jointly satisfy

Proposition A.2.1 and (A.43) to (A.46), plus

ẍ
(i)
b

= 0, ∀ i ∈ {1, 2, 3} and ∀b ∈



































011, 017, 037, 057, 077, 102, 107,

117, 137, 157, 177, 1F7, 307, 317,

377, 507, 517, 577, 707, 717, 737,

757, 777, 7F7, F17, F77



































. (A.50)

Proof of Intermediate Claim 4: We simultaneously perform the weight-moving oper-

ations in the first column of Table A.1 for all nodes i ∈ {1, 2, 3}. For each operation,

we also present how the associated y-values are affected after each operation. As de-

scribed in the proof of Intermediate Claim 1, one can verify the variations of y-values

by each operation in Table A.1. For example, the first operation x
(i)
011

→ x
(i)
051

moves

all the weight from x
(i)
011

to x
(i)
051

. Since

TYPE
(i)
011

in 11-bitstring = 0000 0001 001,

TYPE
(i)
051

in 11-bitstring = 0000 0101 001,

one can easily see that only the rank of Ä
(i)
6 will be affected since the only different

bit between 011 and 051 is the 6-th bit. By (A.11), Ä
(i)
6 = A

(k)
2 and thus only y

(k)
2

will be affected by x
(i)
011

→ x
(i)
051

operation. We observe that TYPE
(i)
011

participates in

the increase of y
(k)
2 (the 6-th bit of 011 being 0) but TYPE

(i)
051

(the 6-th bit of 051

being 1) does not. Thus after the weight movement, y
(k)
2 will be decreased by the

amount of (x
(i)
011

· pi→k) as indicated in Table A.1. The rest of Table A.1 is populated
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by examining all 10 weight-moving operations (the 10 rows) and their corresponding

impact on the y-values.

One can easily see from Table A.1 that after completing all 10 weight-moving

operations, for each node i, 26 coding types (enumerated in (A.50)) of the new values

{x(i)
b
} will be set to zeros.

Table A.1: The weight-moving operations and the corresponding variations of the
associated y-values for Intermediate Claim 4.

The underlying y-values are associated to 11-bitstring of node i’s coding type-b.

See (A.11) for conversion. For shorthand, we define p , pi→j and q , pi→k.

y
(j)
1 y

(j)
2 y

(j)
3 y

(j)
4 y

(k)
1 y

(k)
2 y

(k)
3 y

(k)
4

x
(i)
011

→x
(i)
051

−x(i)
011

· q
x
(i)
102

→x
(i)
302

−x(i)
102

· p

x
(i)
137

→x
(i)
177

→x
(i)
377

→x
(i)
337

−x(i)
137

· p +x
(i)
177

· q
−x(i)

177
· p +x

(i)
377

· q

x
(i)
117

→x
(i)
157

→x
(i)
317

→x
(i)
357

−x(i)
117

· p −x(i)
117

· q
−x(i)

157
· p −x(i)

317
· q

x
(i)
107

→x
(i)
307

→x
(i)
1F7

→x
(i)
3F7

−x(i)
107

· p −x(i)
107

· q −x(i)
107

· q −x(i)
107

· q −x(i)
107

· q
−x(i)

1F7
· p −x(i)

307
· q −x(i)

307
· q −x(i)

307
· q −x(i)

307
· q

x
(i)
577

→x
(i)
737

→x
(i)
777

→x
(i)
537

+x
(i)
737

· p +x
(i)
577

· q
+x

(i)
777

· p +x
(i)
777

· q

x
(i)
517

→x
(i)
717

→x
(i)
757

→x
(i)
557

+x
(i)
717

· p −x(i)
517

· q
+x

(i)
757

· p −x(i)
717

· q

x
(i)
507

→x
(i)
707

→x
(i)
7F7

→x
(i)
5F7

+x
(i)
707

· p −x(i)
507

· q −x(i)
507

· q −x(i)
507

· q −x(i)
507

· q
+x

(i)
7F7

· p −x(i)
707

· q −x(i)
707

· q −x(i)
707

· q −x(i)
707

· q

x
(i)
037

→x
(i)
077

→x
(i)
F77

→x
(i)
F37

−x(i)
037

· p −x(i)
037

· p −x(i)
037

· p −x(i)
037

· p +x
(i)
077

· q
−x(i)

077
· p −x(i)

077
· p −x(i)

077
· p −x(i)

077
· p +x

(i)
F77

· q

x
(i)
017

→x
(i)
057

→x
(i)
F17

→x
(i)
F57

−x(i)
017

· p −x(i)
017

· p −x(i)
017

· p −x(i)
017

· p −x(i)
017

· q
−x(i)

057
· p −x(i)

057
· p −x(i)

057
· p −x(i)

057
· p −x(i)

F17
· q

We now argue that after completing all 10 operations, the linear conditions of

Proposition A.2.1 plus (A.43) to (A.46) are still satisfied. To that end, we first notice

that only those {x(i)
b
} with b ∈ {051, 302, 337, 357, 3F7, 537, 557, 5F7, F37, F57} will
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increase after the weight movements. Since those coding types do not participate in

any of the terms in (A.43) to (A.46), the conditions (A.43) to (A.46) still hold after

the weight movements.

We now observe that the time-sharing conditions (A.14) are still satisfied since we

only “move” the weights. We now argue that after completing all 10 operations, all y
(j)
1

to y
(j)
4 will decrease by the same amount (x

(i)
037

+x
(i)
077

+x
(i)
017

+x
(i)
057

) ·pi→j. The fact that

y
(j)
1 , y

(j)
2 and y

(j)
4 all decrease by the same amount (x

(i)
037

+x
(i)
077

+x
(i)
017

+x
(i)
057

) · pi→j can

be easily verified by summing up the “impact” of the 10 weight movement operations

over each column of Table A.1, for columns 1, 2, and 4, respectively. To prove that

y
(j)
3 also decreases by the same amount, we need to prove that

(

x
(i)
737

+ x
(i)
777

+ x
(i)
717

+ x
(i)
757

+ x
(i)
707

+ x
(i)
7F7

)

· pi→j

=
(

x
(i)
102

+ x
(i)
137

+ x
(i)
177

+ x
(i)
117

+ x
(i)
157

+ x
(i)
107

+ x
(i)
1F7

)

· pi→j.
(A.51)

We can prove that (A.51) holds by noticing that (A.51) is equivalent to the second

equality in (A.46) when removing the zero terms specified in (A.43) and (A.44).

We now argue that after completing all 10 operations, all y
(k)
1 to y

(k)
4 will decrease

by the same amount (x
(i)
107

+ x
(i)
307

+ x
(i)
507

+ x
(i)
707

) · pi→k. The fact that y
(k)
1 , y

(k)
3 and

y
(k)
4 all increase by the same amount (x

(i)
107

+ x
(i)
307

+ x
(i)
507

+ x
(i)
707

) · pi→k can be easily

verified by summing up the “impact” of the 10 weight movement operations over each

column, for columns 5, 7, and 8, respectively. To prove that y
(k)
2 also increases by the

same amount, we need to prove that

(

x
(i)
177

+ x
(i)
377

+ x
(i)
577

+ x
(i)
777

+ x
(i)
077

+ x
(i)
F77

)

· pi→k

=
(

x
(i)
011

+ x
(i)
117

+ x
(i)
317

+ x
(i)
517

+ x
(i)
717

+ x
(i)
017

+ x
(i)
F17

)

· pi→k.
(A.52)

We can prove that (A.52) holds by noticing that (A.52) is equivalent to the first

equality in (A.46) when removing the zero terms specified in (A.43) and (A.44).

One can also prove that y
(j,k)
1 to y

(j,k)
3 remain unchanged since the 10 weight

movement operations have no impact on these three y-values. Since y
(j)
1 to y

(j)
4 all
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decrease by the same amount; y
(k)
1 to y

(k)
4 all decrease by the same amount; and y

(j,k)
1

to y
(j,k)
3 all remain the same, then the decodability conditions (A.22) and (A.23) must

hold after the 10 weight movement operations. The proof of Intermediate Case 4 is

thus complete. �

Intermediate Claim 5: For any ~R vector and the 156 corresponding non-negative

{x(i)
b
}-values satisfying Proposition A.2.1 and (A.43) to (A.50), we can always find

another set of 156 non-negative values {ẍ(i)
b
} such that ~R and {ẍ(i)

b
} jointly satisfy

Proposition A.2.1 and (A.43) to (A.50), plus for all i ∈ {1, 2, 3},

ẍ
(i)
b

= 0, ∀b ∈ {001, 002} . (A.53)

Proof of Intermediate Claim 5: We now provide an explicit weight movement such

that after the weight-moving process, Proposition A.2.1 and (A.43) to (A.50) hold,

and additionally (A.53) holds for the case when i = 1, i.e., (i, j, k) = (1, 2, 3). Then

by applying the cyclically symmetric weight-moving process to the cases of (i, j, k) =

(2, 3, 1) and (i, j, k) = (3, 1, 2), we can construct the new values {ẍ(i)
b
} that satisfy

Proposition A.2.1, (A.43) to (A.50), and (A.53) for all i.

The weight movements for the case of (i, j, k) = (1, 2, 3) consist of two steps:

Firstly, we make x
(1)
001

= 0, and then secondly, we make x
(1)
002

= 0. For the first step,
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we assume x
(1)
001

> 0. Otherwise, we can skip to the second step directly. We now

perform the following six operations:

{x(1)
001
, x

(1)
357

}→{x(1)
051
, x

(1)
3F7

}, (OP3)

{x(1)
001
, x

(1)
557

}→{x(1)
051
, x

(1)
5F7

}, (OP4)

{x(1)
001
, x

(1)
F57

}→x
(1)
051
, (OP5)

x
(1)
001

∆/p1→3−−−−→ x
(1)
051

and x
(2)
537

∆/p2→3−−−−→ x
(2)
F37

where ∆ = min{x(1)
001

· p1→3, x
(2)
537

· p2→3},
(OP6)

x
(1)
001

∆/p1→3−−−−→ x
(1)
051

and x
(2)
557

∆/p2→3−−−−→ x
(2)
F57

where ∆ = min{x(1)
001

· p1→3, x
(2)
557

· p2→3}, (OP7)

x
(1)
001

∆/p1→3−−−−→ x
(1)
051

and x
(2)
5F7

∆/p2→3−−−−→ ∅

where ∆ = min{x(1)
001

· p1→3, x
(2)
5F7

· p2→3}. (OP8)

We now argue that after these operations, (i) Proposition A.2.1 and (A.43) to

(A.50) still hold; and (ii) the new value of x
(1)
001

is zero. To prove (i), we note that after

the above weight movements, the time-sharing condition (A.14) of Proposition A.2.1

still holds because except for the operations (OP5) and (OP8), we only “move” the

weight between different frequencies while keeping the overall sum. And both (OP5)

and (OP8) decrease the total sum. As a result, the time-sharing condition still holds.

Moreover, since none of the coding types involved in (OP3) to (OP8) participate in

any of the terms in (A.43) to (A.50), the conditions (A.43) to (A.50) still hold after

these operations.

In the following, we prove that the decodability conditions (A.22) and (A.23) of

Proposition A.2.1 still hold after performing any one of the above 6 weight-moving
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operations. For example, we claim that the decodability conditions still hold after

(OP3). For that, we first notice that

TYPE
(1)
001

in 11-bitstring = 0000 0000 001,

TYPE
(1)
357

in 11-bitstring = 0011 0101 111,

TYPE
(1)
051

in 11-bitstring = 0000 0101 001,

TYPE
(1)
3F7

in 11-bitstring = 0011 1111 111,

where each bit is associated to one y-value and the associated 11 y-values are y
(2)
1

to y
(2)
4 , y

(3)
1 to y

(3)
4 , and y

(2,3)
1 to y

(2,3)
3 in the order of 11-bitstring, see (A.11). For

shorthand, we denote the collection of these y-values corresponding to the first four

bits, the second four bits, and the last three bits as ~y
(2)
1−4, ~y

(3)
1−4, and ~y

(2,3)
1−3 , respectively.

Then by the same arguments as used in the proof of Intermediate Claim 2, one can

easily prove that the 7 different y-values: ~y
(2)
1−4 and ~y

(2,3)
1−3 , remain unchanged after

(OP3). If we apply the same arguments as used in the proof of Intermediate Claim 2,

we can also prove that all y-values in the collection ~y
(3)
1−4 (the second four) decrease

by the same amount of
(

min{x(1)
001
, x

(1)
357

} · p1→3

)

. Since other y-values were intact, the

decodability equalities (A.22) and (A.23) are still satisfied after (OP3).

For the weight movement (OP4), we can prove by similar arguments that af-

ter (OP4), all ~y
(2)
1−4 and ~y

(2,3)
1−3 remain the same and all ~y

(3)
1−4 decrease by the same

amount of
(

min{x(1)
001
, x

(1)
557

} · p1→3

)

. Similarly, after the weight movement (OP5),

all ~y
(2)
1−4 and ~y

(2,3)
1−3 remain the same and all ~y

(3)
1−4 decrease by the same amount of

(

min{x(1)
001
, x

(1)
F57

} · p1→3

)

. Since other y-values were intact, the decodability equalities

(A.22) and (A.23) still hold after these operations.

We now prove that after (OP6), the decodability conditions in Proposition A.2.1

still hold. Since (OP6) involves the frequencies of different node indices {x(1)
001
, x

(1)
051
,

x
(2)
537
, x

(2)
F37

}, we first provide the following table that summarizes the contributions of

these frequencies to the y-values:
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Table A.2: The contributions of x
(1)
001

, x
(2)
537

, x
(1)
051

, and x
(2)
F37

to the y-values.

~y
(1)
1−4 ~y

(2)
1−4 ~y

(3)
1−4 ~y

(1,2)
1−3 ~y

(2,3)
1−3 ~y

(3,1)
1−3

x
(1)
001

0000 0000 001

x
(2)
537

0011 0101 111

x
(1)
051

0000 0101 001

x
(2)
F37

0011 1111 111

For example, since 537 = 01010011111 in 11-bitstring and x
(2)
537

contributes to

{~y (3)
1−4, ~y

(1)
1−4, ~y

(3,1)
1−3 }, we can thus list the contribution of x

(2)
537

to all the y-values as in

the second row of Table A.2. The first, third, and fourth rows of Table A.2 can be

populated similarly. If we compare the first and the third rows of Table A.2, we

can see that the operation of x
(1)
001

∆/p1→3−−−−→ x
(1)
051

in (OP6) will decrease both y
(3)
2 and

y
(3)
4 by the same amount ∆ while all the other 19 y-values remain the same. If we

compare the second and the fourth rows of Table A.2, we can see that the operation

of x
(2)
537

∆/p2→3−−−−→ x
(2)
F37

will decrease both y
(3)
1 and y

(3)
3 by the same amount ∆ while all

the other 19 y-values remain the same. Since (OP6) performs both x
(1)
001

∆/p1→3−−−−→ x
(1)
051

and x
(2)
537

∆/p2→3−−−−→ x
(2)
F37

simultaneously, in the end we will have all four values of ~y
(3)
1−4

decrease by the same amount of ∆ while the rest 17 y-values remain the same. As

a result, the decodability equalities (A.22) and (A.23) of Proposition A.2.1 are still

satisfied after (OP6). Similar arguments can be used to prove that after (OP7) and

(OP8), the decodability equalities of Proposition A.2.1 still hold.

To prove (ii), we notice that after the above 6 weight movements (OP3) to (OP8),

the final {x(i)
b
}-values satisfy Proposition A.2.1. Then Lemma A.3.1 implies that

(A.27) to (A.36) must hold. Since (A.43), (A.44), and (A.50) are true, if we only
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count the coding types that may have non-zero value, then (A.35) can be written as

follows.

(

x
(i)
001

+ x
(i)
051

)

· pi→j∨k =
(

x
(i)
051

+ x
(i)
357

+ x
(i)
557

+ x
(i)
F57

)

· pi→k

+
(

x
(j)
537

+ x
(j)
557

+ x
(j)
5F7

)

· pj→k,
(A.54)

Eq. (A.54) further implies the following inequality:

x
(i)
001

· pi→j∨k ≤
(

x
(i)
357

+ x
(i)
557

+ x
(i)
F57

)

· pi→k

+
(

x
(j)
537

+ x
(j)
557

+ x
(j)
5F7

)

· pj→k,
(A.55)

because we always have x
(i)
051

· pi→j∨k ≥ x
(i)
051

· pi→k.

Then notice that after performing (OP3) to (OP8), we will have either x
(1)
001

= 0

or the total sum x
(1)
357

+ x
(1)
557

+ x
(1)
F57

+ x
(2)
537

+ x
(2)
557

+ x
(2)
5F7

= 0. Note that whenever the

latter sum is zero, by (A.55) when (i, j, k) = (1, 2, 3), we also have x
(1)
001

= 0. As a

result, we must have x
(1)
001

= 0 after the above 6 weight movements.

We now present the second step, which makes x
(1)
002

= 0. To that end, we perform

the following six operations:

{x(1)
002
, x

(1)
337

}→{x(1)
302
, x

(1)
F37

}, (OP9)

{x(1)
002
, x

(1)
357

}→{x(1)
302
, x

(1)
F57

}, (OP10)

{x(1)
002
, x

(1)
3F7

}→x
(1)
302
, (OP11)

x
(1)
002

∆/p1→2−−−−→ x
(1)
302

and x
(3)
337

∆/p3→2−−−−→ x
(3)
3F7

where ∆ = min{x(1)
002

· p1→2, x
(3)
337

· p3→2},
(OP12)

x
(1)
002

∆/p1→2−−−−→ x
(1)
302

and x
(3)
537

∆/p3→2−−−−→ x
(3)
5F7

where ∆ = min{x(1)
002

· p1→2, x
(3)
537

· p3→2},
(OP13)

x
(1)
002

∆/p1→2−−−−→ x
(1)
302

and x
(3)
F37

∆/p3→2−−−−→ ∅

where ∆ = min{x(1)
002

· p1→2, x
(3)
F37

· p3→2}.
(OP14)
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Again, we will prove that after these 6 weight movements, (i) Proposition A.2.1

and (A.43) to (A.50) hold; and (ii) the new value of x
(1)
002

is zero. The proof of (i) is

almost identical to that of the first step and we thus omit the detailed derivations. To

prove (ii), we notice that after these weight-moving operations, the final {x(i)
b
}-values

still satisfy Proposition A.2.1. Then Lemma A.3.1 implies that (A.27) to (A.36) must

hold. Since (A.43), (A.44), and (A.50) are true, if we only count the coding types

that may have non-zero value, then (A.36) can be written as follows.

(

x
(i)
002

+ x
(i)
302

)

· pi→j∨k =
(

x
(i)
302

+ x
(i)
337

+ x
(i)
357

+ x
(i)
3F7

)

· pi→j

+
(

x
(k)
337

+ x
(k)
537

+ x
(k)
F37

)

· pk→j,

which in turn implies when (i, j, k) = (1, 2, 3),

x
(1)
002

· p1→2∨3 ≤
(

x
(1)
337

+ x
(1)
357

+ x
(1)
3F7

)

· p1→2

+
(

x
(3)
337

+ x
(3)
537

+ x
(3)
F37

)

· p3→2.
(A.56)

We then observe that after the above 6 operations (OP9) to (OP14), we will have

either x
(1)
002

= 0 or x
(1)
337

+ x
(1)
357

+ x
(1)
3F7

+ x
(3)
337

+ x
(3)
537

+ x
(3)
F37

= 0. The by (A.56), we must

have x
(1)
002

= 0 after the above 6 weight-moving process.

Thus far, we have proven (A.53) for the case of i = 1 while satisfying the lin-

ear conditions of Proposition A.2.1 and (A.43) to (A.50). Note that in our weight

movements (OP3)–(OP8) and (OP9)–(OP14), we never increase x
(2)
001

, x
(2)
002

, x
(3)
001

, and

x
(3)
002

. Therefore, we can simply apply the above 2-step procedure to the cases of

(i, j, k) = (2, 3, 1) and (i, j, k) = (3, 1, 2), sequentially. In the end, the final {x(i)
b
}-

values satisfy Proposition A.2.1 and the conditions (A.43) to (A.53). The proof is

thus complete. �
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A.3.4 Proof of Lemma A.3.3

Given ~R and the reception probabilities, consider 156 non-negative values {ẍ(i)
b
}

such that jointly they satisfy Proposition A.2.1 and (A.38). Since by (A.38) all the

{ẍ(i)
b
}-values with b ∈ FTs\FTs are zeros, we only consider the 30 non-negative values

{ẍ(i)
b
} with b ∈ FTs for the ongoing discussions.

For the proof of Lemma A.3.3, we first prove the following claim.

Claim: The above 30 non-negative values {ẍ(i)
b
} for all b ∈ FTs jointly satisfy the

following equalities: for all (i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)},

Ri→j +Ri→k =
(

ẍ
(i)
051

+ ẍ
(i)
302

)

pi→j∨k, (A.57)

Ri→j

pi→jk

pi→j∨k

=
(

ẍ
(i)
337

+ ẍ
(i)
357

+ ẍ
(i)
3F7

)

· pi→j +
(

ẍ
(k)
337

+ ẍ
(k)
537

+ ẍ
(k)
F37

)

· pk→j, (A.58)

Ri→k

pi→jk

pi→j∨k

=
(

ẍ
(i)
357

+ ẍ
(i)
557

+ ẍ
(i)
F57

)

· pi→k +
(

ẍ
(j)
537

+ ẍ
(j)
557

+ ẍ
(j)
5F7

)

· pj→k. (A.59)

Proof of Claim. Since node indices are cyclically decided, we prove (A.57)–(A.59)

only for the case when (i, j, k) = (1, 2, 3). That is,

R1→2 +R1→3 =
(

ẍ
(1)
051

+ ẍ
(1)
302

)

· p1→2∨3, (A.60)

R1→2

p1→23

p1→2∨3

=
(

ẍ
(1)
337

+ ẍ
(1)
357

+ ẍ
(1)
3F7

)

· p1→2 +
(

ẍ
(3)
337

+ ẍ
(3)
537

+ ẍ
(3)
F37

)

· p3→2, (A.61)

R1→3

p1→23

p1→2∨3

=
(

ẍ
(1)
357

+ ẍ
(1)
557

+ ẍ
(1)
F57

)

· p1→3 +
(

ẍ
(2)
537

+ ẍ
(2)
557

+ ẍ
(2)
5F7

)

· p2→3. (A.62)

We now make the following observations. Since the above {ẍ(i)
b

: ∀ i ∈ {1, 2, 3}
and b ∈ FTs} satisfy Proposition A.2.1, Lemma A.3.1 implies that they satisfies

(A.27) as well. We then note that (A.60) is a direct result of the equality (A.27) of

Lemma A.3.1 when (i, j, k) = (2, 3, 1).
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We now use the equalities (A.28) and (A.29) when (i, j, k) = (2, 3, 1). Since type-

051 (resp. type-302) is the only coding type in FTs with b10 = 0 (resp. b11 = 0), we

thus have, respectively,

R1→3 = ẍ
(1)
051

· p1→2∨3, (A.63)

R1→2 = ẍ
(1)
302

· p1→2∨3. (A.64)

Then, (A.61) can be derived as follows. From the equality (A.35) when (i, j, k) =

(2, 3, 1), we have

ẍ
(1)
302

· p1→2∨3 =
(

ẍ
(3)
337

+ ẍ
(3)
537

+ ẍ
(3)
F37

)

· p3→2 +
(

ẍ
(1)
302

+ ẍ
(1)
337

+ ẍ
(1)
357

+ ẍ
(1)
3F7

)

· p1→2.

By simple probability manipulation, the above equality is equivalent to

ẍ
(1)
302

· p1→23 =
(

ẍ
(1)
337

+ ẍ
(1)
357

+ ẍ
(1)
3F7

)

· p1→2 +
(

ẍ
(3)
337

+ ẍ
(3)
537

+ ẍ
(3)
F37

)

· p3→2. (A.65)

Then (A.61) is derived by substituting ẍ
(1)
302

= R1→2/p1→2∨3 (see (A.64) again) on

the LHS of (A.65).

Similarly, one can derive (A.62) by using (A.63) and the equality (A.36) when

(i, j, k) = (2, 3, 1). The claim is thus proven.. �

Using the above claim, we will prove Lemma A.3.3 by explicitly constructing t
(i)
[u]

and t
(i)
[c, 1] to t

(i)
[c, 4] values as follows.

t
(i)
[u] = ẍ

(i)
051

+ ẍ
(i)
302
, (A.66)

t
(i)
[c, 1] = ẍ

(i)
357

+ ẍ
(i)
3F7
, (A.67)

t
(i)
[c, 2] = ẍ

(i)
537

+ ẍ
(i)
5F7
, (A.68)

t
(i)
[c, 3] = ẍ

(i)
337

+ ẍ
(i)
F37
, (A.69)

t
(i)
[c, 4] = ẍ

(i)
557

+ ẍ
(i)
F57
. (A.70)
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In the following, we prove that the above {ti}-values satisfy the linear conditions

of Proposition 3.2.2 (when < being replaced by ≤).

Since the {ẍ(i)
b
}-values satisfy the time-sharing condition (A.14) of Proposition A.2.1,

the {ti}-values in the above construction also satisfy the time-sharing condition (3.4).

By (A.57) and (A.66), we have

Ri→j +Ri→k = t
(i)
[u] · pi→j∨k,

which implies (3.6).

We now show that our construction also satisfies (3.7) and (3.8). By our construc-

tion (A.67)–(A.70), the followings are always true: for all i ∈ {1, 2, 3},

(

ẍ
(i)
337

+ ẍ
(i)
357

+ ẍ
(i)
3F7

)

≤
(

t
(i)
[c, 1] + t

(i)
[c, 3]

)

,
(

ẍ
(i)
337

+ ẍ
(i)
537

+ ẍ
(i)
F37

)

≤
(

t
(i)
[c, 2] + t

(i)
[c, 3]

)

,
(

ẍ
(i)
357

+ ẍ
(i)
557

+ ẍ
(i)
F57

)

≤
(

t
(i)
[c, 1] + t

(i)
[c, 4]

)

,
(

ẍ
(j)
537

+ ẍ
(j)
557

+ ẍ
(j)
5F7

)

≤
(

t
(i)
[c, 2] + t

(i)
[c, 4]

)

.

Since we have already shown that (A.58) and (A.59) are true, one can easily

verify by direct substitutions that (3.7) and (3.8) are satisfied as well. The proof of

Lemma A.3.3 is thus complete.
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B. DETAILED CONSTRUCTION FOR THE 3-NODE

ACHIEVABILITY SCHEME IN SCENARIO 2

We provide the first-order analysis for the achievability scheme in Proposition 3.2.1.

Suppose that all the network nodes share the same parameters before initiating,

see the discussion in Section 3.5. Also assume that a common random seed is available

to all nodes in advance.

We similarly follow the 2-stage scheme used in the proof of Proposition 3.2.2. The

difference is that we need to revise the scheme in Scenario 1 to take into account the

assumption of Scenario 2 that any feedback information needs to be sent over the

regular channels as well. Our scheme closely mimics the scheme in Section 3.5 but

now uses some form of random linear network coding (RLNC), which allows us to

circumvent the need of instant causal feedback (after each transmission) and can thus

use “batch feedback” that reports the reception status with delay. With a common

random seed available to all three nodes, the RLNC operations of one node can be

“simulated” in the other nodes as well. This allows the same kind of “bookkeeping”

as used in the proof of Proposition 3.2.2. Since bookkeeping may be computationally

expensive, in practice, network code designers can place the coding vectors used by

the RLNC in the header of the packets, which circumvents the need of bookkeeping.

However, putting the coding vectors in the header reduces the data rate. As a result,

to minimize the loss of capacity, we opt to use bookkeeping instead of the traditional

practice of putting the coding vectors in the header of the packet.

We now explain the main RLNC process for each stage. In each stage, we assume

that nodes will sequentially transmit following the order of the node indices {1, 2, 3}.
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We now define the following three constants for each node i ∈ {1, 2, 3} that can

facilitate our discussion:

η
(i)
1 ,

Ri→j

Ri→j +Ri→k +Ri→jk
, (B.1)

η
(i)
2 ,

Ri→k

Ri→j +Ri→k +Ri→jk
, (B.2)

η
(i)
3 ,

Ri→jk

Ri→j +Ri→k +Ri→jk
. (B.3)

Obviously, η
(i)
1 + η

(i)
2 + η

(i)
3 = 1 for any i ∈ {1, 2, 3}. Totally, there are 9 such

constants. Note that each of the network node can compute all 9 constants since ~R

is available to all nodes. Without loss of generality, we can also assume

t
(i)
[u]

(

η
(i)
1 + η

(i)
3

)

· pi→jk <
(

t
(i)
[c, 1] + t

(i)
[c, 3]

)

· pi→j +
(

t
(k)
[c, 2] + t

(k)
[c, 3]

)

· pk→j, (B.4)

t
(i)
[u]

(

η
(i)
2 + η

(i)
3

)

· pi→jk <
(

t
(i)
[c, 1] + t

(i)
[c, 4]

)

· pi→k +
(

t
(j)
[c, 2] + t

(j)
[c, 4]

)

· pj→k. (B.5)

The reason is that we can always set t
(i)
[u] to be arbitrarily close to

Ri→j+Ri→k+Ri→jk

pi→j∨k

but still larger than
Ri→j+Ri→k+Ri→jk

pi→j∨k
without violating any of the inequalities (3.4)

and (3.6). As a result, t
(i)
[u]η

(i)
1 can be made arbitrarily close to

Ri→j

pi→j∨k
and t

(i)
[u]η

(i)
3

arbitrarily close to
Ri→jk

pi→j∨k
. By (3.7), we thus have (B.4). Similarly, since t

(i)
[u]η

(i)
2 and

t
(i)
[u]η

(i)
3 can be made arbitrarily close to Ri→k

pi→j∨k
and

Ri→jk

pi→j∨k
, respectively, (3.8) implies

(B.5).

Description of Stage 1: Each node i performs the following RLNC operations

exactly for nt
(i)
[u] number of time slots. Specifically, consider the first η

(i)
1 portion

of the allotted nt
(i)
[u] times. In each of those nt

(i)
[u]η

(i)
1 time slots, node i chooses a

1 × (nRi→j) random encoding row vector ct ∈ F
nRi→j
q independently and uniformly

randomly and transmits Xi(t) by Xi(t) = ctW
⊤
i→j. We now consider the the second

η
(i)
2 portion of the nt

(i)
[u] time slots. In each of those nt

(i)
[u]η

(i)
2 time slots, node i chooses

a 1 × (nRi→k) random coding vector ct independently and uniformly randomly and

transmits Xi(t) = ctW
⊤
i→k. Finally, consider the last η

(i)
3 portion of the nt

(i)
[u] time
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slots. In each of those nt
(i)
[u]η

(i)
3 time slots, node i chooses a 1 × (nRi→jk) vector ct

independently and uniformly randomly and transmits Xi(t) = ctW
⊤
i→jk. Namely for

the allotted nt
(i)
[u] time slots, node i sequentially transmits some random mixture of the

packets Wi→j, Wi→k, and Wi→jk over the fixed fractions η
(i)
1 , η

(i)
2 , and η

(i)
3 of times,

respectively, and does not care whether the transmitted packet is correctly received

or not. Stage 1 can be finished in exactly n(
∑

i t
(i)
[u]) slots.

Note that when node i computes the coding vectors ct, the other nodes j and k

can also “simulate” the computation and thus know the ct vector used by node i. As

a result, if node j receives a coded packet Xi(t) = ctW
⊤
i→jk during the third fraction

of node i’s transmission, node j knows the ct vector used for encoding.

New Packet Regrouping After Stage 1: After Stage 1, we put some of those

{ctWi→j} packets that were sent during the first fraction of Stage 1, totally there

are nt
(i)
[u]η

(i)
1 such packets, into two disjoint groups. Specifically, we use {ctWi→j}jk

to denote those packets {ctWi→j} that are heard only by node k and not by node j;

and we use {ctWi→j}j to denote those packets that are heard by node j (may or may

not be heard by node k). In average, there are nt
(i)
[u]η

(i)
1 pi→jk number of {ctWi→j}jk

packets and nt
(i)
[u]η

(i)
1 pi→j number of {ctWi→j}j packets.

Symmetrically, we put some of those nt
(i)
[u]η

(i)
2 packets sent during the second frac-

tion of Stage 1 into two disjoint groups. That is, {ctWi→k}jk and {ctWi→k}k denote

those packets that are heard by node j only, and by node k (may or may not be

heard by node j), respectively. The size of each group, in average, is nt
(i)
[u]η

(i)
2 pi→jk

and nt
(i)
[u]η

(i)
2 pi→k, respectively.

Finally, among the nt
(i)
[u]η

(i)
3 number of the packets {ctWi→jk} sent in the third

fraction η
(i)
3 , we place them into 4 different groups but this time the groups are

not necessarily disjoint. Specifically, we use {ctWi→jk}jk and {ctWi→jk}j to denote,

respectively, the packets that are received by node k only (not by node j) and by node

j (regardless whether node k receives them). We use {ctWi→jk}jk and {ctWi→jk}k
to denote, respectively, those packets that are heard by node j only (not by node k)

and by node k (regardless whether node j receives them). The first two groups of
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packets are disjoint and the last two groups of packets are disjoint. But there may

be overlap between {ctWi→jk}j and {ctWi→jk}k. In average, the sizes of these four

groups are nt
(i)
[u]η

(i)
3 pi→jk, nt

(i)
[u]η

(i)
3 pi→j, nt

(i)
[u]η

(i)
3 pi→jk, and nt

(i)
[u]η

(i)
3 pi→k, respectively.

For ease of description, we further put some of the groups of the packets into super

groups. Specifically, for all (i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)},

W̃
(k)
i→j , {ctWi→j}jk ∪ {ctWi→jk}jk, (B.6)

W̃
(j)
i→k , {ctWi→k}jk ∪ {ctWi→jk}jk. (B.7)

In total, there are 6 such W̃-groups by definition and their sizes, in average, are

|W̃(k)
i→j| = nt

(i)
[u]

(

η
(i)
1 + η

(i)
3

)

pi→jk, (B.8)

|W̃(j)
i→k| = nt

(i)
[u]

(

η
(i)
2 + η

(i)
3

)

pi→jk. (B.9)

Description of The Feedback Stage: Thus far, the above re-grouping of the

packets can be made only when one has the full knowledge of the reception status.

However, right after Stage 1, no node has received any feedback yet and it is thus im-

possible to perform the packet regrouping as described previously. After Stage 1, we

thus perform the following feedback stage so that after the feedback stage, all nodes

can share a synchronized view about which packets are in which groups. Again,

we emphasize that the goal of the feedback stage is to convey the reception sta-

tus ACK/NACK. We never send any actual coded/uncoded messages (the payload)

during the feedback stage.

Specifically, during Stage 1, each node i has been on the listening side for a total

duration of n
(

t
(j)
[u] + t

(k)
[u]

)

number of time slots. As a result, each node i can record

whether it received a packet or not during those time slots and generate a single file

of n
(

t
(j)
[u] + t

(k)
[u]

)

bits. Then node i would like to deliver this file to both nodes j and

k. It can be achieved by the following two-step approach. Step 1: Node i converts
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the file into

⌈

n
(

t
(j)
[u]

+t
(k)
[u]

)

log2 q

⌉

number of packets. Then it uses an MDS code or a rate-less

code to broadcast those packets for totally

n
(

t
(j)
[u] + t

(k)
[u]

)

log2(q) · nzmin{pi→j, pi→k}
(B.10)

number of time slots. As a result, if min(pi→j, pi→k) > 0, then nzmin{pi→j, pi→k} =

min(pi→j, pi→k) and both nodes j and k can recover the file. The feedback transmis-

sion for node i is thus complete.

However, it is possible that pi→j = 0 (or pi→k = 0). In this case, nzmin{pi→j, pi→k} =

pi→k and only node k can recover the file of node i. In this case, we let node k help

relay the file to node j, which will take additionally

n
(

t
(j)
[u] + t

(k)
[u]

)

log2(q) · pk→j

(B.11)

number1 of time slots. The feedback stage of node i finishes after node k helps relay

the file of node i. Note that the number of time slots used for node i during the

feedback stage can be upper bounded by

n

log2(q)·nzmin{pi→j, pi→k}
+

n

log2(q)·nzmin{pj→k, pj→i}
+

n

log2(q)·nzmin{pk→i, pk→j}
,

where the first term n
log2(q)·nzmin{pi→j ,pi→k}

upper bounds (B.10) since t
(j)
[u] + t

(k)
[u] ≤ 1;

and the summation n
log2(q)·nzmin{pj→k,pj→i}

+ n
log2(q)·nzmin{pk→i,pk→j}

upper bounds (B.11)

regardless whether pi→j = 0 or pi→k = 0.

Since the feedback stage has to be executed for all three nodes, the total number

of time slots of the feedback stage is upper bounded by ntFB, as defined in (3.5).

After the feedback stage, every node will know the reception status of all other

nodes during Stage 1. All three nodes can thus share a synchronized view of the

1If pi→j = 0, then by our fully-connectedness assumption, pk→j > 0.
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packet reception status and the packet regrouping, as discussed in (B.6) and (B.7).

In particular, each node i exactly knows

• The contents and size of the RLNC packet groups (W̃
(k)
i→j,W̃

(j)
i→k). The content

of the packets in each group is known since those are the messages originated

from node i.

• The contents and size of the RLNC packet groups (W̃
(i)
j→k,W̃

(i)
k→j). The content

of the packets in each group is known since those are the packets overheard by

node i.

• The sizes of |W̃(k)
j→i| and |W̃(j)

k→i|, which are obtained by the feedback it has

received from nodes j and k.

• The content of all packets in ({ctWj→i}i, {ctWj→ki}i, {ctWk→i}i, {ctWk→ij}i)
are known by node i since it has received those packets during Stage 1. Note that

these are the packets that have already been delivered to their target destination,

which is node i. In comparison, the (W̃
(i)
j→k,W̃

(i)
k→j) in the second bullet are those

packets destined for either node j or k but is overheard by i.

• The random coding vectors {ct} for all RLNC packets sent during Stage 1. This

is due to that all three nodes compute the coding vectors based on a common

random seed.

Description of Stage 2: We describe the LNC operations of node i only and

the operations for other nodes follow symmetrically. Similar to Stage 2 of Propo-

sition 3.2.2, each node i will perform 4 different types of LNC operations and each

operation will last for nt
(i)
[c, 1] to nt

(i)
[c, 4], respectively. For each time slot of the first

coding operations (out of totally nt
(i)
[c, 1] time slots), we let node i choose two coding

vectors ct;j and ct;k independently and uniformly randomly, where ct;j is a 1×|W̃(k)
i→j|

random row vector and ct;k is a 1 × |W̃(j)
i→k| random row vector. Then we let node i

send a linear combination

[c, 1] : Xi(t) = W̃
(k)
i→jc

⊤
t;j + W̃

(j)
i→kc

⊤
t;k. (B.12)



153

For the next time slot, another pair of ct;j and ct;k coding vectors are randomly

chosen and used to encode Xi(t) according to (B.12). Repeat the above operations

until the time-budget nt
(i)
[c, 1] is used up. Then we move on and encode the next coding

type [c, l], l = 2, 3, 4

[c, 2] : Xi(t) = W̃
(i)
k→jc

⊤
t;j + W̃

(i)
j→kc

⊤
t;k, (B.13)

[c, 3] : Xi(t) = W̃
(k)
i→jc

⊤
t;j + W̃

(i)
j→kc

⊤
t;k, (B.14)

[c, 4] : Xi(t) = W̃
(i)
k→jc

⊤
t;j + W̃

(j)
i→kc

⊤
t;k. (B.15)

Each coding type [c, l] will last for nt
(i)
[c, l] time slots and the coding vectors ct;j

and ct;k are chosen independently and uniformly randomly with the properly selected

dimension. For example of the coding choice [c, 3], the randomly chosen ct;j is a

1× |W̃(k)
i→j| row vector and the randomly chosen ct;k is a 1× |W̃(i)

j→k| row vector.

Stage 2 is completed after all three nodes have finished sending their corresponding

4 coding types. The description of the proposed scheme is complete. (There is no

need to have the second feedback stage.)

Analysis of the scheme: The total amount of time to finish the transmission is

upper bounded by

n

(

(

∑

∀ i∈{1,2,3}

t
(i)
[u]

)

+ tFB +
(

∑

∀ i∈{1,2,3}

t
(i)
[c, 1] + t

(i)
[c, 2] + t

(i)
[c, 3] + t

(i)
[c, 4]

)

)

.

By (3.4), we can thus finish all the transmissions within the total time budget of

n time slots.

We now argue that after finishing transmission, all nodes can decode their desired

packets. To that end, we focus only on node 1. The discussions of nodes 2 and 3 can

be made by symmetry.

During Stage 2, consider the transmission of node 3. Node 3 has 4 possible coding

choices. In each coding choices, it randomly mixes from two groups of packets. For

example, in coding choice [c, 1], node 3 mixes W̃
(2)
3→1

and W̃
(1)
3→2

, see (B.12) when
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(i, j, k) = (3, 1, 2). Since the content of any packets in W̃
(1)
3→2

is known to node 1, see

the discussion in the end of the feedback stage, node 1, upon the reception of any

[c, 1] packet transmitted by node 3, can subtract the term W̃
(1)
3→2

c⊤t;2 from the received

packet. Therefore, it is as if node 1 has received a packet of the form

W̃
(2)
3→1

c⊤t;1 (B.16)

without the corruption term W̃
(1)
3→2

c⊤t;2. Similarly, when node 3 performs coding choice

[c, 3], again, node 1 will receive coded packets of the form (B.16) after subtracting

those W̃
(3)
1→2

c⊤t;2 packets of its own, see (B.14) when (i, j, k) = (3, 1, 2). Also, during

node 2 performing coding choices [c, 2] and [c, 3], node 1 can again receive coded

packets of the form (B.16) after subtracting those known packets (either of the form

W̃
(2)
1→3

c⊤t;3 or of the form W̃
(1)
2→3

c⊤t;3), see (B.13) and (B.14) when (i, j, k) = (2, 3, 1).

Since W̃
(2)
3→1

participates in coding choices [c, 1] and [c, 3] of node 3 and cod-

ing choices [c, 2] and [c, 3] of node 2, node 1 will receive n
(

t
(3)
[c, 1] + t

(3)
[c, 3]

)

· p3→1 +

n
(

t
(2)
[c, 2] + t

(2)
[c, 3]

)

· p2→1 number of packets of the form (B.16). Note that the number

of W̃
(2)
3→1

packets, in average, has been computed in (B.8). By (B.4), the number of

linear combinations (B.16) received by node 1 is larger than the number of W̃
(2)
3→1

packets to be begin with. As a result, node 1 is guaranteed to decode W̃
(2)
3→1

correctly

with close-to-one probability when the finite-field size q is sufficiently large enough.

Recall that by definition (B.6), W̃
(2)
3→1

= {ctW3→1}12∪{ctW3→12}12. We now ob-

serve that node 1 has also received all the RLNC packets of ({ctW3→1}1, {ctW3→12}1)
during Stage 1. As a result, in the end of Stage 2, node 1 has correctly received

nt
(3)
[u] η

(3)
1 p3→1∨2 number of packets of the form {ctW3→1} and nt

(3)
[u] η

(3)
3 p3→1∨2 number

of packets of the form {ctW3→12}. Note that we only have nR3→1 of W3→1 pack-

ets and nR3→12 of W3→12 packets to begin with. Since by definition t
(3)
[u] is strictly

larger than R3→1+R3→2+R3→12

p3→1∨2
, and also by definitions (B.1) and (B.3), the number of

linear combinations received by node 1 is larger than the number of uncoded message

symbols W3→1 and W3→12. As a result, node 1 is guaranteed to decode W3→1 and
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W3→12 correctly with close-to-one probability when the finite field size q is sufficiently

large enough.

By symmetric arguments, with close-to-one probability node 1 can also decode

W̃
(3)
2→1

in the end of Stage 2 and later combines W̃
(3)
2→1

with the packets ({ctW2→1}1,
{ctW2→31}1) it has received in Stage 1 to decode message symbols W2→1 and W2→31.

Symmetric arguments can be used to shown that nodes 2 and 3 can also decode their

desired messages. The proof of Proposition 3.2.1 is thus complete.

Remark: The arguments of letting the finite field size approach infinity is to ensure

that the simple RLNC construction leads to legitimate MDS codes. When the finite

field size is fixed to, say q = 2, we can use the fact that for any fixed Fq we can always

construct an (n, k) code that is nearly MDS in the sense that as long as we receive

k +O(
√
k) number of encoded packets we can reconstruct the original file. Since we

focus only on the normalized throughput, such a near-MDS code is sufficient for our

achievability construction.



156

C. THE MATCH PROOF OF PROPOSITION 3.2.3.

Without loss of generality, we assume that pi→j > 0 and pi→k > 0 for all (i, j, k) ∈
{(1, 2, 3), (2, 3, 1), (3, 1, 2)} since the case that any one of them is zero can be viewed as

a limiting scenario and the polytope of the capacity outer bound in Proposition 3.1.1

is continuous with respect to the channel success probability parameters.

We first introduce the following Lemma.

Lemma C.0.4. Given any ~R and the associated 3 non-negative values {s(i)} that

satisfy Proposition 3.1.1, we can always find 15 non-negative values t
(i)
[u] and {t(i)[c, l]}4l=1

for all i ∈ {1, 2, 3} such that jointly they satisfy the groups of linear conditions in

Proposition 3.2.2 (when replacing all strict inequality < by ≤).

One can clearly see that Lemma C.0.4 imply that the capacity outer bound in

Proposition 3.1.1 matches the closure of the inner bound in Proposition 3.2.2. The

proof of Proposition 3.2.3 is thus complete.

The proof of Lemma C.0.4: Given ~R and the reception probabilities, consider 3

non-negative values {s(i)} that jointly satisfy the linear conditions of Proposition 3.1.1.

We first choose t
(i)
[u] ,

Ri→j+Ri→k+Ri→jk

pi→j∨k
which is non-negative by definition. Then

define s̃(i) , s(i) − t
(i)
[u] for all i ∈ {1, 2, 3}. By (3.2) in Proposition 3.1.1, the newly

constructed values {s̃(i)} must be non-negative. Then, we can rewrite (3.3) in Propo-

sition 3.1.1 as follows: For all (i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}, we have

(

Rj→i +Rj→ki

) pj→ki

pj→k∨i
+
(

Rk→i +Rk→ij

) pk→ij

pk→i∨j
≤ s̃(j) · pj→i + s̃(k) · pk→i.
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For each tuple (i, j, k), define a constant αijk as follows:

αijk =

(

Rj→i +Rj→ki

)

pj→ki

pj→k∨i
(

Rj→i +Rj→ki

)

pj→ki

pj→k∨i
+
(

Rk→i +Rk→ij

)

pk→ij

pk→i∨j

.

For each tuple (i, j, k), we will use αijk, s̃
(j) and s̃(k) to define/compute 4 more

variables.

s̃
(j)
ijk,+ = αijk · s̃(j),

s̃
(k)
ijk,+ = αijk · s̃(k),

s̃
(j)
ijk,− = (1− αijk) · s̃(j),

s̃
(k)
ijk,− = (1− αijk) · s̃(k).

By the above construction, we quickly have

s̃
(j)
ijk,+ + s̃

(j)
ijk,− = s̃(j), (C.1)

s̃
(k)
ijk,+ + s̃

(k)
ijk,− = s̃(k), (C.2)

and

(

Rj→i +Rj→ki

) pj→ki

pj→k∨i
≤ s̃

(j)
ijk,+ · pj→i + s̃

(k)
ijk,+ · pk→i, (C.3)

(

Rk→i +Rk→ij

) pk→ij

pk→i∨j
≤ s̃

(j)
ijk,− · pj→i + s̃

(k)
ijk,− · pk→i, (C.4)

for every cyclically shifted (i, j, k) tuple. Totally, we have 3 variables of the form

s̃(i) and 12 variables of the forms s̃
(j)
ijk,+, s̃

(j)
ijk,−, s̃

(k)
ijk,+, and s̃

(k)
ijk,−. Since each s̃(i) may

participate in more than one “splitting operations (C.1) and (C.2)”, we thus have

that for all (i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)},

s̃
(i)
jki,+ + s̃

(i)
jki,− = s̃

(i)
kij,+ + s̃

(i)
kij,− = s̃(i). (C.5)
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The following claim allows us to convert the s̃
(i)
jki,+, s̃

(i)
jki,−, s̃

(i)
kij,+, and s̃

(i)
kij,− values

to the targeted t
(i)
[c, 1] to t

(i)
[c, 4] values.

Claim C.0.1. For any cyclically shifted (i, j, k) tuple, given the above four values

of {s̃(i)jki,+, s̃
(i)
jki,−, s̃

(i)
kij,+, s̃

(i)
kij,−} and the value of s̃(i), we can always find another four

non-negative values t
(i)
[c, 1], t

(i)
[c, 2], t

(i)
[c, 3], and t

(i)
[c, 4] such that

t
(i)
[c, 2] + t

(i)
[c, 4] = s̃

(i)
jki,+, (C.6)

t
(i)
[c, 1] + t

(i)
[c, 3] = s̃

(i)
jki,−, (C.7)

t
(i)
[c, 1] + t

(i)
[c, 4] = s̃

(i)
kij,+, (C.8)

t
(i)
[c, 2] + t

(i)
[c, 3] = s̃

(i)
kij,−, (C.9)

and t
(i)
[c, 1] + t

(i)
[c, 2] + t

(i)
[c, 3] + t

(i)
[c, 4] = s̃(i). (C.10)

Proof of Claim C.0.1: Since the given values {s̃(i)jki,+, s̃
(i)
jki,−, s̃

(i)
kij,+, s̃

(i)
kij,−} satisfy

(C.5), consider the following two cases depending on the order of the two values s̃
(i)
jki,−

and s̃
(i)
kij,+.

Case 1: s̃
(i)
jki,− ≥ s̃

(i)
kij,+. We then construct four values t

(i)
[c, 1], t

(i)
[c, 2], t

(i)
[c, 3], and t

(i)
[c, 4]

in the following way:

t
(i)
[c, 1] = s̃

(i)
kij,+,

t
(i)
[c, 2] = s̃

(i)
jki,+,

t
(i)
[c, 3] = s̃

(i)
kij,− − s̃

(i)
jki,+,

t
(i)
[c, 4] = 0.

The above construction clearly gives non-negative t
(i)
[c, 1] to t

(i)
[c, 4] values. One can

easily verify that the above construction satisfies all the equalities (C.6) to (C.10).

For example, by our construction t
(i)
[c, 2] + t

(i)
[c, 3] = s̃

(i)
jki,+ + s̃

(i)
kij,− − s̃

(i)
jki,+ = s̃

(i)
kij,−, which

satisfies (C.9).
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Case 2: s̃
(i)
jki,− < s̃

(i)
kij,+. We then construct four non-negative values t

(i)
[c, 1], t

(i)
[c, 2],

t
(i)
[c, 3], and t

(i)
[c, 4] in the following way:

t
(i)
[c, 1] = s̃

(i)
jki,−,

t
(i)
[c, 2] = s̃

(i)
kij,−,

t
(i)
[c, 3] = 0,

t
(i)
[c, 4] = s̃

(i)
jki,+ − s̃

(i)
kij,−.

Again, the above construction leads to non-negative t
(i)
[c, 1] to t

(i)
[c, 4] values that satisfy

(C.6) to (C.10). Since the above two cases cover all possible scenarios, the claim is

thus proven. �

Using the above claim, we now prove that the constructed values {t(i)[c, 1], t
(i)
[c, 2], t

(i)
[c, 3],

t
(i)
[c, 4]} for all i ∈ {1, 2, 3} together with the previously chosen t

(i)
[u] ,

Ri→j+Ri→k+Ri→jk

pi→j∨k

satisfy the linear conditions of Proposition 3.2.2 (when < being replaced by ≤).

To that end, we first notice that

t
(i)
[u] + t

(i)
[c, 1] + t

(i)
[c, 2] + t

(i)
[c, 3] + t

(i)
[c, 4] =

Ri→j +Ri→k +Ri→jk

pi→j∨k
+ s̃(i)

= s(i),

where the first equality follows from the definition of t
(i)
[u] and (C.10); and the second

equality follows from the definition of s̃(i). Since the given values s(i) for all i ∈
{1, 2, 3} satisfy the time-sharing condition (3.1) of Proposition 3.1.1, the time-sharing

condition (3.4) of Proposition 3.2.2 must hold as well.

Moreover, the second condition (3.6) of Proposition 3.2.2 obviously holds by the

definition of t
(i)
[u]. In the following, we prove (3.7) and (3.8) for the case when (i, j, k) =
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(1, 2, 3) and other cases can be proven symmetrically. In other words, we will prove

the following equalities:

(

R1→2 +R1→23

) p1→23

p1→2∨3
≤
(

t
(1)
[c, 1] + t

(1)
[c, 3]

)

· p1→2 +
(

t
(3)
[c, 2] + t

(3)
[c, 3]

)

· p3→2, (C.11)

(

R1→3 +R1→23

) p1→23

p1→2∨3

≤
(

t
(1)
[c, 1] + t

(1)
[c, 4]

)

· p1→3 +
(

t
(2)
[c, 2] + t

(2)
[c, 4]

)

· p2→3. (C.12)

By (C.7) and (C.9), we have

(

t
(1)
[c, 1] + t

(1)
[c, 3]

)

· p1→2 +
(

t
(3)
[c, 2] + t

(3)
[c, 3]

)

· p3→2

= s̃
(1)
231,− · p1→2 + s̃

(3)
231,− · p3→2.

As a result, by (C.4) with the (i, j, k) substituted by (2, 3, 1), we have proven

(C.11). Similarly, by (C.8) and (C.6), we have

(

t
(1)
[c, 1] + t

(1)
[c, 4]

)

· p1→3 +
(

t
(2)
[c, 2] + t

(2)
[c, 4]

)

· p2→3

= s̃
(1)
312,+ · p1→3 + s̃

(2)
312,+ · p2→3.

As a result, by (C.3) with (i, j, k) substituted by (3, 1, 2), we have proven (C.12).

In sum, from the given values {s(i)} for all i ∈ {1, 2, 3} satisfying the linear condi-

tions of Proposition 3.1.1, we have constructed 15 non-negative values {t(i)[u], t
(i)
[c, 1], t

(i)
[c, 2],

t
(i)
[c, 3], t

(i)
[c, 4]} for all i ∈ {1, 2, 3} such that they jointly satisfy the linear inequalities of

Proposition 3.2.2. The proof of Lemma C.0.4 is thus complete. �
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D. DETAILED PROOFS OF THE SHANNON OUTER

BOUND

We provide the proofs of (3.2A) and (3.2B) for the broadcasting cut-set condition

(3.2) in Proposition 3.1.1.

Firstly, (3.2A) can be derived as follows:

I(Wi∗ ; [Y∗j ,Y∗k]
n
1 |W{j,k}∗, [Z]

n
1 )

= I(Wi∗ ; W{j,k}∗, [Y∗j ,Y∗k,Z]
n
1 ) (D.1)

≥ n(Ri→j +Ri→k +Ri→jk)(1− 2ǫ)− H2(2ǫ)

log2 q
, (D.2)

where (D.1) follows from the definition of mutual information and the fact that Wi∗,

W{j,k}∗, and [Z]n1 are independent of each other. To derive (D.2), we observe that the

messages Wi∗ can be decoded from [Y∗j,Y∗k,Z]
n
1 and W{j,k}∗ , Wj∗ ∪Wk∗, see (2.8)

for nodes j and k, with error probability being at most 2ǫ by the union bound. As a

result, by Fano’s inequality, we have (D.2).
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Secondly, (3.2B) can be derived as follows:

I(Wi∗ ; [Y∗j ,Y∗k]
n
1 |W{j,k}∗, [Z]

n
1 )

≤ H([Y∗j ,Y∗k]
n
1 |W{j,k}∗, [Z]

n
1 ) (D.3)

=
n
∑

t=1

H(Y∗j(t),Y∗k(t) | [Y∗j,Y∗k]
t−1
1 ,W{j,k}∗, [Z]

t
1) (D.4)

=
n
∑

t=1

H(Y∗j(t),Y∗k(t) | [Y∗j,Y∗k]
t−1
1 ,W{j,k}∗, [Z]

t
1, Xj(t), Xk(t)) (D.5)

=

n
∑

t=1

H(Yi→j(t), Yi→k(t) | [Y∗j,Y∗k]
t−1
1 ,W{j,k}∗, [Z]

t
1, Xj(t), Xk(t)) (D.6)

≤
n
∑

t=1

E

{

1{σ(t)=i} ◦ 1{Zi→j(t)=1 or Zi→k(t)=1}

}

(D.7)

=

n
∑

t=1

E

{

1{σ(t)=i}

}

E

{

1{Zi→j(t)=1 or Zi→k(t)=1}

}

(D.8)

= pi→j∨kE

{

n
∑

t=1

1{σ(t)=i}

}

= ns(i)pi→j∨k, (D.9)

where (D.3) follows from the definition of mutual information; (D.4) follows from the

chain rule and from the fact that the future channel outputs [Z]nt+1 are independent

of Y∗j(t),Y∗k(t); (D.5) follows from the fact that the transmitted symbol Xj(t) (resp.

Xk(t)) is a function of the past received symbols [Y∗j ]
t−1
1 (resp. [Y∗k]

t−1
1 ), the informa-

tion messages Wj∗ (resp. Wk∗), and the past channel outputs [Z]t−1
1 , see (2.7); (D.6)

follows from the fact that the received symbol Yk→j(t) in Y∗j(t) (resp. Yj→k(t) in

Y∗k(t)) can be uniquely computed from the values of the current input Xk(t) (resp.

Xj(t)), the current channel output Z(t), and the current scheduling decision σ(t),

which depends only on the past channel outputs [Z]t−1
1 , see (2.9); (D.7) follows from

that only when σ(t) = i with Zi→j(t) = 1 or Zi→k(t) = 1, we will have a non-zero

value of the entropy and it is upper bounded by 1 since the base of the logarithm is

q; (D.8) follows from the fact that since the scheduling decision σ(t) depends only

on the past channel outputs [Z]t−1
1 , see (2.9), the random variables σ(t) and Z(t) are

independent; and (D.9) follows from the definition (3.9).
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We provide the proofs of (3.3A) and (3.3B) for the 3-way multiple-access cut-set

condition (3.3) in Proposition 3.1.1.

The inequality (3.3B) can be derived in a similar way as (3.2B). Specifically, we

have

I(W{j,k}∗ ; [Y∗i]
n
1 |Wi∗, [Z]

n
1 ) ≤ H([Y∗i]

n
1 |Wi∗, [Z]

n
1 ) (D.10)

=

n
∑

t=1

H(Yj→i(t), Yk→i(t) | [Y∗i]
t−1
1 ,Wi∗, [Z]

t
1), (D.11)

≤ n(s(j)pj→i + s(k)pk→i), (D.12)

where (D.10) follows from the definition of mutual information; (D.11) follows from

the chain rule and the fact that the future channel outputs [Z]nt+1 are independent of

Yj→i(t), Yk→i(t); and (D.12) follows from similar arguments as used in (D.7) to (D.9).

We now prove (3.3A). For the ease of exposition, we only prove for the case when

the node indices are fixed to (i, j, k) = (1, 2, 3). Then (3.3A) becomes

I(W{2,3}∗ ; [Y∗1]
n
1 |W1∗, [Z]

n
1 )

≥ n

(

R2→1 +R3→1 +R2→31 +R3→12 +
p2→1

p2→3∨1
R2→3 +

p3→1

p3→1∨2
R3→2 − 6ǫ− 3H2(ǫ)

n log2 q

)

.

The cases of other node indices (i, j, k) ∈ {(2, 3, 1), (3, 1, 2)} can be proven by

symmetry.

Consider the following lemmas and claims, of which their proofs are relegated to

Appendix F.

Lemma D.0.5. Consider Scenario 1 and any fixed t ∈ {1, · · · , n}. Then, knowing

all the messages W{1,2,3}∗ and the past channel outputs [Z]t−1
1 can uniquely decide

[X1, X2, X3]
t
1 and [Y1∗,Y2∗,Y3∗]

t−1
1 . Namely, [X1, X2, X3]

t
1 and [Y1∗,Y2∗,Y3∗]

t−1
1 are

functions of the random variables {W{1,2,3}∗, [Z]
t−1
1 } for any time t ∈ {1, · · · , n}.

Lemma D.0.6. Consider Scenario 1 and any fixed time slot t ∈ {1, · · · , n}. Then,

knowing the messages W{1,3}∗, the received symbols [Y2∗]
t−1
1 , and the past channel
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outputs [Z]t−1
1 can uniquely decide [X1, X3]

t
1. Namely, [X1, X3]

t
1 is a function of the

random variables {W{1,3}∗, [Y2∗]
t−1
1 , [Z]t−1

1 } for any time t ∈ {1, · · · , n}.

Claim D.0.2. The following is true:

I(W{2,3}∗ ; [Y∗1]
n
1 |W1∗, [Z]

n
1 )

=

n
∑

t=1

I(W{2,3}∗ ; Y∗1(t) | [Y∗1,Z]
t−1
1 ,W1∗,Z(t)).

(D.13)

Claim D.0.3. Define

W2→3 , W{1,3}∗ ∪W2→1 ∪W2→31, (D.14)

That is, W2→3 is the collection of all the 9-flow information messages except W2→3.

This is why we use the overline in the subscript. Symmetrically, define

W3→2 , W{1,2}∗ ∪W3→1 ∪W3→12. (D.15)

Then, the following is true: ∀ t∈{1, · · · , n},

I(W{2,3}∗ ; Y∗1(t) | [Y∗1,Z]
t−1
1 ,W1∗,Z(t))

≥ I(W∗1 ; Y∗1(t) | [Y∗1,Z]
t−1
1 ,W1∗,Z(t))

+
p2→1

p2→3∨1
I(W2→3 ; Y2∗(t) | [Y2∗,Z]

t−1
1 ,W2→3,Z(t))

+
p3→1

p3→1∨2
I(W3→2 ; Y3∗(t) | [Y3∗,Z]

t−1
1 ,W3→2,Z(t)).

(D.16)
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Claim D.0.4. The followings are true:

n
∑

t=1

I(W∗1 ; Y∗1(t) | [Y∗1,Z]
t−1
1 ,W1∗,Z(t)) = I(W∗1 ; W1∗, [Y∗1,Z]

n
1 ), (D.17)

n
∑

t=1

I(W2→3 ; Y2∗(t) | [Y2∗,Z]
t−1
1 ,W

2→3
,Z(t)) ≥ I(W2→3 ; W3∗, [Y∗3,Z]

n
1 ), (D.18)

n
∑

t=1

I(W3→2 ; Y3∗(t) | [Y3∗,Z]
t−1
1 ,W3→2,Z(t)) ≥ I(W3→2 ; W2∗, [Y∗2,Z]

n
1 ). (D.19)

By the above Claims D.0.2 to D.0.4 we have

I(W{2,3}∗ ; [Y∗1]
n
1 |W1∗, [Z]

n
1 )

≥ I(W∗1 ; W1∗, [Y∗1,Z]
n
1 )

+
p2→1

p2→3∨1
I(W2→3 ; W3∗, [Y∗3,Z]

n
1 ) +

p3→1

p3→1∨2
I(W3→2 ; W2∗, [Y∗2,Z]

n
1 ), (D.20)

≥ n(R2→1 +R3→1 +R2→31 +R3→12)(1− ǫ)− H2(ǫ)

log2 q

+
p2→1

p2→3∨1

(

nR2→3(1− ǫ)− H2(ǫ)

log2 q

)

+
p3→1

p3→1∨2

(

nR3→2(1− ǫ)− H2(ǫ)

log2 q

)

(D.21)

where (D.20) follows from jointly combining (D.13) to (D.19); and (D.21) follows from

applying Fano’s inequality to each individual term. Since we can choose ǫ arbitrarily,

by letting ǫ→ 0, we have proven (3.3A).
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E. DETAILED DESCRIPTION OF ACHIEVABILITY

SCHEMES IN FIG. 3.2.

In the following, we describe the 9-dimensional rate regions of each suboptimal achiev-

ability scheme used for the numerical evaluation in Section 3.6.5.

• LNC with pure operations 1, 2: The rate regions can be described by Propo-

sition 3.2.2 with the variables t
(i)
[c, 3] and t

(i)
[c, 4] hardwired to 0 for all i ∈ {1, 2, 3}.

• TWRC at node 1 and RX coord.: This scheme performs two-way relay channel

(TWRC) coding only at node 1 for those 3 → 2 and 2 → 3 flows while allowing node

2 to relay the node 1’s packets destined for node 3 (i.e., W1→3 and W1→23) and vice

versa. The corresponding rate regions can be described as follows:

∑

∀ i∈{1,2,3}

t
(i)
[u] + t

(i)
[c] ≤ 1, (E.1)

R1→2 +R1→3 +R1→23

p1→2∨3
< t

(1)
[u] , (E.2)

R2→1

p2→1

+
R2→3

p2→3∨1

+
R2→31

p2→1

+
R2→31

p2→3

< t
(2)
[u] , (E.3)

R3→1

p3→1

+
R3→2

p3→1∨2
+
R3→12

p3→1

+
R3→12

p3→2

< t
(3)
[u] , (E.4)

R2→3

p2→31

p2→3∨1
< t

(1)
[c] · p1→3, (E.5)

R3→2

p3→12

p3→1∨2

< t
(1)
[c] · p1→2, (E.6)

(

R1→3 +R1→23

) p1→23

p1→2∨3
< t

(2)
[c] · p2→3, (E.7)

(

R1→2 +R1→23

) p1→23

p1→2∨3
< t

(3)
[c] · p3→2. (E.8)

Namely, each node i has two variables t
(i)
[u] and t

(i)
[c] for the respective stages, see

(E.1). During Stage 1, node 1 repeatedly transmits its packets uncodedly until at

least one of nodes 2 and 3 receives it. This stage can be finished within nt
(1)
[u] time
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slots, see (E.2). For node 2, we send all W2→1 and all W2→31 messages directly

to node 1 and send all W2→31 directly to node 3; but we send all W2→3 messages

uncodedly until at least one of the nodes 1 and 3 receives it. Such an uncoded stage

can be finished in nt
(2)
[u] time slots, see (E.3). Node 3’s uncoded stage is symmetric to

that of node 2.

Eq. (E.5) to (E.6) allow node 1 to perform Two-Way-Relay coding over the 3 → 2

and 2 → 3 packets overheard at node 1. (E.7) allows node 2 to relay those packets it

has overheard from node 1 to the desired destination node 3. (E.8) is symmetric to

(E.7).

• [47] & Time-sharing: The rate regions can be described by Proposition 3.2.2 with

the variables t
(i)
[c, 2], t

(i)
[c, 3], and t

(i)
[c, 4] = 0 hardwired to 0 for all i ∈ {1, 2, 3}. Namely, we

only allow, as in [47], the broadcast channel LNC of coding choice [c, 1] during the

Stage 2.

• Uncoded direct TX: This scheme does not perform any coding operation when

transmitting, and just uncodedly transmits packets one by one until the desired re-

ceivers receive it. The rate region of this primitive scheme can be described by

∑

∀ i∈{1,2,3}

Ri→j

pi→j
+
Ri→k

pi→k
+
Ri→jk

pi→j
+
Ri→jk

pi→k
≤ 1.
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F. PROOFS OF THREE LEMMAS AND THREE CLAIMS

Proof of Lemma 2.2.1: We prove this by induction. When t = 1, then (2.6) and

(2.10) are equivalent by definition. Suppose (2.6) and (2.10) are equivalent for t = 1

to t0 − 1. We now consider t = t0. By Lemma D.0.5, [Y∗i]
t0−1
1 can be uniquely

computed by the values of W{1,2,3}∗ and [Z]t0−1
1 . As a result, we can rewrite (2.6) by

σi(t0) = f
(t0)

SCH, i(W{1,2,3}∗, [Z]
t0−1
1 ). (F.1)

Then due to the information equality (2.5), there is no dependence between σi(t0)

and W{1,2,3}∗. As a result, we can further remove W{1,2,3}∗ from the input arguments

in (F.1), which leads to (2.10). By induction, the proof of Lemma 2.2.1 is thus

complete. �

Proof of Lemma D.0.5: The proof follows from the induction on time t. When

t = 1, each node i encodes the input symbol Xi(1) purely based on its information

messages Wi∗, see (2.7). As a result, {X1(1), X2(1), X3(1)} can be uniquely deter-

mined by W{1,2,3}∗. Lemma D.0.5 thus holds for t = 1.

Suppose that the statement of Lemma D.0.5 is true until time t = t0−1. Consider

t = t0. By induction, [X1, X2, X3]
t0−1
1 can be uniquely decided by W{1,2,3}∗ and

[Z]t0−2
1 . Since [Y1∗,Y2∗,Y3∗]

t0−1
1 is a function of [X1, X2, X3]

t0−1
1 and [Z]t0−1

1 , we know

that [Y1∗,Y2∗,Y3∗]
t0−1
1 can be uniquely decided by W{1,2,3}∗ and [Z]t0−1

1 . Then by the

encoding functions in (2.7), the input symbols {X1(t0), X2(t0), X3(t0)} at time t = t0

can be uniquely determined as well. The proof of Lemma D.0.5 is thus complete. �

Proof of Lemma D.0.6: Similar to Lemma D.0.5, the proof follows from induction

on time t. When t = 1, in the beginning of time slot 1, X1(1) (resp. X3(1)) is encoded



169

purely based on the message W1∗ (resp. W3∗), see (2.7). As a result, {X1(1), X3(1)}
can be uniquely determined by W{1,3}∗.

Assume that the statement of Lemma D.0.6 is true until time t = t0 − 1. By

induction, [X1, X3]
t0−1
1 can be uniquely determined by {W{1,3}∗, [Y2∗]

t0−2
1 , [Z]t0−2

1 }.
Now consider time t = t0. Compared to time t = t0 − 1, we know additionally

Y2→1(t0−1), Y2→3(t0−1), and Z(t0−1). Since we already knew [X3]
t0−1
1 , the received

symbols [Y3→1]
t0−1
1 can be uniquely determined from the given [Z]t0−1

1 . Jointly with

the known messages W1∗, the received symbols [Y2→1]
t0−1
1 , and [Z]t0−1

1 , we can also

uniquely determine X1(t0), see the encoding function of node 1 in (2.7). The proof

regarding to X3(t0) can be done by symmetry. The proof of Lemma D.0.6 is thus

complete. �

Proof of Claim D.0.2. The equality (D.13) in Claim D.0.2 can be proven as follows.

Notice that

I(W{2,3}∗ ; [Y∗1]
n
1 |W1∗, [Z]

n
1 )

= I(W{2,3}∗ ; [Y∗1,Z]
n
1 |W1∗)− I(W{2,3}∗ ; [Z]

n
1 |W1∗) (F.2)

= I(W{2,3}∗ ; [Y∗1,Z]
n
1 |W1∗) (F.3)

= I(W{2,3}∗ ; [Y∗1,Z]
n−1
1 |W1∗)

+ I(W{2,3}∗ ; Z(n) | [Y∗1,Z]
n−1
1 ,W1∗)

+ I(W{2,3}∗ ; Y∗1(n) | [Y∗1,Z]
n−1
1 ,W1∗,Z(n)) (F.4)

= I(W{2,3}∗ ; [Y∗1,Z]
n−1
1 |W1∗)

+ I(W{2,3}∗ ; Y∗1(n) | [Y∗1,Z]
n−1
1 ,W1∗,Z(n)), (F.5)

where (F.2) follows from the chain rule; (F.3) follows from the fact that W{2,3}∗, W1∗

and [Z]n1 are independent with each other; (F.4) follows from the chain rule; and (F.5)

can be obtained by showing that the second term of (F.4) is zero. The reason is that

by our problem formulation, Z(n) is independent of W{2,3}∗, [Y∗1,Z]
n−1
1 , and W1∗.
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By iteratively applying the equalities (F.4) to (F.5), we have proven Claim D.0.2.

�

Proof of Claim D.0.3. For any fixed deterministic channel realization [z]t−1
1 , we

will consider the mutual information terms in (D.16), conditioning on the event

[Z]t−1
1 = [z]t−1

1 . For notational simplicity, we use ~z to denote the deterministic channel

realization [z]t−1
1 of interest and use 〈~z〉 , {[Z]t−1

1 = [z]t−1
1 } to denote the correspond-

ing event.

For any fixed deterministic ~z and fixed time instant t, we define

term
[~z]
0 , I(W{2,3}∗ ; Y∗1(t) | [Y∗1]

t−1
1 , 〈~z〉,W1∗,Z(t)), (F.6)

term
[~z]
1 , I(W∗1 ; Y∗1(t) | [Y∗1]

t−1
1 , 〈~z〉,W1∗,Z(t)), (F.7)

term
[~z]
2 , I(W2→3 ; Y2∗(t) | [Y2∗]

t−1
1 , 〈~z〉,W

2→3
,Z(t)), (F.8)

term
[~z]
3 , I(W3→2 ; Y3∗(t) | [Y3∗]

t−1
1 , 〈~z〉,W3→2,Z(t)). (F.9)

By the definition of mutual information, we have

I(W{2,3}∗ ; Y∗1(t) | [Y∗1,Z]
t−1
1 ,W1∗,Z(t))

=
∑

∀~z

Prob([Z]t−1
1 = ~z) · term[~z]

0 , (F.10)

I(W∗1 ; Y∗1(t) | [Y∗1,Z]
t−1
1 ,W1∗,Z(t))

=
∑

∀~z

Prob([Z]t−1
1 = ~z) · term[~z]

1 , (F.11)

I(W2→3 ; Y2∗(t) | [Y2∗,Z]
t−1
1 ,W2→3,Z(t))

=
∑

∀~z

Prob([Z]t−1
1 = ~z) · term[~z]

2 , (F.12)

I(W3→2 ; Y3∗(t) | [Y3∗,Z]
t−1
1 ,W3→2,Z(t))

=
∑

∀~z

Prob([Z]t−1
1 = ~z) · term[~z]

3 . (F.13)
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Comparing (D.16) and equalities (F.10) to (F.13), it is clear that we only need to

prove that for all ~z, the following inequality holds:

term
[~z]
0 ≥ term

[~z]
1 +

p2→1

p2→3∨1
term

[~z]
2 +

p3→1

p3→1∨2
term

[~z]
3 . (F.14)

To prove (F.14), we first partition all the past channel status realizations ~z into

three disjoint sets, depending on the value of the scheduling decision σ(t), see (2.9).

That is, for all i ∈ {1, 2, 3},

Zi , { ∀~z : σ(t) = i}.

This partition can be done uniquely since the scheduling decision σ(t) is a function

of the past channel status [Z]t−1
1 .

We now prove (F.14) depending on to which Zi the realization vector ~z belong.

Specifically, we will prove the following:

• For all ~z ∈ Z1, we have

term
[~z]
0 = 0, (F.15)

term
[~z]
1 = 0, (F.16)

term
[~z]
2 = 0, (F.17)

term
[~z]
3 = 0. (F.18)

• For all ~z ∈ Z2, we have

term
[~z]
0 ≥ term

[~z]
1 +

p2→1

p2→3∨1
term

[~z]
2 , (F.19)

term
[~z]
3 = 0. (F.20)
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• For all ~z ∈ Z3, we have

term
[~z]
0 ≥ term

[~z]
1 +

p3→1

p3→1∨2

term
[~z]
3 , (F.21)

term
[~z]
2 = 0. (F.22)

Then, one can see that (F.15) to (F.22) jointly imply that (F.14) holds for all the

past channel output realizations ~z.

Consider the first case in which ~z ∈ Z1. (F.15) is true because

term
[~z]
0 , I(W{2,3}∗ ; Y∗1(t) | [Y∗1]

t−1
1 , 〈~z〉,W1∗,Z(t))

≤ H(Y∗1(t) | [Y∗1]
t−1
1 , 〈~z〉) (F.23)

= 0, (F.24)

where (F.23) follows from the definition of mutual information, non-negativity of

entropy, and the fact that conditioning reduces entropy; and (F.24) follows from

that, when the scheduling decision is σ(t) = 1, the received symbols at node 1, i.e.,

Y∗1(t), are always erasure.

Similarly applying the above arguments, one can prove that (F.16) to (F.18) are

true as well when ~z ∈ Z1. The first case is thus proven.
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Consider the second case in which ~z ∈ Z2. By the same argument as used in

proving (F.15) to (F.18), we can easily prove (F.20). We now prove (F.19). Then

notice that

term
[~z]
0 , I(W{2,3}∗ ; Y∗1(t) | [Y∗1]

t−1
1 , 〈~z〉,W1∗,Z(t))

= I(W∗1 ; Y∗1(t) | [Y∗1]
t−1
1 , 〈~z〉,W1∗,Z(t))

+ I(W3→2 ; Y∗1(t) | [Y∗1]
t−1
1 , 〈~z〉,W1∗,W∗1,Z(t))

+ I(W2→3 ; Y∗1(t) | [Y∗1]
t−1
1 , 〈~z〉,W2→3,Z(t)) (F.25)

≥ term
[~z]
1 + I(W2→3 ; Y∗1(t) | [Y∗1]

t−1
1 , 〈~z〉,W

2→3
,Z(t)) (F.26)

= term
[~z]
1 + I(W2→3 ; Y2→1(t) | [Y∗1]

t−1
1 , 〈~z〉,W2→3,Z(t)), (F.27)

where (F.25) follows from the chain rule and the fact that W1∗∪W∗1∪W3→2 contains

all 9-flow messages except forW2→3, which, by definition (D.14), equalsW2→3. (F.26)

follows from the definition (F.7) and the non-negativity of mutual information. (F.27)

follows from that when ~z ∈ Z2, the received symbol Y3→1(t) ⊂ Y∗1(t) is always erasure.

The second term in the RHS of (F.27) satisfies

I(W2→3 ; Y2→1(t) | [Y∗1]
t−1
1 , 〈~z〉,W2→3,Z(t))

=
p2→1

p2→3∨1
I(W2→3 ; Y2∗(t) | [Y∗1]

t−1
1 , 〈~z〉,W2→3,Z(t)). (F.28)

Proof of (F.28): For the ease of exposition, let us denote V , {[Y∗1]
t−1
1 ,W2→3}.

Rewriting (F.28), we thus need to prove

I(W2→3 ; Y2→1(t) |V, 〈~z〉,Z(t)) =
p2→1

p2→3∨1

I(W2→3 ; Y2∗(t) |V, 〈~z〉,Z(t)). (F.29)
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Since ~z ∈ Z2, we have Y2→1(t) = X2(t) ◦ Z2→1(t). Since Z2→1(t) is independent of

W2→3, X2(t), V, and the random event 〈~z〉, we thus have

I(W2→3 ; Y2→1(t) |V, 〈~z〉,Z(t))

= Prob(Z2→1(t) = 1) · I(W2→3 ; X2(t) |V, 〈~z〉)

= p2→1 · I(W2→3 ; X2(t) |V, 〈~z〉). (F.30)

By similar arguments, we can also prove that

I(W2→3 ; Y2∗(t) |V, 〈~z〉,Z(t))

= Prob({Z2→1(t) = 1} ∪ {Z2→3(t) = 1}) · I(W2→3 ; X2(t) |V, 〈~z〉)

= p2→3∨1 · I(W2→3 ; X2(t) |V, 〈~z〉). (F.31)

Equalities (F.30) and (F.31) jointly imply (F.29), which completes the proof of

(F.28). �
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Then we observe that the mutual information term on the RHS of (F.28) also

satisfies

I(W2→3 ; Y2∗(t) | [Y∗1]
t−1
1 , 〈~z〉,W2→3,Z(t))

= H(Y2∗(t) | [Y∗1]
t−1
1 , 〈~z〉,W

2→3
,Z(t))

−H(Y2∗(t) | [Y∗1]
t−1
1 , 〈~z〉,W2→3,W2→3,Z(t)) (F.32)

= H(Y2∗(t) | [Y∗1]
t−1
1 , 〈~z〉,W

2→3
,Z(t))

−H(Y2∗(t) | [Y2∗]
t−1
1 , 〈~z〉,W2→3,W2→3,Z(t)) (F.33)

≥ H(Y2∗(t) | [Y2∗,Y3∗]
t−1
1 , 〈~z〉,W

2→3
,Z(t))

−H(Y2∗(t) | [Y2∗]
t−1
1 , 〈~z〉,W2→3,W2→3,Z(t)) (F.34)

= H(Y2∗(t) | [Y2∗]
t−1
1 , 〈~z〉,W

2→3
,Z(t))

−H(Y2∗(t) | [Y2∗]
t−1
1 , 〈~z〉,W2→3,W2→3,Z(t)) (F.35)

= I(W2→3 ; Y2∗(t) | [Y2∗]
t−1
1 , 〈~z〉,W2→3,Z(t)) (F.36)

= term
[~z]
2 , (F.37)

where (F.32) follows from the definition of mutual information; (F.33) follows from

that (i) W
2→3

∪W2→3 contains all the 9-flow information messages W{1,2,3}∗, and (ii)

by Lemma D.0.5, both [Y∗1]
t−1
1 and [Y2∗]

t−1
1 can be uniquely computed once we know

all the messages W{1,2,3}∗ = W
2→3

∪ W2→3 and the past channel realizations ~z =

[z]t−1
1 . Therefore, the conditional entropy remains identical even when we substitute

[Y∗1]
t−1
1 by [Y2∗]

t−1
1 ; (F.34) follows from the fact that conditioning reduces entropy;

(F.35) follows from Lemma D.0.6 that knowing the messages {W1∗,W3∗} ⊂ W2→3,

the received symbols [Y2∗]
t−1
1 , and the past channel realizations~z = [z]t−1

1 can uniquely

decide [X3]
t
1, and thus also the received symbols [Y3∗]

t−1
1 (since [z]t−1

1 is known). As

a result, removing [Y3∗]
t−1
1 in the first term of (F.34) will not change the conditional

entropy; (F.36) follows from the definition of mutual information; and (F.37) follows

from the definition (F.8).

Jointly (F.27), (F.28), and (F.37) imply (F.19).
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The third case, ~z ∈ Z3, is symmetric to the case of ~z ∈ Z2. The proof of

Claim D.0.3 is thus complete. �

Proof of Claim D.0.4. We provide the proofs for the (in)equalities (D.17) to (D.19)

in Claim D.0.4. We first show the proof for (D.17).

Proof of (D.17): Note that

I(W∗1 ; W1∗, [Y∗1,Z]
n
1 ) = I(W∗1 ; W1∗) + I(W∗1 ; [Y∗1,Z]

n
1 |W1∗) (F.38)

= I(W∗1 ; [Y∗1,Z]
n
1 |W1∗) (F.39)

= I(W∗1 ; [Y∗1,Z]
n−1
1 |W1∗)

+ I(W∗1 ; Z(n) | [Y∗1,Z]
n−1
1 ,W1∗)

+ I(W∗1 ; Y∗1(n) | [Y∗1,Z]
n−1
1 ,W1∗,Z(n)) (F.40)

= I(W∗1 ; [Y∗1,Z]
n−1
1 |W1∗)

+ I(W∗1 ; Y∗1(n) | [Y∗1,Z]
n−1
1 ,W1∗,Z(n)), (F.41)

where (F.38) follows from the chain rule; (F.39) follows from the fact the messages

W∗1 and W1∗ are independent with each other; (F.40) follows from the chain rule;

and (F.41) can be obtained by showing that the second term of (F.40) is zero. The

reason is because Z(n) is independent of W∗1, [Y∗1,Z]
n−1
1 , and W1∗. By iteratively

applying the equalities (F.40) to (F.41) for t = n− 1 back to t = 1, the result (D.17)

follows. �

Secondly, we prove (D.18). The proof of (D.19) can be derived symmetrically by

swapping the node indices 2 and 3.
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Proof of (D.18): Note that

I(W2→3 ; W3∗, [Y∗3,Z]
n
1 )

≤ I(W2→3 ; W{1,3}∗,W2→1,W2→31, [Y2∗, Y1→3,Z]
n
1 ) (F.42)

= I(W2→3 ; W{1,3}∗,W2→1,W2→31, [Y2∗,Z]
n
1 ) (F.43)

= I(W2→3 ; W2→3) + I(W2→3 ; [Y2∗,Z]
n
1 |W2→3), (F.44)

= I(W2→3 ; [Y2∗,Z]
n
1 |W2→3

), (F.45)

= I(W2→3 ; [Y2∗,Z]
n−1
1 |W2→3)

+ I(W2→3 ; Z(n) | [Y2∗,Z]
n−1
1 ,W2→3)

+ I(W2→3 ; Y2∗(n) | [Y2∗,Z]
n−1
1 ,W2→3,Z(n)) (F.46)

= I(W2→3 ; [Y2∗,Z]
n−1
1 |W2→3)

+ I(W2→3 ; Y2∗(n) | [Y2∗,Z]
n−1
1 ,W2→3,Z(n)), (F.47)

where (F.42) follows from the fact that adding the observations W1∗, W2→1, W2→31,

and [Y2→1]
n
1 increases the mutual information; (F.43) follows from Lemma D.0.6 that

[X1]
n
1 is a function of W{1,3}∗, [Y2∗]

n−1
1 , and [Z]n−1

1 , which in turn implies that [Y1→3]
n
1

is a function of W{1,3}∗, [Y2∗]
n−1
1 , and [Z]n1 since [Y1→3]

n
1 is a function of [X1]

n
1 and

[Z]n1 . As a result, removing [Y1→3]
n
1 does not decrease the mutual information; (F.44)

follows from the chain rule and the definition of W2→3 in (D.14); (F.45) follows from

the fact the messages W2→3 and W2→3 are independent of each other; (F.46) follows

from the chain rule; and (F.47) follows from the second term of (F.46) being zero,

since Z(n) is independent of W2→3, [Y2∗,Z]
n−1
1 , and W

2→3
. By iteratively applying

the equalities (F.46) to (F.47), the inequality (D.18) follows. �

The proof of Claim D.0.4 is thus complete. �
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G. LIST OF CODING TYPES FOR sFTs AND rFTs

We enumerate the 154 Feasible Types (FTs) defined in (4.7) that the source s can

transmit in the following way:

sFTs ,{00000, 00010, 00020, 00030, 00070, 00110, 00130, 00170, 00220, 00230,

00270, 00330, 00370, 00570, 00770, 00A70, 00B70, 00F70, 00F71, 01010,

01030, 01070, 01110, 01130, 01170, 01230, 01270, 01330, 01370, 01570,

01770, 01A70, 01B70, 01F70, 01F71, 02020, 02030, 02070, 02130, 02170,

02220, 02230, 02270, 02330, 02370, 02570, 02770, 02A70, 02B70, 02F70,

02F71, 03030, 03070, 03130, 03170, 03230, 03270, 03330, 03370, 03570,

03770, 03A70, 03B70, 03F70, 03F71, 07070, 07170, 07270, 07370, 07570,

07770, 07A70, 07B70, 07F70, 07F71, 11110, 11130, 11170, 11330, 11370,

11570, 11770, 11B70, 11F70, 11F71, 13130, 13170, 13330, 13370, 13570,

13770, 13B70, 13F70, 13F71, 17170, 17370, 17570, 17770, 17B70, 17F70,

17F71, 22220, 22230, 22270, 22330, 22370, 22770, 22A70, 22B70, 22F70,

22F71, 23230, 23270, 23330, 23370, 23770, 23A70, 23B70, 23F70, 23F71,

27270, 27370, 27770, 27A70, 27B70, 27F70, 27F71, 33330, 33370, 33770,

33B70, 33F70, 33F71, 37370, 37770, 37B70, 37F70, 37F71, 57570, 57770,

57F70, 57F71, 77770, 77F70, 77F71, A7A70, A7B70, A7F70, A7F71, B7B70,

B7F70, B7F71, F7F70, F7F71},

where each 5-digit index b1b2b3b4b5 represent a 15-bitstring b of which b1 is a

hexadecimal of first four bits, b2 is a octal of the next three bits, b3 is a hexadecimal

of the next four bits, b4 is a octal of the next three bits, and b5 is binary of the last
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bit. The subset of sFTs that the relay r can transmit, i.e., rFTs are listed separately

in the following:

rFTs ,{00F71, 01F71, 02F71, 03F71, 07F71, 11F71, 13F71, 17F71, 22F71, 23F71,

27F71, 33F71, 37F71, 57F71, 77F71, A7F71, B7F71, F7F71},

Recall that the b15 of a 15-bitstring b represents whether the coding subset belongs

to A15(t) or not, and A15(t) , Sr(t − 1) by definition (4.6). As a result, any coding

type with b15 = 1 implies that it lies in the knowledge space of the relay r. The

enumerated rFTs in the above is thus a collection of such coding subsets in sFTs with

b5 = 1.
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H. LNC ENCODING OPERATIONS, PACKET

MOVEMENT PROCESS, AND QUEUE INVARIANCE

H.1 For The Strong-Relaying Scenario of Proposition 4.2.1

In the following, we will describe all the LNC encoding operations and the corre-

sponding packet movement process of Proposition 4.2.1 one by one, and then prove

that the Queue Invariance explained in Section 4.2.1 always holds.

To simplify the analysis, we will ignore the null reception, i.e., none of {d1, d2, r}
receives a transmitted packet, because nothing will happen in the queueing network.

Moreover, we exploit the following symmetry: For those variables whose superscript

indicates the session information k ∈ {1, 2} (either session-1 or session-2), here we

describe session-1 (k=1) only. Those variables with k=2 in the superscript will be

symmetrically explained by simultaneously swapping (a) session-1 and session-2 in

the superscript; (b) X and Y ; (c) i and j; and (d) d1 and d2, if applicable.

• s1
UC
: The source s transmits Xi ∈ Q1

φ. Depending on the reception status, the

packet movement process following the inequalities in Proposition 4.2.1 is summarized

as follows.
Departure Reception Status Insertion

Q1
φ

Xi−−→

d1d2r
Xi−−→ Q1

{r}

d1d2r
Xi−−→ Q1

{d2}

d1d2r
Xi−−→ Q1

dec

d1d2r
Xi−−−−→

Case 1
Q

[1]
{rd2}

d1d2r
Xi−−→ Q1

dec

d1d2r
Xi−−→ Q1

dec

d1d2r
Xi−−→ Q1

dec

- Departure: One property for Xi ∈ Q1
φ is that Xi must be unknown to any of

{d1, d2, r}. As a result, whenever Xi is received by any of them, Xi must be

removed from Q1
φ for the Queue Invariance.
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- Insertion: One can easily verify that the queue properties for Q1
{r}, Q

1
{d2}

, Q1
dec

,

and Q
[1]
{rd2}

hold for the corresponding insertions.

• s2
UC
: s transmits Yj ∈ Q2

φ. The movement process is symmetric to s1
UC
.

• s1
PM1

: s transmits a mixture [Xi + Yj] from Xi ∈ Q1
φ and Yj ∈ Q2

{r}. The movement

process is as follows.

Q1
φ

Xi−−→ d1d2r
Xi−−→ Q1

{r}

Q1
φ

Xi−−→, Q2
{r}

Yj−→

d1d2r
[Xi+Yj ]−−−−−→ Q

m|2
{d2}|{r}

d1d2r
[Xi+Yj ]:Yj−−−−−−−→ Qmix

d1d2r
[Xi+Yj ]:Xi−−−−−−−→ Qmix

d1d2r [Xi+Yj ]:Yj−−−−−−−→ Qmixd1d2r

d1d2r
[Xi+Yj ]: either Xi or Yj−−−−−−−−−−−−−−−−→ Qmix

- Departure: The property for Xi ∈ Q1
φ is that Xi must be unknown to any

of {d1, d2, r}, even not flagged in RL{d1,d2,r}. As a result, whenever the mixture

[Xi+Yj] is received by any of {d1, d2, r}, Xi must be removed from Q1
φ. Similarly,

the property for Yj ∈ Q2
{r} is that Yj must be unknown to any of {d1, d2}, even

not flagged in RL{d1,d2}. Therefore, whenever the mixture is received by any of

{d1, d2}, Yj must be removed from Q2
{r}.

- Insertion: When only r receives the mixture, r can use the known Yj and the

received [Xi+Yj] to extract the pure Xi. As a result, we can insert Xi to Q
1
{r} as

it is not flagged in RL{d1,d2}. The case when only d2 receives the mixture satisfies

the properties of Q
m|2
{d2}|{r}

as r knows the pure Yj only while d2 knows the mixture

[Xi + Yj ] only. As a result, we can insert [Xi + Yj] to Q
m|2
{d2}|{r}

. The remaining

reception cases fall into at least one of two conditions of Qmix. For example when

only d1 receives the mixture, now [Xi+Yj] is in RL{d1} while Yj is still known by

r only. This corresponds to the first condition of Qmix. One can easily verify that

other cases satisfy either one of or both properties of Qmix. Following the packet

format for Qmix, we insert [Xi + Yj] : W into Qmix where W denotes the packet

in r that can benefit both destinations when transmitted. From the previous

example when only d1 receives the mixture, we insert [Xi + Yj ] : Yj into Qmix as
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sending the known Yj from r simultaneously enables d2 to receive the desired Yj

and d1 to decode the desired Xi by subtracting Yj from the received [Xi + Yj].

• s2
PM1

: s transmits a mixture [Xi+Yj] from Xi ∈ Q1
{r} and Yj ∈ Q2

φ. The movement

process is symmetric to s1
PM1

.

• s1
PM2

:s transmits a mixture [Xi + Yj] from Xi ∈ Q1
{r} and Yj ∈ Q2

{d1}
. The movement

process is as follows.

Q2
{d1}

Yj−→ d1d2r
Yj−−−−→

Case 1
Q

[2]
{rd1}

Q1
{r}

Xi−−→, Q2
{d1}

Yj−→ d1d2r
[Xi+Yj ]:Xi−−−−−−−→ Qmix

Q1
{r}

Xi−−→ d1d2r
Xi−−→ Q1

dec

Q1
{r}

Xi−−→, Q2
{d1}

Yj−→

d1d2r
[Xi+Yj ]:Xi−−−−−−−→ Qmix

d1d2r
Xi−−→ Q1

dec
,

Yj−−−−→
Case 1

Q
[2]
{rd1}

d1d2r
Xi−−→ Q1

dec
,

Xi(≡Yj)−−−−−→
Case 2

Q
[2]
{rd1}

d1d2r
Xi−−→ Q1

dec
,

Yj−−−−→
Case 1

Q
[2]
{rd1}

- Departure: The property for Xi ∈ Q1
{r} is that Xi must be unknown to any

of {d1, d2}, even not flagged in RL{d1,d2}. As a result, whenever the mixture

[Xi+Yj] is received by any of {d1, d2}, Xi must be removed from Q1
{r}. Similarly,

the property for Yj ∈ Q2
{d1}

is that Yj must be unknown to any of {d2, r}, even
not flagged in RL{d2,r}. Therefore, whenever the mixture is received by any of

{d2, r}, Yj must be removed from Q2
{d1}

.

- Insertion: Whenever d1 receives the mixture, d1 can use the known Yj and the

received [Xi + Yj] to extract the pure/desired Xi. As a result, we can insert Xi

into Q1
dec

whenever d1 receives. The cases when d2 receives but d1 does not fall

into the second condition of Qmix as [Xi + Yj] is in RL{d2} and Xi is known by

r only. Namely, r can benefit both destinations simultaneously by sending the

known Xi. For those two reception status d1d2r and d1d2r, we can thus insert

this mixture into Qmix as [Xi + Yj] :Xi. Whenever r receives the mixture, r can

use the known Xi and the received [Xi + Yj] to extract the pure Yj. Now Yj is

known by both r and d1 but still unknown to d2 even if d2 receives this mixture

[Xi + Yj] as well. As a result, Yj can be moved to Q
[2]
{rd1}

as the Case 1 insertion.



183

But for the reception status of d1d2r, note from the previous discussion that we

can insert the mixture into Qmix since d2 receives the mixture but d1 does not.

In this case, we chose to use more efficient Qmix that can handle both sessions

simultaneously. Finally when the reception status is d1d2r, we have that Xi is

known by both r and d1 while the mixture [Xi + Yj] is received by d2. Namely,

Xi is still unknown to d2 but when it is delivered, d2 can use Xi and the received

[Xi+Yj] to extract a desired session-2 packet Yj. Moreover, Xi is already in Q1
dec

and thus can be used as an information-equivalent packet for Yj. This scenario

is exactly the same as the Case 2 of Q
[2]
{rd1}

and thus we can move Xi into Q
[2]
{rd1}

as the Case 2 insertion.

• s2
PM2

:s transmits a mixture [Xi + Yj] from Xi ∈ Q1
{d2}

and Yj ∈ Q2
{r}. The movement

process is symmetric to s1
PM2

.

• s1
RC
: s transmits Xi of the mixture [Xi + Yj] in Q

m|2
{d2}|{r}

. The movement process is

as follows.

Q
m|2
{d2}|{r}

[Xi+Yj ]−−−−−→

d1d2r
[Xi+Yj ]:Xi−−−−−−−→ Qmix

d1d2r
Xi−−→ Q1

{d2}
,

Yj−→ Q2
dec

d1d2r
Xi−−→ Q1

dec
,

Xi−−→ Q
(2)|2
{d1}|{r}

d1d2r
Xi−−−−→

Case 1
Q

[1]
{rd2}

,
Yj−→ Q2

dec

d1d2r
Xi−−→ Q1

dec
,

Xi(≡Yj)−−−−−→
Case 2

Q
[2]
{rd1}

d1d2r Xi−−→ Q1
dec

,
Yj−→ Q2

decd1d2r

- Departure: One condition for [Xi + Yj] ∈ Q
m|2
{d2}|{r}

is that Xi is unknown to

any of {d1, d2, r}. As a result, whenever Xi is received by any of {d1, d2, r}, the
mixture [Xi + Yj] must be removed from Q

m|2
{d2}|{r}

.

- Insertion: From the conditions of Q
m|2
{d2}|{r}

, we know that Xi is unknown to d1

and Yj is known only by r. As a result, whenever d1 receives Xi, d1 receives the

new session-1 packet and thus we can insert Xi into Q
1
dec

. Whenever d2 receives

Xi, d2 can use the known [Xi + Yj] and the received Xi to subtract the pure Yj.

We can thus insert Yj into Q
2
dec

. The case when only r receives Xi falls into the

first condition of Qmix as [Xi + Yj] is in RL{d2} and Xi is known by r only. In
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this case, r can benefit both destinations simultaneously by sending the received

Xi. For this reception status of d1d2r, we thus insert the mixture into Qmix as

[Xi+Yj] :Xi. The remaining reception status to consider are d1d2r, d1d2r, d1d2r,

and d1d2r. The first when only d2 receives Xi falls into the property of Q1
{d2}

as

Xi is known only by d2 and not flagged in RL{d1,r}. Thus we can insert Xi into

Q1
{d2}

. Obviously, d2 can decode Yj from the previous discussion. For the second

when only d1 receives Xi, we first have Xi ∈ Q1
dec

while Xi is unknown to any of

{d2, r}. Moreover, Yj is known by r only and [Xi+Yj] is in RL{d2}. This scenario

falls exactly into Q2
{d1}

and thus we can insert Xi into Q
2
{d1}

. The third case when

both d2 and r receive Xi falls exactly into Case 1 of Q
[1]
{rd2}

as Xi is now known by

both d2 and r but still unknown to d1. And obviously, d2 can decode Yj from the

previous discussion. For the fourth case when both d1 and r receive Xi, we now

have that r contains {Xi, Yj}; d1 contains Xi; and d2 contains [Xi+Yj]. That is,

Xi is already in Q1
dec

and known by r as well but still unknown to d2. Moreover,

d2 can decode the desired session-2 packet Yj when it receives Xi further. As

a result, Xi can be used as an information-equivalent packet for Yj and can be

moved into Q
[2]
{rd1}

as the Case 2 insertion.

• s2
RC
: s transmits Yj of [Xi + Yj] ∈ Q

m|1
{d1}|{r}

. The movement process is symmetric to

s1
RC
.

• s1
DX

: s transmits Xi ∈ Q1
{d2}

. The movement process is as follows.

Q1
{d2}

Xi−−→ d1d2r
Xi−−−−→

Case 1
Q

[1]
{rd2}

do nothing d1d2r do nothing

Q1
{d2}

Xi−−→

d1d2r
Xi−−→ Q1

dec

d1d2r
Xi−−−−→

Case 1
Q

[1]
{rd2}

d1d2r
Xi−−→ Q1

dec
d1d2r

d1d2r

- Departure: One condition for Xi ∈ Q1
{d2}

is that Xi must be unknown to any

of {d1, r}. As a result, Xi must be removed from Q1
{d2}

whenever it is received

by any of {d1, r}.
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- Insertion: Whenever d1 receives Xi, it receives a new session-1 packet and thus

we can insert Xi into Q
1
dec

. If Xi is received by r but not by d1, then Xi will be

known by both d2 and r (since d2 already knows Xi) but still unknown to d1.

This falls exactly into the first-case scenario of Q
[1]
{rd2}

and thus we can move Xi

into Q
[1]
{rd2}

as the Case 1 insertion.

• s2
DX

: s transmits Yj ∈ Q2
{d1}

. The movement process is symmetric to s1
DX

.

• s(1)
DX

: s transmits Yi ∈ Q
(1)|1
{d2}|{r}

. The movement process is as follows.

Q
(1)|1
{d2}|{r}

Yi−→ d1d2r
Yi−−−−→

Case 2
Q

[1]
{rd2}

do nothing d1d2r do nothing

Q
(1)|1
{d2}|{r}

Yi−→

d1d2r
Xi(≡Yi)−−−−−→ Q1

dec

d1d2r
Yi−−−−→

Case 2
Q

[1]
{rd2}

d1d2r
Xi(≡Yi)−−−−−→ Q1

dec
d1d2r

d1d2r

- Departure: One property for Yi ∈ Q
(1)|1
{d2}|{r}

is that Yi must be unknown to any

of {d1, r}. As a result, whenever Yi is received by any of {d1, r}, Yi must be

removed from Q
(1)|1
{d2}|{r}

.

- Insertion: From the property of Yi ∈ Q
(1)|1
{d2}|{r}

, we know that Yi ∈ Q2
dec

; there

exists a session-1 packet Xi still unknown to d1 where Xi ≡ Yi; and [Xi + Yi]

is in RL{d1}. As a result, whenever d1 receives Yi, d1 can use the received Yi

and the known [Xi + Yi] to extract Xi and thus we can insert Xi into Q
1
dec

. If

Yi is received by r but not by d1, then Yi will be known by both d2 and r but

unknown to d1, where [Xi + Yi] is in RL{d1}. Thus when d1 receives Yi, d1 can

further decode the desired Xi. Moreover, Yi is already in Q2
dec

. As a result, we

can move Yi into Q
[1]
{rd2}

as the Case 2 insertion.

• s(2)
DX

: s transmits Xj ∈ Q
(2)|2
{d1}|{r}

. The movement process is symmetric to s
(1)
DX

.



186

• sCX;1:s transmits [Xi + Yj] from Xi ∈ Q1
{d2}

and Yj ∈ Q2
{d1}

. The movement process

is as follows.

Q1
{d2}

Xi−−→,

Q2
{d1}

Yj−→
d1d2r

[Xi+Yj ]−−−−−→ Q
mCX

{r}

Q2
{d1}

Yj−→ d1d2r
Yj−→ Q2

dec

Q1
{d2}

Xi−−→ d1d2r
Xi−−→ Q1

dec

Q1
{d2}

Xi−−→,

Q2
{d1}

Yj−→

d1d2r
[Xi+Yj ]−−−−−→
Case 3

Q
[1]
{rd2}

,
Yj−→ Q2

dec

d1d2r
Xi−−→ Q1

dec
,

[Xi+Yj ]−−−−−→
Case 3

Q
[2]
{rd1}

d1d2r Xi−−→ Q1
dec

,
Yj−→ Q2

decd1d2r

- Departure: One condition for Xi ∈ Q1
{d2}

is that Xi must be unknown to any of

{d1, r}, even not flagged in RL{d1,r}. As a result, whenever the mixture is received

by any of {d1, r}, Xi must be removed from Q1
{d2}

. Symmetrically for Yj ∈ Q2
{d1}

,

whenever the mixture is received by any of {d2, r}, Yj must be removed from

Q2
{d1}

.

- Insertion: Whenever d1 receives the mixture [Xi + Yj], d1 can use the known

Yj ∈ Q2
{d1}

and the received [Xi + Yj] to extract the desired Xi and thus we can

insert Xi into Q
1
dec

. Similarly, whenever d2 receives this mixture, d2 can use the

known Xi ∈ Q1
{d2}

and the received [Xi + Yj] to extract the desired Yj and thus

we can insert Yj into Q
2
dec

. The remaining reception status are d1d2r, d1d2r, and

d2d2r. The first when only r receives the mixture exactly falls into the first-case

scenario of QmCX

{r} as [Xi + Yj] is in RL{r}; Xi ∈ Q1
{d2}

is known by d2 only; and

Yj ∈ Q2
{d1}

is known by d1 only. As a result, r can then send this mixture [Xi+Yj]

to benefit both destinations. The second case when both d2 and r receive the

mixture, jointly with the assumption Yj ∈ Q2
{d1}

, falls exactly into the third-case

scenario of Q
[1]
{rd2}

where Wi is a pure session-1 packet. As a result, we can move

[Xi + Yj] into Q
[1]
{rd2}

as the Case 3 insertion. (And obviously, d2 can decode Yj

from the previous discussion.) The third case when both d1 and r receive the

mixture follows symmetrically to the second case of d1d2r and thus we can insert

[Xi + Yj] into Q
[2]
{rd1}

as the Case 3 insertion.
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• sCX;2:s transmits [Xi+Xj] from Xi ∈ Q1
{d2}

and Xj ∈ Q
(2)|2
{d1}|{r}

. The movement process

is as follows.
Q1
{d2}

Xi−−→,

Q
(2)|2
{d1}|{r}

Xj−−→
d1d2r

[Xi+Xj ]−−−−−→ Q
mCX

{r}

Q
(2)|2
{d1}|{r}

Xj−−→ d1d2r
Yj(≡Xj)−−−−−→ Q2

dec

Q1
{d2}

Xi−−→ d1d2r
Xi−−→ Q1

dec

Q1
{d2}

Xi−−→,

Q
(2)|2
{d1}|{r}

Xj−−→

d1d2r
[Xi+Xj ]−−−−−→
Case 3

Q
[1]
{rd2}

,
Yj(≡Xj)−−−−−→ Q2

dec

d1d2r
Xi−−→ Q1

dec
,

[Xi+Xj ]−−−−−→
Case 3

Q
[2]
{rd1}

d1d2r Xi−−→ Q1
dec

,
Yj(≡Xj)−−−−−→ Q2

decd1d2r

- Departure: One condition for Xi ∈ Q1
{d2}

is that Xi must be unknown to any of

{d1, r}, even not flagged in RL{d1,r}. As a result, whenever the mixture [Xi+Xj ]

is received by any of {d1, r}, Xi must be removed from Q1
{d2}

. From the property

for Xj ∈ Q
(2)|2
{d1}|{r}

, we know that Xj is unknown to any of {d2, r}, even not flagged

in RL{r}. As a result, whenever r receives the mixture [Xi + Xj ], Xj must be

removed from Q
(2)|2
{d1}|{r}

. Moreover, whenever d2 receives this mixture, d2 can use

the known Xi ∈ Q1
{d2}

and the received [Xi+Xj] to decode Xj and thus Xj must

be removed from Q
(2)|2
{d1}|{r}

.

- Insertion: From the properties of Xi ∈ Q1
{d2}

and Xj ∈ Q
(2)|2
{d1}|{r}

, we know that r

contains Yj (still unknown to d2 and Yj ≡ Xj); d1 contains Xj; and d2 contains

{Xi, [Yj +Xj]} already. Therefore, whenever d1 receives the mixture [Xi +Xj ],

d1 can use the known Xj and the received [Xi+Xj] to extract the desired Xi and

thus we can insert Xi into Q
1
dec

. Similarly, whenever d2 receives this mixture,

d2 can use the known {Xi, [Yj +Xj ]} and the received [Xi +Xj] to extract the

desired Yj, and thus we can insert Yj into Q
2
dec

. The remaining reception status

are d1d2r, d1d2r, and d2d2r. One can see that the case when only r receives the

mixture exactly falls into the Case 2 scenario of QmCX

{r} . For the second case when

both d2 and r receive the mixture, now r contains {Yj, [Xi +Xj ]}; d1 contained

Xj before; and d2 contains {Xi, [Yj +Xj ], [Xi +Xj ]}. This falls exactly into the

third-case scenario of Q
[1]
{rd2}

where Wi is a pure session-1 packet Xi. As a result,

we can move [Xi+Xj] into Q
[1]
{rd2}

as the Case 3 insertion. (And obviously, d2 can
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decode the desired Yj from the previous discussion.) For the third case when

both d1 and r receive the mixture, now r contains {Yj, [Xi + Xj]}; d1 contains

{Xj, [Xi + Xj]}; and d2 contained {Xi, [Yj + Xj]} before, where we now have

Xi ∈ Q1
dec

from the previous discussion. This falls exactly into the third-case

scenario of Q
[2]
{rd1}

where Wj is a pure session-1 packet Xj ∈ Q1
dec

. Note that

delivering [Xi+Xj ] will enable d2 to further decode the desired Yj. Thus we can

move [Xi +Xj] into Q
[2]
{rd1}

as the Case 3 insertion.

• sCX;3:s transmits [Yi + Yj] from Yi ∈ Q
(1)|1
{d2}|{r}

and Yj ∈ Q2
{d1}

. The movement process

is as follows.

Q
(1)|1
{d2}|{r}

Yi−→,

Q2
{d1}

Yj−→
d1d2r

[Yi+Yj ]−−−−−→ QmCX

{r}

Q2
{d1}

Yj−→ d1d2r
Yj−→ Q2

dec

Q
(1)|1
{d2}|{r}

Yi−→ d1d2r
Xi(≡Yi)−−−−−→ Q1

dec

Q
(1)|1
{d2}|{r}

Yi−→,

Q2
{d1}

Yj−→

d1d2r
[Yi+Yj ]−−−−−→
Case 3

Q
[1]
{rd2}

,
Yj−→ Q2

dec

d1d2r
Xi(≡Yi)−−−−−→ Q1

dec
,

[Yi+Yj ]−−−−−→
Case 3

Q
[2]
{rd1}

d1d2r Xi(≡Yi)−−−−−→ Q1
dec

,
Yj−→ Q2

decd1d2r

- Departure: From the property for Yi ∈ Q
(1)|1
{d2}|{r}

, we know that Yi is unknown

to any of {d1, r}, even not flagged in RL{r}. As a result, whenever r receives

the mixture [Yi + Yj], Yi must be removed from Q
(1)|1
{d2}|{r}

. Moreover, whenever d1

receives this mixture, d1 can use the known Yj ∈ Q2
{d1}

and the received [Yi + Yj]

to decode Yi and thus Yi must be removed from Q
(1)|1
{d2}|{r}

. One condition for

Yj ∈ Q2
{d1}

is that Yj must be unknown to any of {d2, r}, even not flagged in

RL{d2,r}. As a result, whenever the mixture [Yi+Yj] is received by any of {d2, r},
Yj must be removed from Q2

{d1}
.

- Insertion: From the properties of Yi ∈ Q
(1)|1
{d2}|{r}

and Yj ∈ Q2
{d1}

, we know that r

contains Xi (still unknown to d1 and Xi ≡ Yi); d1 contains {Yj, [Xi + Yi]}; and
d2 contains Yi already. Therefore, whenever d1 receives the mixture [Yi + Yj],

d1 can use the known {Yj, [Xi + Yi]} and the received [Yi + Yj] to extract the

desired Xi and thus we can insert Xi into Q
1
dec

. Similarly, whenever d2 receives
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this mixture, d2 can use the known Yi and the received [Yi + Yj] to extract the

desired Yj, and thus we can insert Yj into Q
2
dec

. The remaining reception status

are d1d2r, d1d2r, and d2d2r. One can see that the first case when only r receives

the mixture exactly falls into the Case 3 scenario of QmCX

{r} . For the second

case when both d2 and r receive the mixture, now r contains {Xi, [Yi + Yj]};
d1 contained {Yj, [Xi + Yi]} before; and d2 contains {Yi, [Yi + Yj]}, where we

now have Yj ∈ Q2
dec

from the previous discussion. This falls exactly into the

third-case scenario of Q
[1]
{rd2}

where Wi is a pure session-2 packet Yi. Note that

delivering [Yi + Yj ] will enable d1 to further decode the desired Xi. Thus we

can move [Yi + Yj] into Q
[1]
{rd2}

as the Case 3 insertion. For the third case when

both d1 and r receive the mixture, now r contains {Xi, [Yi + Yj]}; d1 contains

{Yj, [Xi + Yi], [Yi + Yj]}; and d2 contained Yi before. This falls exactly into the

third-case scenario of Q
[2]
{rd1}

where Wj is a pure session-2 packet Yj. As a result,

we can move [Yi + Yj] into Q
[2]
{rd1}

as the Case 3 insertion. (And obviously, d1 can

decode the desired Xi from the previous discussion.)

• sCX;4: s transmits [Yi + Xj] from Yi ∈ Q
(1)|1
{d2}|{r}

and Xj ∈ Q
(2)|2
{d1}|{r}

. The movement

process is as follows.

Q
(1)|1
{d2}|{r}

Yi−→,

Q
(2)|2
{d1}|{r}

Xj−−→
d1d2r

[Yi+Xj ]−−−−−→ QmCX

{r}

Q
(2)|2
{d1}|{r}

Xj−−→ d1d2r
Yj(≡Xj)−−−−−→ Q2

dec

Q
(1)|1
{d2}|{r}

Yi−→ d1d2r
Xi(≡Yi)−−−−−→ Q1

dec

Q
(1)|1
{d2}|{r}

Yi−→,

Q
(2)|2
{d1}|{r}

Xj−−→

d1d2r
[Yi+Xj ]−−−−−→
Case 3

Q
[1]
{rd2}

,
Yj(≡Xj)−−−−−→ Q2

dec

d1d2r
Xi(≡Yi)−−−−−→ Q1

dec
,

[Yi+Xj ]−−−−−→
Case 3

Q
[2]
{rd1}

d1d2r Xi(≡Yi)−−−−−→ Q1
dec

,
Yj(≡Xj)−−−−−→ Q2

decd1d2r

- Departure: From the property for Yi ∈ Q
(1)|1
{d2}|{r}

, we know that Yi is unknown

to any of {d1, r}, even not flagged in RL{r}. As a result, whenever r receives the

mixture [Yi + Xj], Yi must be removed from Q
(1)|1
{d2}|{r}

. Moreover, Xj ∈ Q
(2)|2
{d1}|{r}

is known by d1. As a result, whenever d1 receives the mixture, d1 can use the

known Xj and the received [Yi +Xj] to decode Yi and thus Yi must be removed
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from Q
(1)|1
{d2}|{r}

. Symmetrically for Xj ∈ Q
(2)|2
{d1}|{r}

, whenever the mixture is received

by any of {d2, r}, Xj must be removed from Q
(2)|2
{d1}|{r}

.

- Insertion: From the properties of Yi ∈ Q
(1)|1
{d2}|{r}

and Xj ∈ Q
(2)|2
{d1}|{r}

, we know

that r contains {Xi, Yj} where Xi (resp. Yj) is still unknown to d1 (resp. d2)

and Xi ≡ Yi (resp. Yj ≡ Xj); d1 contains {[Xi + Yi], Xj}; and d2 contains

{Yi, [Yj+Xj]} already. Therefore, whenever d1 receives the mixture [Yi+Xj ], d1

can use the known {[Xi+Yi], Xj} and the received [Yi+Xj] to extract the desired

Xi and thus we can insert Xi into Q1
dec

. Similarly, whenever d2 receives this

mixture, d2 can use the known {Yi, [Yj+Xj]} and the received [Yi+Xj] to extract

the desired Yj, and thus we can insert Yj into Q2
dec

. The remaining reception

status are d1d2r, d1d2r, and d2d2r. One can see that the first case when only r

receives the mixture exactly falls into the Case 4 scenario ofQmCX

{r} . For the second

case when both d2 and r receive the mixture, now r contains {Xi, Yj, [Yi +Xj]};
d1 contained {[Xi + Yi], Xj} before; and d2 contains {Yi, [Yj + Xj ], [Yi + Xj]}
where we now have Xj ∈ Q1

dec
from the previous discussion. This falls exactly

into the third-case scenario of Q
[1]
{rd2}

where Wi is a pure session-2 packet Yi. Note

that delivering [Yi +Xj] will enable d1 to further decode the desired Xi. Thus

we can move [Yi + Xj ] into Q
[1]
{rd2}

as the Case 3 insertion. For the third case

when both d1 and r receive the mixture, now r contains {Xi, Yj, [Yi +Xj]}; d1
contains {[Xi+Yi], Xj, [Yi+Xj]}; and d2 contained {Yi, [Yj+Xj ]} before, where

we now have Yi ∈ Q2
dec

from the previous discussion. This falls exactly into the

third-case scenario of Q
[2]
{rd1}

where Wj is a pure session-2 packet Xj. Note that

delivering [Yi+Xj ] will enable d2 to further decode the desired Yj. Thus we can

move [Yi +Xj] into Q
[2]
{rd1}

as the Case 3 insertion.
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• sCX;5:s transmits [Xi+W j] from Xi ∈ Q1
{d2}

andW j ∈ Q
[2]
{rd1}

. The movement process

is as follows.
Q1
{d2}

Xi−−→ d1d2r
Xi−−−−→

Case 1
Q

[1]
{rd2}

Q
[2]
{rd1}

W j−−→ d1d2r
Yj(≡W j)−−−−−−→ Q2

dec

Q1
{d2}

Xi−−→ d1d2r
Xi−−→ Q1

dec

Q1
{d2}

Xi−−→,

Q
[2]
{rd1}

W j−−→
d1d2r

Xi−−−−→
Case 1

Q
[1]
{rd2}

,
Yj(≡W j)−−−−−−→ Q2

dec

Q1
{d2}

Xi−−→ d1d2r
Xi−−→ Q1

dec

Q1
{d2}

Xi−−→,

Q
[2]
{rd1}

W j−−→

d1d2r
Xi−−→ Q1

dec
,

Yj(≡W j)−−−−−−→ Q2
dec

d1d2r

- Departure: The property for Xi ∈ Q1
{d2}

is that Xi must be unknown to any of

{d1, r}, even not flagged in RL{d1,r}. As a result, whenever the mixture [Xi+W j ]

is received by any of {d1, r}, Xi must be removed from Q1
{d2}

. Similarly, one

condition for W j ∈ Q
[2]
{rd1}

is that W j must be unknown to d2. However when d2

receives the mixture, d2 can use the known Xi ∈ Q1
{d2}

and the received [Xi+W j ]

to decode W j. Thus W j must be removed from Q
[2]
{rd1}

whenever d2 receives.

- Insertion: From the properties of Xi ∈ Q1
{d2}

and W j ∈ Q
[2]
{rd1}

, we know that r

contains W j ; d1 contains W j; and d2 contains Xi already. Therefore, whenever

d1 receives this mixture, d1 can use the known W j and the received [Xi+W j ] to

extract the desired Xi and thus we can insert Xi into Q
1
dec

. Similarly, whenever

d2 receives this mixture, d2 can use the known Xi and the received [Xi +W j ]

to extract W j. We now need to consider case by case when W j was inserted

into Q
[2]
{rd1}

. If it was the Case 1 insertion, then W j is a pure session-2 packet

Yj and thus we can simply insert Yj into Q2
dec

. If it was the Case 2 insertion,

then W j is a pure session-2 packet Xj ∈ Q1
dec

and there exists a session-2 packet

Yj still unknown to d2 where Yj ≡ Xj. Moreover, d2 has received [Yj + Xj ].

As a result, d2 can further decode Yj and thus we can insert Yj into Q2
dec

. If it

was the Case 3 insertion, then W j is a mixed form of [Wi +Wj ] where Wi is

already known by d2 butWj is not. As a result, d2 can decodeWj upon receiving

W j = [Wi +Wj]. Note that Wj in the Case 3 insertion W j = [Wi +Wj ] ∈ Q
[2]
{rd1}
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comes from either Q2
{d1}

or Q
(2)|2
{d1}|{r}

. If Wj was coming from Q2
{d1}

, then Wj is a

session-2 packet Yj and we can simply insert Yj into Q
2
dec

. IfWj was coming from

Q
(2)|2
{d1}|{r}

, then Wj is a session-1 packet Xj and there also exists a session-2 packet

Yj still unknown to d2 where Yj ≡ Xj . Moreover, d2 has received [Yj +Xj ]. As

a result, d2 can further use the known [Yj +Xj] and the extracted Xj to decode

Yj and thus we can insert Yj into Q2
dec

. In a nutshell, whenever d2 receives the

mixture [Xi +W j], a session-2 packet Yj that was unknown to d2 can be newly

decoded. The remaining reception status are d1d2r and d1d2r. For both cases

when r receives the mixture but d1 does not, r can use the known W j and the

received [Xi +W j ] to extract Xi. Since Xi is now known by both r and d2 but

unknown to d1, we can thus move Xi into Q
[1]
{rd2}

as the Case 1 insertion.

• sCX;6:s transmits [W i+Yj ] from W i ∈ Q
[1]
{rd2}

and Yj ∈ Q2
{d1}

. The movement process

is symmetric to sCX;5.

• sCX;7: s transmits [Yi + W j ] from Yi ∈ Q
(1)|1
{d2}|{r}

and W j ∈ Q
[2]
{rd1}

. The movement

process is as follows.

Q
(1)|1
{d2}|{r}

Yi−→ d1d2r
Yi−−−−→

Case 2
Q

[1]
{rd2}

Q
[2]
{rd1}

W j−−→ d1d2r
Yj(≡W j)−−−−−−→ Q2

dec

Q
(1)|1
{d2}|{r}

Yi−→ d1d2r
Xi(≡Yi)−−−−−→ Q1

dec

Q
(1)|1
{d2}|{r}

Yi−→,

Q
[2]
{rd1}

W j−−→
d1d2r

Yi−−−−→
Case 2

Q
[1]
{rd2}

,
Yj(≡W j)−−−−−−→ Q2

dec

Q
(1)|1
{d2}|{r}

Yi−→ d1d2r
Xi(≡Yi)−−−−−→ Q1

dec

Q
(1)|1
{d2}|{r}

Yi−→,

Q
[2]
{rd1}

W j−−→

d1d2r
Xi(≡Yi)−−−−−→ Q1

dec
,

d1d2r
Yj(≡W j)−−−−−−→ Q2

dec

- Departure: From the property for Yi ∈ Q
(1)|1
{d2}|{r}

, we know that Yi is unknown

to any of {d1, r}, even not flagged in RL{r}. As a result, whenever r receives the

mixture [Yi +W j ], Yi must be removed from Q
(1)|1
{d2}|{r}

. Moreover, W j ∈ Q
[2]
{rd1}

is

known by d1. As a result, whenever d1 receives the mixture, d1 can use the known

W j and the received [Yi +W j ] to decode Yi and thus Yi must be removed from

Q
(1)|1
{d2}|{r}

. Similarly, one condition for W j ∈ Q
[2]
{rd1}

is that W j must be unknown
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to d2. However when d2 receives the mixture, d2 can use the known Yi ∈ Q
(1)|1
{d2}|{r}

and the received [Yi+W j] to decode W j . Thus W j must be removed from Q
[2]
{rd1}

whenever d2 receives.

- Insertion: From the properties of Yi ∈ Q
(1)|1
{d2}|{r}

and W j ∈ Q
[2]
{rd1}

, we know that

r contains {Xi,W j}; d1 contains {[Xi + Yi],W j}; and d2 contains Yi already.

Therefore, whenever d1 receives this mixture, d1 can use the known {[Xi +

Yi],W j} and the received [Yi +W j] to extract the desired Xi and thus we can

insert Xi into Q
1
dec

. Similarly, whenever d2 receives this mixture, d2 can use the

known Yi and the received [Yi +W j] to extract W j. We now need to consider

case by case when W j was inserted into Q
[2]
{rd1}

. If it was the Case 1 insertion,

thenW j is a pure session-2 packet Yj and thus we can simply insert Yj into Q
2
dec

.

If it was the Case 2 insertion, then W j is a pure session-1 packet Xj ∈ Q1
dec

and

there exists a session-2 packet Yj still unknown to d2 where Yj ≡ Xj. Moreover,

d2 has received [Yj + Xj]. As a result, d2 can further decode Yj and thus we

can insert Yj into Q
2
dec

. If it was the Case 3 insertion, then W j is a mixed form

of [Wi +Wj] where Wi is already known by d2 but Wj is not. As a result, d2

can decode Wj upon receiving W j = [Wi +Wj ]. Note that Wj in the Case 3

insertion W j = [Wi +Wj] ∈ Q
[2]
{rd1}

comes from either Q2
{d1}

or Q
(2)|2
{d1}|{r}

. If Wj was

coming from Q2
{d1}

, then Wj is a session-2 packet Yj and we can simply insert

Yj into Q2
dec

. If Wj was coming from Q
(2)|2
{d1}|{r}

, then Wj is a session-1 packet Xj

and there also exists a session-2 packet Yj still unknown to d2 where Yj ≡ Xj .

Moreover, d2 has received [Yj +Xj ]. As a result, d2 can further use the known

[Yj +Xj] and the extracted Xj to decode Yj and thus we can insert Yj into Q
2
dec

.

In a nutshell, whenever d2 receives the mixture [Yi +W j], a session-2 packet Yj

that was unknown to d2 can be newly decoded. The remaining reception status

are d1d2r and d1d2r. For both cases when r receives the mixture but d1 does

not, r can use the known W j and the received [Yi +W j ] to extract Yi. Since Yi

is now known by both r and d2 but [Xi + Yi] is in RL{d1}, we can thus move Yi

into Q
[1]
{rd2}

as the Case 2 insertion.
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• sCX;8: s transmits [W i + Xj] from W i ∈ Q
[1]
{rd2}

and Xj ∈ Q
(2)|2
{d1}|{r}

. The movement

process is symmetric to sCX;7.

• r1
UC
: r transmits Xi from Xi ∈ Q1

{r}. The movement process is as follows.

Q1
{r}

Xi−−→
d1d2

Xi−−−−→
Case 1

Q
[1]
{rd2}

d1d2 Xi−−→ Q1
decd1d2

- Departure: One condition for Xi ∈ Q1
{r} is that Xi must be unknown to any

of {d1, d2}. As a result, whenever Xi is received by any of {d1, d2}, Xi must be

removed from Q1
{r}.

- Insertion: From the above discussion, we know that Xi is unknown to d1. As a

result, whenever Xi is received by d1, we can insert Xi to Q
1
dec

. If Xi is received

by d2 but not by d1, then Xi is now known by both d2 and r but still unknown

to d1. This exactly falls into the first-case scenario of Q
[1]
{rd2}

and thus we can

move Xi into Q
[1]
{rd2}

as the Case 1 insertion.

• r2
UC
: r transmits Yj from Yj ∈ Q2

{r}. The movement process is symmetric to r1
UC
.

• r(1)
DT

: r transmits Xi that is known by r only and information equivalent from

Yi ∈ Q
(1)|1
{d2}|{r}

. The movement process is as follows.

Q
(1)|1
{d2}|{r}

Yi−→
d1d2

Xi−−−−→
Case 1

Q
[1]
{rd2}

d1d2 Xi(≡Yi)−−−−−→ Q1
decd1d2

- Departure: From the property for Yi ∈ Q
(1)|1
{d2}|{r}

, we know that there exists an

information-equivalent session-1 packet Xi that is known by r but unknown to

any of {d1, d2}. As a result, whenever Xi is received by any of {d1, d2}, Yi must

be removed from Q
(1)|1
{d2}|{r}

.

- Insertion: From the above discussion, we know that Xi is unknown to d1 and

thus we can insert Xi to Q
1
dec

whenever Xi is received by d1. If Xi is received by

d2 but not by d1, then Xi is now known by both d2 and r but still unknown to

d1. This exactly falls into the first-case scenario of Q
[1]
{rd2}

and thus we can move

Xi into Q
[1]
{rd2}

as the Case 1 insertion.
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• r(2)
DT

: r transmits Yj that is known by r only and information equivalent from Xj ∈
Q

(2)|2
{d1}|{r}

. The movement process is symmetric to r
(1)
DT

.

• rRC: r transmits W known by r for the packet of the form [Xi + Yj] : W ∈ Qmix.

The movement process is as follows.

Qmix

[Xi+Yj ]:W−−−−−−−→
d1d2

either
Xi−−−−→

Case 1
Q

[1]
{rd2}

or
Yj−−−−→

Case 2
Q

[1]
{rd2}

,

Yj−→ Q2
dec

d1d2

Xi−−→ Q1
dec,

either
Yj−−−−→

Case 1
Q

[2]
{rd1}

or
Xi−−−−→

Case 2
Q

[2]
{rd1}

d1d2
Xi−−→ Q1

dec
,

Yj−→ Q2
dec

- Departure: From the conditions of [Xi + Yj] : W ∈ Qmix, we know that Qmix is

designed to benefit both destinations simultaneously when r transmits W . That

is, whenever d1 (resp. d2) receives W , d1 (resp. d2) can decode the desired Xi

(resp. Yj), regardless whether the packet W is of a session-1 or of a session-2.

However from the conditions of Qmix, we know that Xi is unknown to d1 and

Yj is unknown to d2. Therefore, whenever W is received by any of {d1, d2},
[Xi + Yj] : W must be removed from Q

[1]
{rd2}

.

- Insertion: From the above discussions, we know that d1 (resp. d2) can decode

the desired Xi (resp. Yj) when W is received by d1 (resp. d2). As a result, we

can insert Xi into Q
1
dec

(resp. Yj into Q2
dec

) when d1 (resp. d2) receives W . We

now consider two reception status d1d2 and d1d2. From the conditions of Qmix,

note that W is always known by r and can be either Xi or Yj . Moreover, Xi

(resp. Yj) is unknown to d1 (resp. d2). For the first reception case d1d2, if Xi was

chosen as W to benefit both destinations, then Xi is now known by both d2 and

r but still unknown to d1. This exactly falls into the first-case scenario of Q
[1]
{rd2}

and thus we move Xi into Q
[1]
{rd2}

as the Case 1 insertion. On the other hand, if

Yj was chosen as W to benefit both destinations, then we know that Yj is now

known by both d2 and r, and that [Xi + Yj] is already in RL{d1}. This exactly

falls into the second-case scenario of Q
[1]
{rd2}

and thus we can move Yj ∈ Q2
dec

into

Q
[1]
{rd2}

as the Case 2 insertion. The second reception case d1d2 will follow the the

previous arguments symmetrically.
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• r
XT

: r transmits [Wi +Wj ] ∈ QmCX

{r} . The movement process is as follows.

QmCX

{r}

[Wi+Wj ]−−−−−−→

d1d2

[Wi+Wj ]−−−−−−→
Case 3

Q
[1]
{rd2}

,

Yj(≡Wj)−−−−−−→ Q2
dec

d1d2

Xi(≡Wi)−−−−−−→ Q1
dec

,
[Wi+Wj ]−−−−−−→
Case 3

Q
[2]
{rd1}

d1d2

Xi(≡Wi)−−−−−−→ Q1
dec

,
Yj(≡Wj)−−−−−−→ Q2

dec

- Departure: From the property for [Wi+Wj ] ∈ QmCX

{r} , we know thatWi is known

only by d2 and that Wj is only known by d1. As a result, whenever d1 receives

this mixture, d1 can use the known Wj and the received [Wi +Wj] to extract

Wi and thus the mixture must be removed from QmCX

{r} . Similarly, whenever d2

receives this mixture, d2 can use the known Wi and the received [Wi +Wj ] to

extract Wj and thus the mixture must be removed from QmCX

{r} .

- Insertion: From the above discussions, we have observed that whenever d1

(resp. d2) receives the mixture, d1 (resp. d2) can extract Wi (resp. Wj). From

the four cases study of QmCX

{r} , we know that d1 (resp. d2) can decode a desired

session-1 packet Xi (resp. session-2 packet Yj) whenever d1 (resp. d2) receives

the mixture, and thus we can insert Xi (resp. Yj) into Q1
dec

(resp. Q2
dec

). We

now consider the reception status d1d2 and d1d2. If d2 receives the mixture but

d1 does not, then d1 contained Wj and d2 now contains [Wi +Wj]. Moreover,

[Wi+Wj] was transmitted from r. This falls exactly into the third-case scenario

of Q
[1]
{rd2}

. As a result, we can move [Wi +Wj] into Q
[1]
{rd2}

as the Case 3 insertion.

The case when the reception status is d1d2 can be symmetrically followed such

that we can move [Wi +Wj ] into Q
[2]
{rd1}

as the Case 3 insertion.

• r[1]
DT

: r transmits W i ∈ Q
[1]
{rd2}

. The movement process is as follows.

do nothing d1d2 do nothing

Q
[1]
{rd2}

W i−−→ d1d2 Xi(≡W i)−−−−−−→ Q1
decd1d2

- Departure: One condition for W i ∈ Q
[1]
{rd2}

is that W i is known by d2 unknown

to d1. As a result, whenever d1 receives, W i must be removed from Q
[1]
{rd2}

. Since

W i ∈ Q
[1]
{rd2}

is already known by d2, nothing happens if it is received by d2.
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- Insertion: From the previous observation, we only need to consider the recep-

tion status when d1 receives W i. For those d1d2 and d1d2, we need to consider

case by case when W i was inserted into Q
[1]
{rd2}

. If it was the Case 1 insertion,

thenW i is a pure session-1 packet Xi and thus we can simply insert Xi into Q
1
dec

.

If it was the Case 2 insertion, then W i is a pure session-2 packet Yi ∈ Q2
dec

and

there exists a session-1 packet Xi still unknown to d1 where Xi ≡ Yi. Moreover,

d1 has received [Xi + Yi]. As a result, d1 can further decode Xi and thus we can

insert Xi into Q
1
dec

. If it was the Case 3 insertion, then W i is a mixed form of

[Wi +Wj ] where Wj is already known by d1 but Wi is not. As a result, d1 can

decode Wi upon receiving W i = [Wi+Wj]. Note that Wi in the Case 3 insertion

W i = [Wi +Wj ] ∈ Q
[1]
{rd2}

comes from either Q1
{d2}

or Q
(1)|1
{d2}|{r}

. If Wi was coming

from Q1
{d2}

, then Wi is a session-1 packet Xi and we can simply insert Xi into

Q1
dec

. If Wi was coming from Q
(1)|1
{d2}|{r}

, then Wi is a session-2 packet Yi and there

also exists a session-1 packet Xi still unknown to d1 where Xi ≡ Yi. Moreover,

d1 has received [Xi+Yi]. As a result, d1 can further use the known [Xi+Yi] and

the extracted Yi to decode Xi and thus we can insert Xi into Q
1
dec

. In a nutshell,

whenever d1 receives W i, a session-1 packet Xi that was unknown to d1 can be

newly decoded.

• r[2]
DT

: r transmits W j ∈ Q
[2]
{rd1}

. The movement process is symmetric to r
[1]
DT

.

• r
CX
: r transmits [W i+W j ] from W i ∈ Q

[1]
{rd2}

and W j ∈ Q
[2]
{rd1}

. The movement

process is as follows.

Q
[2]
{rd1}

W j−−→ d1d2
Yj(≡W j)−−−−−−→ Q2

dec

Q
[1]
{rd2}

W i−−→ d1d2
Xi(≡W i)−−−−−−→ Q1

dec

Q
[1]
{rd2}

W i−−→,

Q
[2]
{rd1}

W j−−→
d1d2

Xi(≡W i)−−−−−−→ Q1
dec

,

Yj(≡W j)−−−−−−→ Q2
dec

- Departure: From the property for W i ∈ Q
[1]
{rd2}

, we know that W i is known by

d2 but unknown to d1. Symmetrically, W j ∈ Q
[2]
{rd1}

is known by d1 but unknown

to d2. As result, whenever d1 (resp. d2) receives the mixture, d1 (resp. d2) can

use the known W j (resp. W i) and the received [W i+W j ] to extract W i (resp.
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W j). Therefore, we must remove W i from Q
[1]
{rd2}

whenever d1 the mixture and

remove W j from Q
[2]
{rd1}

whenever d2 receives.

- Insertion: From the above discussions, we have observed that whenever d1

(resp. d2) receives the mixture, d1 (resp. d2) can extract W i (resp. W j). We

first focus on the case when d1 receives the mixture. For those d1d2 and d1d2, we

can use the same arguments for W i as described in the Insertion process of r
[1]
DT

.

Following these case studies, one can see that a session-1 packet Xi that was

unknown to d1 can be newly decoded whenever d1 receives W i. The reception

status when d2 receives the mixture can be followed symmetrically such that d2

can always decode a new session-2 packet Yj that was unknown before.
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I. DETAILED DESCRIPTION OF ACHIEVABILITY

SCHEMES IN FIG. 4.3

In the following, we describe (R1, R2) rate regions of each suboptimal achievability

scheme used for the numerical evaluation in Section 4.3.

• Intra-Flow Network Coding only: The rate regions can be described by Propo-

sition 4.2.1, if the variables {sk
PM1

, sk
PM2

, sk
RC

: for all k ∈ {1, 2}}, {sCX;l (l=1, · · · , 8)},
{rRC, rXT, rCX} are all hardwired to 0. Namely, we completely shut down all the vari-

ables dealing with cross-packet-mixtures. After such hardwirings, Proposition 4.2.1

is further reduced to the following form:

1 ≥
∑

k∈{1,2}

(

skUC + skDX + rkUC + r
[k]
DT

)

,

and consider any i, j ∈ (1, 2) satisfying i 6= j. For each (i, j) pair (out of the two

choices (1, 2) and (2, 1)),

Ri ≥ siUC · ps(di, dj, r),

si
UC

· ps→didjr
≥ ri

UC
· pr(di, dj),

siUC · ps→didjr
≥ siDX · ps(di, r),

si
UC

· ps→didjr
+ si

DX
· ps(dir) + ri

UC
· pr→didj

≥ r
[i]
DT

· pr(di),
(

siUC + siDX

)

· ps(di) +
(

riUC + r
[i]
DT

)

· pr(di) ≥ Ri.
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• Always Relaying with NC: This scheme requires that all the packets go through

r, and then r performs 2-user broadcast channel NC. The corresponding rate regions

can be described as follows:

R1

pr(d1)
+

R2

pr(d1, d2)
≤ 1− R1 +R2

ps(r)
,

R1

pr(d1, d2)
+

R2

pr(d2)
≤ 1− R1 +R2

ps(r)
.

• Always Relaying with routing: This scheme requires that all the packets go

through r as well, but r performs uncoded routing for the final delivery. The corre-

sponding rate regions can be described as follows:

R1

pr(d1)
+

R2

pr(d2)
≤ 1− R1 +R2

ps(r)
.

• [47] without Relaying: This scheme completely ignores the relay r in the middle,

and s just performs 2-user broadcast channel LNC of [47]. The corresponding rate

regions can be described as follows:

R1

ps(d1)
+

R2

ps(d1, d2)
≤ 1,

R1

ps(d1, d2)
+

R2

ps(d2)
≤ 1.

• Routing without Relaying: This scheme completely ignores the relay r in the

middle, and s just performs uncoded routing. The corresponding rate regions can be

described as follows:

R1

ps(d1)
+

R2

ps(d2)
≤ 1.



201

J. PROOFS OF PROPOSITIONS AND COROLLARIES

FOR CHAPTER 5

J.1 Proofs of Propositions 5.4.1 and 5.4.2

We prove Proposition 5.4.1 as follows.

Proof of ⇒ direction of Proposition 5.4.1: We prove this direction by contra-

diction. Suppose that h(x) is linearly dependent. Then, there exists a set of coef-

ficients {αk}Nk=1 such that
∑N

k=1 αkhk(x) = 0 and at least one of them is non-zero.

Since [h(x(k))]Nk=1 is row-invariant, we can perform elementary column operations on

[h(x(k))]Nk=1 using {αk}Nk=1 to create an all-zero column. Thus, det([h(x(k))]Nk=1) is a

zero polynomial. �

Proof of ⇐ direction of Proposition 5.4.1: This direction is also proven by con-

tradiction. Suppose that det([h(x(k))]Nk=1) is a zero polynomial. We will prove that

h(x) is linearly dependent by induction on the value of N . For N=1, det([h(x(k))]Nk=1)

= 0 implies that h1(x) is a zero polynomial, which by definition is linearly dependent.

Suppose that the statement holds for any N<n0. When N= n0, consider the

(1,1)-th cofactor of [h(x(k))]Nk=1, which is the determinant of the submatrix of the

intersection of the 2nd to N -th rows and the 2nd to N -th columns. Consider the

following two cases. Case 1: the (1, 1)-th cofactor is a zero polynomial. Then by

the induction assumption {h2(x), ..., hN(x)} is linearly dependent. By definition, so

is h(x). Case 2: the (1, 1)-th cofactor is a non-zero polynomial. Since we assume

a sufficiently large q, there exists an assignment x̂2 ∈F
|x|
q to x̂N ∈F

|x|
q such that the

value of the (1,1)-th cofactor is non-zero when evaluated by x̂2 to x̂N . But note that

by the Laplace expansion, we also have
∑N

k=1 hk(x
(1))C1k = 0 where C1k is the (1, k)-

th cofactor. By evaluating C1k with {x̂i}Ni=2, we can conclude that h(x) is linearly

dependent since at least one of C1k (specifically C11) is non-zero. �
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We prove Proposition 5.4.2 as follows.

Proof of ⇐ direction of Proposition 5.4.2: This can be proved by simply choos-

ing G′=G. �

Proof of ⇒ direction of Proposition 5.4.2: Since we have f({mei;e′i
(x) : ∀ i ∈

I})≡ g({mei;e′i
(x) : ∀ i∈I}), we can assume f({mei;e′i

(x) : ∀ i∈I})=αg({mei;e′i
(x) :

∀ i∈ I}) for some non-zero α∈Fq. Consider any subgraph G′ containing all edges in

{ei, e′i : ∀ i∈I} and the channel gain mei;e′i
(x′) on G′. Then, mei;e′i

(x′) can be derived

from mei;e′i
(x) by substituting those x variables that are not in G′ by zero. As a

result, we immediately have f({mei;e′i
(x′) : ∀ i∈I})=αg({mei;e′i

(x′) : ∀ i∈I}) for the
same α. The proof of this direction is thus complete. �

J.2 Proofs of Corollaries 5.4.1 and 5.4.2

We prove Corollary 5.4.1 as follows.

Proof of ⇒ direction of Corollary 5.4.1: We assume (i1, i2)=(1, 2) and (j1, j2)=

(1, 3) without loss of generality. Since EC({s1, s2}; {d1, d3}) =1, there exists an edge

e∗ that separates {d1, d3} from {s1, s2}. Therefore, we must have m11=mes1 ;e
∗me∗;ed1

,

m13 = mes1 ;e
∗me∗;ed3

, m21 = mes2 ;e
∗ me∗;ed1

, and m23 = mes2 ;e
∗me∗;ed3

. As a result,

m11m23≡ m21m13. �

Proof of ⇐ direction of Corollary 5.4.1: We prove this direction by contradic-

tion. Suppose that EC({si1 , si2}; {dj1, dj2}) ≥ 2. In a G3ANA network, each source

(resp. destination) has only one outgoing (resp. incoming) edge. Therefore, the

assumption EC({si1 , si2}; {dj1, dj2}) ≥ 2 implies that at least one of the following

two cases must be true: Case 1: There exists a pair of edge-disjoint paths Psi1dj1

and Psi2dj2
; Case 2: There exists a pair of edge-disjoint paths Psi1dj2

and Psi2dj1
.

For Case 1, we consider the network variables that are along the two edge-disjoint

paths, i.e., consider the collection x′ of network variables xee′ ∈ x such that either
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both e and e′ are used by Psi1dj1
or both e and e′ are used by Psi2dj2

. We keep those

variables in x′ intact and set the other network variables to be zero. As a result,

we will have mi1j1(x
′)mi2j2(x

′) =
∏

∀xee′∈x
′ xee′ and mi2j1(x

′)mi1j2(x
′) = 0 where the

latter is due the edge-disjointness between two paths Psi1dj1
and Psi2dj2

. This im-

plies that before hardwiring the variables outside x′, we must have mi1j1(x)mi2j2(x)

6≡ mi2j1(x)mi1j2(x). The proof of Case 1 is complete. Case 2 can be proven by

swapping the labels of j1 and j2. �

We prove Corollary 5.4.2 as follows.

Proof of Corollary 5.4.2: When (i1, j1) = (i2, j2), obviously we have mi1j1 =mi2j2

and GCD(mi1j1, mi2j2)≡ mi2j2 . Suppose that for some (i1, j1) 6= (i2, j2), we have

GCD(mi1j1, mi2j2) ≡ mi2j2 . Without loss of generality, we assume i1 6= i2. Since

the channel gains are defined for two distinct sources, we must have mi1j1 6≡ mi2j2.

As a result, GCD(mi1j1, mi2j2)≡ mi2j2 implies that mi1j1 must be reducible. By

Proposition 5.4.3, mi1j1 must be expressed as mi1j1 = mesi1
;e1

(

∏N−1
i=1 mei;ei+1

)

meN ;edj1

where each term corresponds to a pair of consecutive 1-edge cuts separating si1 and

dj1. For mi1j1 to contain mi2j2 as a factor, the source edge esi2 must be one of the 1-

edge cuts separating si1 and dj1. This contradicts the assumption that in a 3-unicast

ANA network |In(si)|=0 for all i. The proof is thus complete. �

J.3 Proof of Proposition 5.4.3

Proposition 5.4.3 will be proven through the concept of the line graph, which is

defined as follows: The line graph of a DAG G=(V,E) is represented as G=(V,E),

with the vertex set V=E and edge set E= {(e′, e′′) ∈ E2 : head(e′) = tail(e′′)} (the

set representing the adjacency relationships between the edges of E). Provided that

G is directed acyclic, its line graph G is also directed acyclic. The graph-theoretic

notations for G defined in Section 5.1 are applied in the same way as in G.

Note that the line graph translates the edges into vertices. Thus, a vertex cut in

the line graph is the counterpart of the edge cut in a normal graph. Specifically, a
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k-vertex cut separating vertex sets U and W is a collection of k vertices other than

the vertices in U and W such that any path from any u∈U to any w∈W must use

at least one of those k vertices. Moreover, the minimum value (number of vertices)

of all the possible vertex cuts between vertex sets U and W is termed VC(U ;W ). For

any nodes u and v in V , one can easily see that EC(u; v) in G is equal to VC(ũ; ṽ) in

G where ũ and ṽ are the vertices in G corresponding to any incoming edge of u and

any outgoing edge of v, respectively.

Once we focus on the line graph G, the network variables x, originally defined over

the (e′, e′′) pairs of the normal graph, are now defined on the edges of the line graph.

We can thus define the channel gain from a vertex u to a vertex v on G as

m̊u;v =
∑

∀Puv∈Puv

∏

∀ e∈Puv

xe, (J.1)

where Puv denotes the collection of all distinct paths from u to v. For notational

simplicity, we sometimes simply use “an edge e” to refer to the corresponding network

variable xe. Each xe (or e) thus takes values in Fq. When u=v, simply set m̊u;v=1.

The line-graph-based version of Proposition 5.4.3 is described as follows:

Corollary J.3.1. Given the line graph G of a DAG G, m̊ defined above, and two

distinct vertices s and d, the following is true:

• If VC(s; d)=0, then m̊s;d=0

• If VC(s; d)=1, then m̊s;d is reducible and can be expressed as

m̊s;d=m̊s;u1

(

N−1
∏

i=1

m̊ui;ui+1

)

m̊uN ;d,

where {ui}Ni=1 are all the distinct 1-vertex cuts between s and d in the topological

order (from the most upstream to the most downstream). Moreover, the polyno-

mial factors m̊s;u1, {m̊ui;ui+1
}N−1
i=1 , and m̊uN ;d are all irreducible, and no two of

them are equivalent.
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• If VC(s; d)≥2 (including ∞), then m̊s;d is irreducible.

Proof of Corollary J.3.1: We use the induction on the number of edges |E| of

G = (V,E). When |E| = 0, then VC(s; d) = 0 since there are no edges in G. Thus

m̊s;d=0 naturally.

Suppose that the above three claims are true for |E|= k − 1. We would like to

prove that those claims also hold for the line graph G with |E|=k.
Case 1: VC(s; d) = 0 on G. In this case, s and d are already disconnected.

Therefore, m̊s;d=0.

Case 2: VC(s; d)=1 on G. Consider all distinct 1-vertex cuts u1, · · ·, uN between

s and d in the topological order. If we define u0,s and uN+1,d, then we can express

m̊s;d as m̊s;d=
∏N

i=0 m̊ui;ui+1
. Since we considered all distinct 1-vertex cuts between s

and d, we must have VC(ui; ui+1)≥2 for i=0, · · ·, N . By induction, {m̊ui;ui+1
}Ni=0 are

all irreducible. Also, since each sub-channel gain m̊ui;ui+1
covers a disjoint portion of

G, no two of them are equivalent.

Case 3: VC(s; d)≥ 2 on G. Without loss of generality, we can also assume that

s can reach any vertex u∈V and d can be reached from any vertex u∈V. Consider

two subcases: Case 3.1: all edges in E have their tails being s and their heads being

d. In this case, m̊s;d =
∑

e∈E xe. Obviously m̊s;d is irreducible. Case 3.2: at least one

edge in E is not directly connecting s and d. In this case, there must exist an edge

e′ such that s≺ tail(e′) and head(e′)=d. Arbitrarily pick one such edge e′ and fix it.

We denote the tail vertex of the chosen e′ by w. By the definition of (J.1), we have

m̊s;d = m̊s;wxe′ + m̊′
s;d, (J.2)

where m̊s;w is the channel gain from s to w, and m̊′
s;d is the channel gain from s to d

on the subgraph G′=G\{e′} that removes e′ from G. Note that there always exists a

path from s to d not using w on G′ otherwise w will be a cut separating s and d on

G, contradicting the assumption that VC(s; d)≥2.
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We now argue by contradiction that m̊s;d must be irreducible. Suppose not, then

m̊s;d can be written as a product of two polynomials A and B with the degrees of A

and B being larger than or equal to 1. We can always write A = xe′A1+A2 by singling

out the portion of A that has xe′ as a factor. Similarly we can write B = xe′B1 +B2.

We then have

m̊s;d = (x′eA1 + A2)(x
′
eB1 +B2). (J.3)

We first notice that by (J.2) there is no quadratic term of xe′ in m̊s;d. Therefore,

one of A1 and B1 must be a zero polynomial. Assume B1 = 0. Comparing (J.2) and

(J.3) shows that m̊s;w = A1B2 and m̊
′
s;d = A2B2. Since the degree of B is larger than

or equal to 1 and B1 = 0, the degree of B2 must be larger than equal to 1. As a

result, we have GCD( m̊s;w, m̊
′
s;d) 6≡1 (having at least a non-zero polynomial B2 as its

common factor).

The facts that GCD(m̊s;w, m̊
′
s;d) 6≡ 1 and w ≺ d imply that one of the following

three cases must be true: (i) Both m̊s;w and m̊′
s;d are reducible; (ii) m̊s;w is reducible

but m̊′
s;d is not; and (iii) m̊′

s;d is reducible but m̊s;w is not. For Case (i), by applying

Proposition 5.4.3 to the subgraph G′=G\{e′}, we know that VC(s;w)=VC(s; d)= 1

and both polynomials m̊s;w and m̊′
s;d can be factorized according to their 1-vertex

cuts, respectively. Since m̊s;w and m̊′
s;d have a common factor, there exists a vertex

u that is both a 1-vertex cut separating s and w and a 1-vertex cut separating s and

d when focusing on G′. As a result, such u is a 1-vertex cut separating s and d in

the original graph G. This contradicts the assumption VC(s; d)≥ 2 in G. For Case

(ii), by applying Proposition 5.4.3 to G′, we know that VC(s;w)=1 and m̊s;w can be

factorized according to their 1-vertex cuts. Since m̊s;w and the irreducible m̊′
s;d have a

common factor, m̊s;w must contain m̊′
s;d as a factor, which implies that d is a 1-vertex

cut separating s and w in G′. This contradicts the construction of G′ where w ≺ d.

For Case (iii), by applying Proposition 5.4.3 to G′, we know that VC(s; d) = 1 and

m̊′
s;d can be factorized according to their 1-vertex cuts. Since m̊′

s;d and the irreducible
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m̊s;w have a common factor, m̊′
s;d must contain m̊s;w as a factor, which implies that w

is a 1-vertex cut separating s and d in G′. As a result, w is a 1-vertex cut separating s

and d in the original graph G. This contradicts the assumption VC(s; d)≥2 in G. �
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K. PROOFS OF LEMMAS FOR CHAPTER 6

We prove Lemma 6.1.1 as follows.

Proof of Lemma 6.1.1: Consider indices i 6= j. By the definition, all paths from

si to dj must use all edges in Si and all edges in Dj . Thus, for any e′ ∈Si and any

e′′∈Dj, one of the following statements must be true: e′≺e′′, e′≻e′′, or e′=e′′. �

We prove Lemma 6.1.2 as follows.

Proof of Lemma 6.1.2: Consider three indices i, j, and k taking distinct values in

{1, 2, 3}. Consider an arbitrary edge e∈Di ∩Dj . By definition, all paths from sk to

di, and all paths from sk to dj must use e. Therefore, e∈Sk. �

We prove Lemma 6.1.3 as follows.

Proof of Lemma 6.1.3: Without loss of generality, let i=1 and j=2. Choose the

most downstream edge in S1\D2 and denote it as e′∗. Since e
′
∗ belongs to 1cut(s1; d2)∩

1cut(s1; d3) but not to 1cut(s3; d2), there must exist as3-to-d2path P32 not using e′∗.

In addition, for any e′′∈D2, we have either e
′′≺e′∗, e′′≻e′∗, or e′′=e′∗ by Lemma 6.1.1.

Suppose there exists an edge e′′∈D2 such that e′′≺e′∗. Then by definition, anys3-to-d2

path must use e′′. Also note that since e′′∈D2, there exists a path Ps1tail(e′′) from s1

to tail(e′′). Consider the concatenateds1-to-d2path Ps1tail(e′′)e
′′P32. We first note that

since e′′≺e′∗, the path segment Ps1tail(e′′)e
′′ does not use e′∗. By our construction, P32

also does not use e′∗. Jointly, the above observations contradict the fact that e′∗∈S1

is a 1-edge cut separating s1 and d2. By contradiction, we must have e′∗ � e′′. Note

that since by our construction e′∗ must not be in D2 while e′′ is in D2, we must have

e′∗ 6=e′′ and thus e′∗≺e′′. Since e′∗ was chosen as the most downstream edge of S1\D2,

we have e′≺e′′ for all e′∈S1\D2 and e′′∈D2. The proof is thus complete. �
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We prove Lemma 6.1.4 as follows.

Proof of ⇒ direction of Lemma 6.1.4: We note that (Si∩Dj)⊃(Si∩Dj∩Dk)=

(Dj∩Dk) where the equality follows from Lemma 6.1.2. As a result, when Dj∩Dk 6=∅,
we also have Si∩Dj 6=∅. �

Proof of ⇐ direction of Lemma 6.1.4: Consider three indices i, j, and k taking

distinct values in {1, 2, 3}. Suppose that Si ∩Dj 6= ∅ and Si ∩Dk 6= ∅. Then, for any

e′ ∈Si ∩ Dj and any e′′ ∈Si ∩ Dk, we must have either e′ ≺ e′′, e′ ≻ e′′, or e′ = e′′ by

Lemma 6.1.1. Suppose that Dj∩Dk=∅. Then we must have e′ 6=e′′, which leaves only

two possibilities: either e′ ≺ e′′ or e′ ≻ e′′. However, e′ ≺ e′′ contradicts Lemma 6.1.3

because e′∈ (Si∩Dj)⊂Dj and e′′∈ (Si∩Dk)⊂ (Si\Dj), the latter of which is due to

the assumption of Dj∩Dk= ∅. By swapping the roles of j and k, one can also show

that it is impossible to have e′≻e′′. By contradiction, we must have Dj ∩Dk 6=∅. The
proof is thus complete. �

We prove Lemma 6.1.5 as follows.

Proof of Lemma 6.1.5: Without loss of generality, consider i=1 and j=2. Note

that by Lemma 6.1.1 any e′∈S1∩S2 and any e′′∈D1∩D2 must satisfy either e′≺e′′,
e′≻e′′, or e′=e′′. For the following, we prove this lemma by contradiction.

Suppose that there exists an edge e′′∗ ∈D1∩D2 such that for all e′ ∈ S1∩S2 we

have e′′∗ ≺ e′. For the following, we first prove that any path from si to dj where

i, j∈{1, 2, 3} and i 6= j must pass through e′′∗. To that end, we first notice that by the

definition of D1 and D2 and by the assumption e′′∗∈D1 ∩D2, any path from {s2, s3}
to d1, and any path from {s1, s3} to d2 must use e′′∗. Thus, we only need to prove

that any path from {s1, s2} to d3 must use e′′∗ as well.

Suppose there exists as1-to-d3path P13 that does not use e′′∗. By the definition of

S1, P13 must use all edges of S1 ∩S2, all of which are in the downstream of e′′∗ by the

assumption. Also d2 is reachable from any e′∈S1 ∩ S2. Choose arbitrarily one edge

e′∗∈S1 ∩ S2 and a path Phead(e′
∗
)d2 from head(e′∗) to d2. Then, we can create an path
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P13 e
′
∗ Phead(e′

∗
)d2 from s1 to d2 without using e′′∗. The reason is that P13 does not use

e′′∗ by our construction and e′∗Phead(e′
∗
)d2 does not use e′′∗ since e′′∗≺e′∗. Such ans1-to-d2

path not using e′′∗ thus contradicts the assumption of e′′∗ ∈ (D1∩D2) ⊂ 1cut(s1; d2).

Symmetrically, anys2-to-d3path must use e′′∗.

In summary, we have shown that e′′∗ ∈ ∩3
i=1

(

Si∩Di

)

. However, this contradicts

the assumption that e′′∗ is in the upstream of all e′∈S1 ∩ S2, because we can simply

choose e′=e′′∗∈∩3
i=1

(

Si∩Di

)

⊂ (S1∩S2) and e
′′
∗ cannot be an upstream edge of itself

e′=e′′∗. The proof is thus complete. �

We prove Lemma 6.1.6 as follows.

Proof of Lemma 6.1.6: Without loss of generality, let i = 1, j1 = 1, j2 = 2, and

j3 = 3. Suppose that S1;{1,2} 6= ∅ and S1;{1,3} 6= ∅. For the following, we prove this

lemma by contradiction.

Suppose that S1;{1,2}∩S1;{1,3}= ∅. For any e′ ∈S1;{1,2} and any e′′ ∈S1;{1,3}, since

both e′ and e′′ are 1-edge cuts separating s1 and d1, it must be either e′ ≺ e′′ or

e′≻ e′′, or e′= e′′. The last case is not possible since we assume S1;{1,2} ∩ S1;{1,3}=∅.
Consider the most downstream edges e′∗ ∈ S1;{1,2} and e′′∗ ∈ S1;{1,3}, respectively. We

first consider the case e′∗≺e′′∗ . If all paths from s1 to d3 use e′∗, which, by definition,

use e′′∗, then e′∗ will belong to 1cut(s1; d3), which contradicts the assumption that

S1;{1,2} ∩ S1;{1,3}=∅. Thus, there exists as1-to-d3path P13 using e′′∗ but not e′∗. Then,

s1 can follow P13 and reach d1 via e
′′
∗ without using e′∗. Such as1-to-d1path contradicts

the definition e′∗ ∈ S1;{1,2} ⊂ 1cut(s1; d1). Therefore, it is impossible to have e′∗ ≺ e′′∗.

By symmetric arguments, it is also impossible to have e′∗ ≻ e′′∗. By definition, any

edge in S1;{1,2}∩S1;{1,3} is a 1-edge cut separating s1 and {d2, d3}, which implies that

S1;{2,3}6=∅ and S16=∅. �

We prove Lemma 6.1.7 as follows.

Proof of ⇒ direction of Lemma 6.1.7: Suppose Si;{j1,j2}6=∅. By definition, there

exists an edge e∈1cut(si; dj1) ∩ 1cut(si; dj2) in the downstream of the si-source edge
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esi. Then, the channel gains mij1 and mij2 have a common factor mesi ;e
and we thus

have GCD(mij1 , mij2) 6≡1. �

Proof of ⇐ direction of Lemma 6.1.7: We prove this direction by contradiction.

Suppose GCD(mij1, mij2) 6≡ 1. By Corollary 5.4.2, we know that GCD(mij1, mij2)

must not be mij1 nor mij2. Thus, both must be reducible and by Proposition 5.4.3

can be expressed as the product of irreducibles, for which each factor corresponds to

the consecutive 1-edge cuts in 1cut(si; dj1) and 1cut(si; dj2), respectively. Since they

have at least one common irreducible factor, there exists an edge e∈ 1cut(si; dj1) ∩
1cut(si; dj2) in the downstream of the si-source edge esi . Thus, e∈Si;{j1,j2}. The case

for GCD(mj1i, mj2i)≡1 can be proven symmetrically. The proof is thus complete. �
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L. THE REFERENCE TABLE FOR THE PROOF OF

PROPOSITION 6.3.1

Table L.1: The reference table for the proof of Proposition 6.3.1

The Logic Statements for the Proof of Proposition 6.3.1

C0 to C6 defined in p. 224. G7 to G15 defined in p. 234.

D1 to D6 defined in p. 225. G16 to G26 defined in p. 246.

E0 to E2 defined in p. 223. G27 to G31 defined in p. 265.

G0 defined in p. 213. G32 to G36 defined in p. 270.

G1, G2 defined in p. 100. G37 to G43 defined in p. 274.

G3, G4 defined in p. 213. H1, H2, K1, K2 defined in p. 100.

G5, G6 defined in p. 215. LNR defined in p. 100.

The Logic Relationships for the Proof of Proposition 6.3.1

N1 to N9

defined in p. 215, to help proving Corollary M.2.1,
the general structured proof for the necessity of
Proposition 6.3.1.

R1 to R10 defined in p. 235, to help proving S11.

R11 to R25 defined in p. 247, to help proving S13.

R26 to R33 defined in p. 266, to help proving S14.

R34 to R40 defined in p. 270, to help proving R28.

R41 to R47 defined in p. 275, to help proving R29.

S1 to S14

defined in p. 225, to help proving Corollary N.2.1,
the general structured proof for the sufficiency of
Proposition 6.3.1.

For the ease of exposition, we provide the Table L.1, the reference table. The

reference table helps finding where to look for the individual logic statements and

relationships for the entire proof of Proposition 6.3.1.
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M. GENERAL STRUCTURED PROOF FOR THE

NECESSITY OF PROPOSITION 6.3.1

In this appendix, we provide Corollary M.2.1, which will be used to prove the graph-

theoretic necessary direction of 3-unicast ANA network for arbitrary n values. Since

we already provided the proof for “LNR∧G1 ⇐ H1” in Proposition 6.3.1, here

we focus on proving “LNR∧G1∧G2 ⇐ H2, K1, K2”. After introducing Corol-

lary M.2.1, the main proof of ”LNR∧G1∧G2 ⇐ H2, K1, K2” will be provided in

Appendix M.3.

Before proceeding, we need the following additional logic statements to describe

the general proof structure.

M.1 The first set of logic statements

Consider the following logic statements.

• G0: m11m23m32 = R + L.

• G3: S2 ∩D3=∅.
• G4: S3 ∩D2=∅.

Several implications can be made when G3 is true. We term those implications

the properties of G3. Several properties of G3 are listed as follows, for which their

proofs are provided in Appendix M.4.

Consider the case in which G3 is true. Use e∗2 to denote the most downstream

edge in 1cut(s2; d1)∩1cut(s2; d3). Since the source edge es2 belongs to both 1cut(s2; d1)

and 1cut(s2; d3), such e
∗
2 always exists. Similarly, use e∗3 to denote the most upstream

edge in 1cut(s1; d3) ∩ 1cut(s2; d3). The properties of G3 can now be described as

follows.
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⋄ Property 1 of G3: e∗2 ≺ e∗3 and the channel gains m13, m21, and m23 can be ex-

pressed as m13 = mes1 ;e
∗

3
me∗3;ed3

, m21 = mes2 ;e
∗

2
me∗2 ;ed1

, and m23 = mes2 ;e
∗

2
me∗2;e

∗

3
me∗3;ed3

.

⋄ Property 2 of G3: GCD(mes1 ;e
∗

3
, mes2 ;e

∗

2
me∗2;e

∗

3
)≡1, GCD(me∗2;e

∗

3
me∗3;ed3

, me∗2;ed1
)≡

1, GCD(m13, me∗2;e
∗

3
)≡1, and GCD(m21, me∗2;e

∗

3
)≡1.

On the other hand, when G3 is false, or equivalently when ¬G3 is true where “¬”
is the NOT operator, we can also derive several implications, termed the properties

of ¬G3.

Consider the case in which G3 is false. Use e23u (resp. e23v ) to denote the most

upstream (resp. the most downstream) edge in S2 ∩ D3. By definition, it must be

e23u �e23v . We now describe the following properties of ¬G3.

⋄ Property 1 of ¬G3: The channel gains m13, m21, and m23 can be expressed as

m13 = mes1 ;e
23
u
me23u ;e23v me23v ;ed3

, m21 = mes2 ;e
23
u
me23u ;e23v me23v ;ed1

, andm23=mes2 ;e
23
u
me23u ;e23v

me23v ;ed3
.

⋄ Property 2 of ¬G3: GCD(mes1 ;e
23
u
, mes2 ;e

23
u
)≡1 and GCD(me23v ;ed1

, me23v ;ed3
)≡1.

⋄Property 3 of ¬G3: {e23u , e23v }⊂1cut(s1; head(e
23
v )) and {e23u , e23v }⊂1cut(tail(e23u ); d1).

This further implies that for anys1-to-d1path P , if there exists a vertex w ∈ P satis-

fying tail(e23u )�w�head(e23v ), then we must have {e23u , e23v } ⊂ P .

Symmetrically, we define the following properties of G4 and ¬G4.

Consider the case in which G4 is true. Use e∗3 to denote the most downstream

edge in 1cut(s3; d1) ∩ 1cut(s3; d2), and use e∗2 to denote the most upstream edge in

1cut(s1; d2) ∩ 1cut(s3; d2). We now describe the following properties of G4.

⋄ Property 1 of G4: e∗3 ≺ e∗2 and the channel gains m12, m31, and m32 can be ex-

pressed as m12 = mes1 ;e
∗

2
me∗2;ed2

, m31 = mes3 ;e
∗

3
me∗3 ;ed1

, and m32 = mes3 ;e
∗

3
me∗3;e

∗

2
me∗2;ed2

.

⋄ Property 2 of G4: GCD(mes1 ;e
∗

2
, mes3 ;e

∗

3
me∗3;e

∗

2
)≡1, GCD(me∗3;e

∗

2
me∗2;ed2

, me∗3;ed1
)≡

1, GCD(m12, me∗3;e
∗

2
)≡1, and GCD(m31, me∗3;e

∗

2
)≡1.

Consider the case in which G4 is false. Use e32u (resp. e32v ) to denote the most

upstream (resp. the most downstream) edge in S3 ∩ D2. By definition, it must be

e32u �e32v . We now describe the following properties of ¬G4.
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⋄ Property 1 of ¬G4: The channel gains m12, m31, and m32 can be expressed as

m12 = mes1 ;e
32
u
me32u ;e32v me32v ;ed2

, m31 = mes3 ;e
32
u
me32u ;e32v me32v ;ed1

, andm32=mes3 ;e
32
u
me32u ;e32v

me23v ;ed2
.

⋄ Property 2 of ¬G4: GCD(mes1 ;e
32
u
, mes3 ;e

32
u
)≡1 and GCD(me32v ;ed1

, me32v ;ed2
)≡1

⋄Property 3 of ¬G4: {e32u , e32v }⊂1cut(s1; head(e
32
v )) and {e32u , e32v }⊂1cut(tail(e32u ); d1).

This further implies that for anys1-to-d1path P , if there exists a vertex w ∈ P satis-

fying tail(e32u )�w�head(e32v ), then we must have {e32u , e32v } ⊂ P .

The following logic statements are well-defined if and only if (¬G3)∧ (¬G4) is

true. Recall the definition of e23u , e23v , e32u , and e32v when (¬G3)∧ (¬G4) is true.

• G5: Either e23u ≺ e32u or e23u ≻e32u .

• G6: Any vertex w′ where tail(e23u ) � w′ � head(e23v ) and any vertex w′′ where

tail(e32u )�w′′�head(e32v ) are not reachable from each other. (That is, neither w′�w′′

nor w′′�w′.)

It is worth noting that a statement being well-defined does not mean that it is

true. Any well-defined logic statement can be either true or false. For comparison, a

property of G3 is both well-defined and true whenever G3 is true.

M.2 General Necessity Proof Structure

The following “logic relationships” are proved in Appendix M.5, which will be

useful for the proof of the following Corollary M.2.1.

• N1: H2 ⇒ LNR∧G1.

• N2: K1 ⇒ LNR∧G1.

• N3: K2 ⇒ LNR∧G1.

• N4: (¬G2)∧G3∧G4 ⇒ false.

• N5: G1∧ (¬G2)∧ (¬G3)∧G4 ⇒ false.

• N6: G1∧ (¬G2)∧G3∧ (¬G4) ⇒ false.

• N7: LNR∧ (¬G3)∧ (¬G4)∧ (¬G5) ⇒ G6.

• N8: G1∧ (¬G2)∧ (¬G3)∧ (¬G4)∧G5 ⇒ false.
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• N9: (¬G2)∧ (¬G3)∧ (¬G4)∧ (¬G5)∧G6 ⇒ G0.

Corollary M.2.1. Let h(x) be a set of (arbitrarily chosen) polynomials based on

the 9 channel gains mij of the 3-unicast ANA network, and define X to be the logic

statement that h(x) is linearly independent. If we can prove that X ⇒ LNR∧G1

and X∧G0 ⇒ false, then the logic relationship X ⇒ LNR∧G1∧G2 must hold.

Proof of Corollary M.2.1: Suppose X ⇒ LNR∧G1 and X∧G0 ⇒ false. We

first see that N7 and N9 jointly imply

LNR ∧ (¬G2) ∧ (¬G3) ∧ (¬G4) ∧ (¬G5) ⇒ G0.

Combined with N8, we thus have

LNR ∧G1 ∧ (¬G2) ∧ (¬G3) ∧ (¬G4) ⇒ G0.

This, jointly with N4, N5, and N6, further imply

LNR ∧G1 ∧ (¬G2) ⇒ G0.

Together with the assumption that X∧G0 ⇒ false, we have X∧LNR∧G1∧
(¬G2) ⇒ false. Combining with the assumption that X ⇒ LNR∧G1 then yields

X ∧ (¬G2) ⇒ false,

which equivalently implies that X ⇒ G2. The proof is thus complete. �

M.3 Proof of “LNR∧G1∧G2 ⇐ K1∨H2∨K2”

Thanks to Corollary M.2.1 and the logic relationships N1, N2, and N3, we only

need to show that (i)K1∧G0 ⇒ false; (ii)H2∧G0 ⇒ false; and (iii)K2∧G0 ⇒ false.

We prove “K1∧G0 ⇒ false” as follows.
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Proof. We prove an equivalent form: G0 ⇒ (¬K1). Suppose G0 is true. Consider

k
(1)
1 (x) which contains 3 polynomials (see (6.10) when n=1):

k
(1)
1 (x) = {m11m23m31L, m21m13m31L, m21m13m31R }. (M.1)

Since L = m13m32m21, the first polynomial in k
(1)
1 (x) is equivalent to m11m23m32

m21m13m31. Then k
(1)
1 (x) becomes linearly dependent by substituting R + L for

m11m23m32 (from G0 being true). The proof is thus complete. �

We prove “H2∧G0 ⇒ false” as follow.

Proof. We prove an equivalent form: G0 ⇒ (¬H2). Suppose G0 is true. Consider

h
(n)
1 (x) in (5.27). Substituting R + L for m11m23m32 (from G0 being true) and

L = m21m13m32 to the expression of h
(n)
1 (x), then we have

h
(n)
1 (x) = { (R+ L)Rn, (R + L)Rn−1L, · · · , (R + L)Ln, RnL, Rn−1L2, · · · , RLn }.

One can see that h
(n)
1 (x) becomes linearly dependent when n ≥ 2. The proof is

thus complete. �

We prove “K2∧G0 ⇒ false” as follow.

Proof. Similarly following the proof of “K1∧G0 ⇒ false”, we further have

k
(n)
1 (x) = m21m13m31 { (R + L)Ln−1, (R + L)Ln−2R,

· · · , (R + L)Rn−1, Ln, Ln−1R, · · · , LRn−1, Rn },

which becomes linearly dependent when n≥2. The proof is thus complete. �

M.4 Proofs of the properties of G3, G4, ¬G3, and ¬G4

We prove Properties 1 and 2 of G3 as follows.
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Proof. Suppose G3 is true, that is, S2 ∩ D3= ∅. Consider e∗2, the most downstream

edge of 1cut(s2; d1) ∩ 1cut(s2; d3) and e∗3, the most upstream edge of 1cut(s1; d3) ∩
1cut(s2; d3). If either e∗2 = es2 or e∗3 = ed3 (or both), we must have e∗2 ≺ e∗3 otherwise

it contradicts definitions (ii) and (iii) of the 3-unicast ANA network. Consider the

case in which both e∗2 6=es2 and e∗3 6=ed3 . Recall the definitions of S2 ,1cut(s2; d1) ∩
1cut(s2; d3)\{es2} and D3,1cut(s1; d3)∩1cut(s2; d3)\{ed3}. We thus have e∗2∈S2 and

e∗3 ∈D3. By the assumption S2 ∩ D3= ∅ and Lemma 6.1.3, we must have e∗2≺ e∗3 as

well.

From the construction of e∗2 and e
∗
3, the channel gainsm13, m21, andm23 can be ex-

pressed as m13 = mes1 ;e
∗

3
me∗3;ed3

, m21 = mes2 ;e
∗

2
me∗2;ed1

, and m23 = mes2 ;e
∗

2
me∗2;e

∗

3
me∗3;ed3

.

Moreover, we have both GCD(mes1 ;e
∗

3
, mes2 ;e

∗

2
me∗2;e

∗

3
)≡1 and GCD(me∗2;e

∗

3
me∗3;ed3

, me∗2;ed1
)

≡1 otherwise it violates that e∗2 (resp. e∗3) is the most downstream (resp. upstream)

edge of S2 (resp. D3). The same argument also leads to GCD(m13, me∗2;e
∗

3
)≡ 1 and

GCD(m21, me∗2 ;e
∗

3
)≡1. �

We prove Properties 1, 2, and 3 of ¬G3 as follows.

Proof. Suppose ¬G3 is true, i.e., S2 ∩ D3 6= ∅. Choose the most upstream e23u and

most downstream e23v edges in S2 ∩D3. Then, the channel gains m13, m21, and m23

can be expressed as m13= mes1 ;e
23
u
me23u ;e23v me23v ;ed3

, m21= mes2 ;e
23
u
me23u ;e23v me23v ;ed1

, and

m23= mes2 ;e
23
u
me23u ;e23v me23v ;ed3

. Moreover, we must have both GCD(mes1 ;e
23
u
, mes2 ;e

23
u
)≡1

and GCD(me23v ;ed3
, me23v ;ed1

)≡1 otherwise it violates Lemma 6.1.3 and/or e23u (resp. e23v )

being the most upstream (resp. downstream) edge among S2 ∩ D3. For example, if

GCD(mes1 ;e
23
u
, mes2 ;e

23
u
)6≡1, then by Lemma 6.1.7 and the assumption e23u ∈S2∩D3⊂

D3, there must exist an edge e∈D3 such that e≺ e23u . If such edge e is also in S2,

then this e violates the construction that e23u is the most upstream edge of S2 ∩D3.

If such edge e is not in S2, then it contradicts the conclusion in Lemma 6.1.3.

We now prove Property 3 of ¬G3. Suppose that at least one of {e23u , e23v } is not an

1-edge cut separating s1 and head(e23v ). Say e23u 6∈1cut(s1; head(e
23
v )), then s1 can reach

head(e23v ) without using e23u . Since head(e23v ) reaches d3, we can create ans1-to-d3path
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not using e23u . This contradicts the construction that e23u ∈S2 ∩ D3 ⊂D3. Similarly,

we can also prove that e23v 6∈ 1cut(s1; head(e
23
v )) leads to a contradiction. Therefore,

we have proven {e23u , e23v } ⊂ 1cut(s1; head(e
23
v )). Symmetrically applying the above

arguments, we can also prove that {e23u , e23v }⊂1cut(tail(e23u ); d1).

Now consider ans1-to-d1path P such that there exists one vertex w ∈ P sat-

isfying tail(e23u ) � w � head(e23v ). If the path of interest P does not use e23u and

w = tail(e23u ), then tail(e23u ) can follow P to d1 without using e23u , which contra-

dicts e23u ∈ 1cut(tail(e23u ); d1). If P does not use e23u and tail(e23u ) ≺ w � head(e23v ),

then s1 can follow P to w and reach head(e23v ) without using e23u , which contradicts

e23u ∈1cut(s1; head(e
23
v )). By the similar arguments, we can also prove the case when

P does not use e23v leads to a contradiction. Therefore, we must have {e23u , e23v } ⊂ P .

The proof is complete. �

By swapping the roles of s2 and s3, and the roles of d2 and d3, the above proofs

can also be used to prove Properties 1 and 2 of G4 and Properties 1, 2, and 3, of

¬G4.

M.5 Proofs of N1 to N9

We prove N1 as follows.

Proof. Instead of proving directly, we prove H2 ⇒ H1 and use the existing result

of “LNR∧G1 ⇐ H1” established in the proof of Proposition 6.3.1. H2 ⇒ H1 is

straightforward since h
(1)
1 (x) is a subset of the polynomials h

(n)
1 (x) (multiplied by a

common factor) and whenever h
(n)
1 (x) is linearly independent, so is h

(1)
1 (x). The proof

is thus complete. �

We prove N2 as follows.

Proof. We prove an equivalent relationship: (¬LNR)∨ (¬G1) ⇒ (¬K1). Consider

k
(1)
1 (x) as in (M.1). Suppose G3ANA satisfies (¬LNR)∨ (¬G1), which means G3ANA
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satisfies either L(x) ≡ R(x) or m11m23≡ m21m13 or m11m32≡ m31 m12. If L(x) ≡
R(x), then we notice that m21m13m31L≡ m21m13m31R and k

(1)
1 (x) is thus linearly

dependent. If m11 m23 ≡ m21m13, then we notice m11m23m31L ≡ m21m13m31 L.

Similarly if m11m32 ≡ m31m12, then we have m11m23m31 L ≡ m21m13m31R. The

proof is thus complete. �

Following similar arguments used in proving N2, i.e., K2 ⇒ K1, one can easily

prove N3.

We prove N4 as follows.

Proof. (¬G2)∧G3∧G4 implies that s1 cannot reach d1 on G3ANA. This violates

the definition (iv) of the 3-unicast ANA network. �

We prove N5 as follow.

Proof. We prove an equivalent relationship: (¬G2)∧ (¬G3)∧G4 ⇒ (¬G1). Suppose

(¬G2)∧ (¬G3)∧G4 is true. Then the most upstream edge of S2 ∩D3 is an 1-edge

cut separating s1 and d1. Therefore we have EC({s1, s2}; {d1, d3}) = 1 and thus by

Corollary 5.4.1, m11m23≡m21m13. This further implies that G1 is false. �

By swapping the roles of s2 and s3, and the roles of d2 and d3, the above N5 proof

can also be used to prove N6.

We prove N7 as follows.

Proof. Suppose LNR∧ (¬G3)∧ (¬G4)∧ (¬G5) is true. From LNR being true,

any S2∩D3 edge and any S3∩D2 edge must be distinct, otherwise (if there exists an

edge e∈S2 ∩S3 ∩D2 ∩D3) it contradicts the assumption LNR by Proposition 6.2.1.

From G5 being false, we have either e23u = e32u or both e23u and e32u are not reachable

from each other. But e23u =e32u cannot be true by the assumption LNR.

Now we prove G6, i.e., any vertex w′ where tail(e23u ) � w′ � head(e23v ) and any

vertex w′′ where tail(e32u )�w′′�head(e32v ) are not reachable from each other. Suppose

not and assume that some vertex w′ satisfying tail(e23u ) � w′ � head(e23v ) and some
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vertex w′′ satisfying tail(e32u )�w′′�head(e32v ) are reachable from each other. Since s1

can reach tail(e23u ) or tail(e32u ) and d1 can be reached from head(e23v ) or head(e32v ) by

Property 1 of ¬G3 and ¬G4, we definitely have ans1-to-d1path P who uses both

w′ and w′′. The reason is that if w′ � w′′, then s1 can first reach tail(e23u ), visit w′,

w′′, and head(e32v ), and finally arrive at d1. The case when w′′ � w′ can be proven

by symmetry. By Property 3 of ¬G3, such path must use {e23u , e23v }. Similarly by

Property 3 of ¬G4, such path must also use {e32u , e32v }. Together with the above

discussion that any S2 ∩D3 edge and any S3 ∩D2 edge are distinct, this implies that

all four edges {e23u , e23v , e32u , e32v } are not only distinct but also used by a single path

P . However, this contradicts the assumption LNR∧ (¬G5) that e23u and e32u are not

reachable from each other. �

We prove N8 as follows.

Proof. Suppose G1∧ (¬G2)∧ (¬G3)∧ (¬G4)∧G5 is true. Consider e23u and e32u ,

the most upstream edges of S2 ∩D3 and S3 ∩D2, respectively. Say we have e23u ≺e32u .

Then ¬G2 implies that removing e23u will disconnect s1 and d1. Therefore, e
23
u ∈S2 ∩

D3 also belongs to 1cut(s1; d1). This further implies that we have EC({s1, s2}; {d1, d3})
= 1 and thus G3ANA satisfiesm11m23≡m13m21. However, this contradicts the assump-

tion that G1 is true. Similar arguments can be applied to show that the case when

e32u ≺e23u also contradicts G1. The proof of N8 is thus complete. �

We prove N9 as follows.

Proof. Suppose that (¬G2)∧ (¬G3)∧ (¬G4)∧ (¬G5)∧G6 is true. Consider e23u

and e32u , the most upstream edges of S2 ∩ D3 and S3 ∩ D2, respectively. From

(¬G5)∧G6 being true, one can see that e23u and e32u are not only distinct but also

not reachable from each other. Thus by ¬G2 being true, {e23u , e32u } constitutes an

edge cut separating s1 and d1. Note from Property 1 of ¬G3 and ¬G4 that s1 can

reach d1 through either e23u or e32u . Since e23u and e32u are not reachable from each other,

both have to be removed to disconnect s1 and d1 (removing only one of them is not

enough).
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From G6 being true, any vertex w′ where tail(e23u )�w′�head(e23v ) and any vertex

w′′ where tail(e32u )�w′′�head(e32v ) are not reachable from each other. Thus e23u (resp.

e32u ) cannot reach e32v (resp. e23v ). Moreover, e23v and e32v are not only distinct but also

not reachable from each other. This implies that e23u (resp. e32u ) can only reach e23v

(resp. e32v ) if e23u 6= e23v (resp. e32u 6= e32v ). Then the above discussions further that

imply {e23v , e32v } is also an edge cut separating s1 and d1.

Let m′
11 = mes1 ;e

23
u
me23u ;e23v me23v ;ed1

, which takes into account the overall path gain

from s1 to d1 for all paths that use both e23u and e23v . Similarly denote m′′
11 =

mes1 ;e
32
u
me32u ;e32v me32v ;ed1

to be the overall path gain from s1 to d1 for all paths that

use both e32u and e32v . Then the discussions so far imply that the channel gain m11

consists of two polynomials: m11 = m′
11 +m′′

11. Then, it follows that

m11m23m32 = (m′
11 +m′′

11)m23m32

= (mes1 ;e
23
u
me23u ;e23v

me23v ;ed1
)m23m32

+ (mes1 ;e
32
u
me32u ;e32v me32v ;ed1

)m23m32

= (mes1 ;e
23
u
me23u ;e23v

me23v ;ed1
)(mes2 ;e

23
u
me23u ;e23v

me23v ;ed3
)m32

+ (mes1 ;e
32
u
me32u ;e32v me32v ;ed1

)m23 (mes3 ;e
32
u
me32u ;e32v me32v ;ed2

)

= (mes1 ;e
23
u
me23u ;e23v

me23v ;ed3
)m32 (mes2 ;e

23
u
me23u ;e23v

me23v ;ed1
)

+ (mes1 ;e
32
u
me32u ;e32v me32v ;ed2

)m23 (mes3 ;e
32
u
me32u ;e32v me32v ;ed1

)

= m13m32m21 +m12m23m31 = L+R.

where the third and fourth equalities follow from the Property 1 of both ¬G3 and

¬G4. The proof is thus complete. �
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N. GENERAL STRUCTURED PROOF FOR THE

SUFFICIENCY OF PROPOSITION 6.3.1

In this appendix, we provide Corollary N.2.1, which will be used to prove the graph-

theoretic sufficient direction of 3-unicast ANA network for arbitrary n>0 values. We

need the following additional logic statements to describe the general proof structure.

N.1 The second set of logic statements

Given a 3-unicast ANA network G3ANA, recall the definitions L = m13m32m21 and

R = m12m23m31 (we drop the input argument x for simplicity). By the definition of

G3ANA, any channel gains are non-trivial, and thus R and L are non-zero polynomials.

Let ψ
(n)
α (R,L) and ψ

(n)
β (R,L) to be some polynomials with respect to x, represented

by

ψ(n)
α (R,L)=

n
∑

i=0

αiR
n−iLi, ψ

(n)
β (R,L)=

n
∑

j=0

βjR
n−jLj ,

with some set of coefficients {αi}ni=0 and {βj}nj=0, respectively. Basically, given a

value of n and the values of {αi}ni=0 and {βj}nj=0, ψ
(n)
α (R,L) (resp. ψ

(n)
β (R,L)) repre-

sents a linear combination of {Rn, Rn−1L, · · · , RLn−1, Ln}, the set of Vandermonde

polynomials

We need the following additional logic statements.

• E0: Let I3ANA be a finite index set defined by I3ANA = {(i, j) : i, j∈{1, 2, 3} and i 6=
j}. Consider two non-zero polynomial functions f : F

|I3ANA|
q 7→ Fq and g : F

|I3ANA|
q 7→
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Fq. Then given a G3ANA of interest, there exists some coefficient values {αi}ni=0 and

{βj}nj=0 such that

m11 f({mij : ∀ (i, j)∈I3ANA})ψ(n)
α (R,L) = g({mij : ∀ (i, j)∈I3ANA})ψ(n)

β (R,L),

with (i) At least one of coefficients {αi}ni=0 is non-zero; and (ii) At least one of

coefficients {βj}nj=0 is non-zero.

Among {αi}ni=0 and {βj}nj=0, define ist (resp. jst) as the smallest i (resp. j) such

that αi 6= 0 (resp. βj 6= 0). Similarly, define iend (resp. jend) as the largest i (resp. j)

such that αi 6= 0 (resp. βj 6= 0).1 Then, we can rewrite the above equation as follows:

iend
∑

i=ist

αim11 f({mij : ∀ (i, j)∈I3ANA})Rn−iLi =

jend
∑

j=jst

βj g({mij : ∀ (i, j)∈I3ANA})Rn−jLj .

(N.1)

• E1: Continue from the definition of E0. The considered G3ANA satisfies (N.1) with

(i) f({mij : ∀ (i, j) ∈ I3ANA}) = m23; and (ii) g({mij : ∀ (i, j) ∈ I3ANA}) = m13m21.

Then, (N.1) reduces to

iend
∑

i=ist

αim11m23R
n−iLi =

jend
∑

j=jst

βjm13m21R
n−jLj . (N.2)

• E2: Continue from the definition of E0. The chosen coefficients {αi}ni=0 and {βj}nj=0

which satisfy (N.1) in the given G3ANA also satisfy (i) αk 6=βk for some k∈{0, ..., n};
and (ii) either α0 6=0 or βn 6=0 or αk 6=βk−1 for some k∈{1, ..., n}.

One can see that whether the above logic statements are true or false depends on

the polynomials mij and on the {αi}ni=0 and {βj}nj=0 values being considered.

The following logic statements are well-defined if and only if E0 is true. Whether

the following logic statements are true depends on the values of ist, iend, jst, and jend.

• C0: ist>jst and iend=jend.

• C1: ist<jst.

1From definition, 0≤ ist≤ iend≤n and 0≤jst≤jend≤n.
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• C2: ist>jst.

• C3: ist=jst.

• C4: iend<jend.

• C5: iend>jend.

• C6: iend=jend.

We also define the following statements for the further organization.

• D1: GCD(ml1
12m

l1
23m

l1
31, m32)=m32 for some integer l1>0.

• D2: GCD(ml2
13m

l2
32m

l2
21, m23)=m23 for some integer l2>0.

• D3: GCD(m11m
l3
13m

l3
32m

l3
21, m12m31)=m12m31 for some integer l3>0.

• D4: GCD(m11m
l4
12m

l4
23m

l4
31, m13m21)=m13m21 for some integer l4>0.

• D5: GCD(m11m
l5
12m

l5
23m

l5
31, m32)=m32 for some integer l5>0.

• D6: GCD(m11m
l6
13m

l6
32m

l6
21, m23)=m23 for some integer l6>0.

N.2 General Sufficiency Proof Structure

We prove the following “logic relationships,” which will be used for the proof of

Corollary N.2.1.

• S1: D1 ⇒ D5.

• S2: D2 ⇒ D6.

• S3: E0∧E1∧C1 ⇒ D4∧D5.

• S4: E0∧E1∧C2 ⇒ D1.

• S5: G1∧E0∧E1∧C3 ⇒ D4.

• S6: E0∧E1∧C4 ⇒ D2∧D3.

• S7: E0∧E1∧C5 ⇒ D3.

• S8: G1∧E0∧E1∧C6 ⇒ D2.

• S9: E0∧E1∧C0 ⇒ E2.

• S10: G1∧E0∧E1∧ (¬C0) ⇒ (D1∧D3)∨ (D2∧D4)∨ (D3∧D4).

• S11: LNR∧G1∧E0∧D1∧D3 ⇒ false.

• S12: LNR∧G1∧E0∧D2∧D4 ⇒ false.
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• S13: LNR∧G1∧G2∧E0∧E1∧E2∧D1∧D2 ⇒ false.

• S14: LNR∧G1∧E0∧D3∧D4 ⇒ false.

The proofs of S1 to S10 are relegated to Appendix N.5. The proofs of S11 to

S14 are relegated to Appendices N.6, N.7, N.8, and N.9, respectively. Note that

the above S1 to S14 relationships greatly simplify the analysis of finding the graph-

theoretic conditions for the feasibility of the 3-unicast ANA network. This observation

is summarized in Corollary N.2.1.

Corollary N.2.1. Let h(x) be a set of (arbitrarily chosen) polynomials based on

the 9 channel gains mij of the 3-unicast ANA network, and define X to be the logic

statement that h(x) is linearly independent. Let G to be an arbitrary logic statement

in the 3-unicast ANA network. If we can prove that

(A) G∧ (¬X) ⇒ E0∧E1∧ (¬C0),

then the logic relationship LNR∧G1∧G∧ (¬X) ⇒ false must also hold.

Also, if we can prove that

(B) G∧ (¬X) ⇒ E0∧E1∧C0,

then the logic relationship LNR∧G1∧G2∧G∧ (¬X) ⇒ false must also hold.

Proof of Corollary N.2.1: First, notice that S11, S12, and S14 jointly imply

LNR ∧G1 ∧ E0 ∧ {(D1 ∧D3) ∨ (D2 ∧D4) ∨ (D3 ∧D4)} ⇒ false. (N.3)

Then, (N.3), jointly with S10 further imply

LNR ∧G1 ∧E0 ∧E1 ∧ (¬C0) ⇒ false. (N.4)

Note that by definition C0 is equivalent to C2∧C6. Then S4 and S8 jointly

imply

G1 ∧ E0 ∧ E1 ∧C0 ⇒ D1 ∧D2. (N.5)
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Then, (N.5), S9, and S13 jointly imply

LNR ∧G1 ∧G2 ∧E0 ∧E1 ∧C0 ⇒ false. (N.6)

Now we prove the result using (N.4) and (N.6). Suppose we can also prove (A)

G∧ (¬X) ⇒ E0∧E1∧ (¬C0). Then, one can see that this, jointly with (N.4),

implies LNR∧G1∧G∧ (¬X) ⇒ false. Similarly, (B) G∧ (¬X) ⇒ E0∧E1∧C0

and (N.6) jointly imply LNR∧G1∧G2∧G∧ (¬X) ⇒ false. The proof is thus

complete. �

N.3 The insight on proving the sufficiency

To prove the sufficiency directions, we need to show that a set of polynomials is lin-

early independent given any 3-unicast ANA network, for example, “LNR∧G ⇒ X”.

To that end, we prove the equivalent relationship “LNR∧G∧ (¬X) ⇒ false.” Fo-

cusing on the linear dependence condition ¬X, although there are many possible

cases, allows us to use the subgraph property (Proposition 2) to simplify the proof.

Further, we use the logic statements S3 to S10 to convert all the cases of the linear de-

pendence condition into the greatest common divisor statements D1 to D6, for which

the channel gain property (Proposition 3) further helps us to find the corresponding

graph-theoretic implication.

N.4 Proofs of “LNR∧G1 ⇒ H1” and “LNR∧G1∧G2 ⇒ K1∨H2∨K2”

As discussed in Appendix N, we use Corollary N.2.1 to prove the sufficiency direc-

tions. We first show that (i) LNR∧G1∧G2 ⇒ H2; and (ii) LNR∧G1∧G2 ⇒ K2.

Then the remaining sufficiency directions “LNR∧G1 ⇒ H1” and “LNR∧G1∧G2

⇒ K1” are derived using simple facts of “H2 ⇒ H1” and “K2 ⇒ K1”, respectively.

Note that H2 ⇒ H1 is straightforward since h
(1)
1 (x) is a subset of the polynomials
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h
(n)
1 (x) (multiplied by a common factor) and whenever h

(n)
1 (x) is linearly independent,

so is h
(1)
1 (x). Similarly, we have K2 ⇒ K1.

We prove “LNR∧G1∧G2 ⇒ H2” as follows.

Proof. By the definition of linear dependence, ¬H2 implies that there exist two sets

of coefficients {αi}ni=0 and {βj}n−1
j=0 such that

n
∑

i=0

αim11m23R
n−iLi =

n−1
∑

j=0

βjm13m21R
n−jLj. (N.7)

We will now argue that at least one of {αi}ni=0 and at least one of {βj}n−1
j=0 are

non-zero if L 6≡R. The reason is as follows. For example, suppose that all {βj}n−1
j=0 are

zero. By definition (iv) of the 3-unicast ANA network, any channel gain is non-trivial.

Thus m11m23 is a non-trivial polynomial. Then, (N.7) becomes
∑n

i=0 αiR
n−iLi = 0,

which implies that the set of (n+1) polynomials, h̃(x) = {Rn, Rn−1L, ..., RLn−1, Ln},
is linearly dependent. By Proposition 5.4.1, the determinant of the Vandermonde

matrix [h̃(x(k))]n+1
k=1 is thus zero, which implies L(x) ≡ R(x). This contradicts the

assumption LNR. The fact that not all {αi}ni=0 are zero can be proven similarly.

As a result, there exist two sets of coefficients {αi}ni=0 and {βj}n−1
j=0 with at least

one of each group being non-zero such that the following logic relationship holds:

LNR ∧ (¬H2) ⇒ E0 ∧ E1. (N.8)

Then, note that (N.8) implies

LNR ∧ (¬C0) ∧ (¬H2) ⇒ E0 ∧E1 ∧ (¬C0),

and LNR ∧C0 ∧ (¬H2) ⇒ E0 ∧E1 ∧C0.

Applying Corollary N.2.1(A) (substituting G by LNR∧ (¬C0) and X by H2,

respectively), the former implies LNR∧G1∧ (¬C0)∧ (¬H2) ⇒ false. By Corol-
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lary N.2.1(B), the latter implies LNR∧G1∧G2∧C0∧ (¬H2) ⇒ false. These jointly

imply

LNR ∧G1 ∧G2 ∧ (¬H2) ⇒ false,

which is equivalent to LNR∧G1∧G2 ⇒ H2. The proof is thus complete. �

We prove “LNR∧G1∧G2 ⇒ K2” as follows.

Proof. We will only show the logic relationship “LNR∧ (¬K2) ⇒ E0∧E1” so that

the rest can be proved by Corollary N.2.1 as in the proof of “LNR∧G1∧G2 ⇒ H2”.

Suppose ¬K2 is true. Then, there exists two sets of coefficients {αi}ni=1 and {βj}nj=0

such that
n
∑

i=1

αim11m23R
n−iLi =

n
∑

j=0

βjm13m21R
n−jLj. (N.9)

One can easily see that, similarly to the above proof, the assumption LNR results

in the not-being-all-zero condition on both {αi}ni=1 and {βj}nj=0, which in turn implies

that “LNR∧ (¬K2) ⇒ E0∧E1”. The proof is thus complete. �

N.5 Proofs of S1 to S10

We prove S1 as follows.

Proof. Suppose D1 is true, that is, G3ANA satisfies GCD(ml1
12m

l1
23m

l1
31, m32) = m32

for some integer l1> 0. Then G3ANA also satisfies GCD(m11m
l1
12m

l1
23m

l1
31, m32) =m32

obviously. Thus we have D5. �

By swapping the roles of s2 and s3, and the roles of d2 and d3, the proof for S1

can be applied symmetrically to the proof for S2.

We prove S3 as follows.

Proof. Suppose E0∧E1∧C1 is true. By E0∧E1 being true, G3ANA of interest

satisfies (N.2). By the definition of C1, we have ist<jst.
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By (N.2), we can divide List on both sides. Then we have

iend
∑

i=ist

αim11m23R
n−iLi−ist =

jend
∑

j=jst

βjm13m21R
n−jLj−ist .

Since ist<jst, each term with non-zero βj in the right-hand side (RHS) has L as

a common factor. Similarly, each term with non-zero αi on the left-hand side (LHS)

has L as a common factor except for the first term (since αist 6= 0). Therefore the

first term αistm11m23R
n−ist must contain L=m13m32m21 as a factor, which implies

GCD(m11m
n−ist
12 mn−ist+1

23 mn−ist
31 , m13m32m21) = m13m32 m21. Since ist < jst ≤ n, we

have n − ist ≥ 1. Hence, we have GCD(m11m
k
12m

k+1
23 mk

31, m13m32m21) = m13m32m21

for some integer k≥1. This observation implies the following two statements. Firstly,

GCD(m11m
l4
12m

l4
23m

l4
31, m13m21)=m13m21 when l4=k+1≥2 and thus we have proven

D4. Secondly, GCD(m11m
l5
12m

l5
23m

l5
31, m32) = m32 when l5 = k + 1 ≥ 2 and thus we

have proven D5. The proof is thus complete. �

We prove S4 as follows.

Proof. Suppose E0∧E1∧C2 is true. Then G3ANA of interest satisfies (N.2) and we

have ist>jst.

We now divide Ljst on both sides of (N.2), which leads to

iend
∑

i=ist

αim11m23R
n−iLi−jst =

jend
∑

j=jst

βjm13m21R
n−jLj−jst.

Each term with non-zero αi on the LHS has L as a common factor. Similarly,

each term with non-zero βj on the RHS has L as a common factor except for the

first term (since βjst 6=0). As a result, the first term βjstm13m21R
n−jst must contain

L = m13m32m21 as a factor. This implies that GCD(Rn−jst, m32) = m32. Since

jst < ist ≤ n, we have n − jst ≥ 1 and thus GCD(Rk, m32) = m32 for some positive

integer k, which is equivalent to D1. The proof is thus complete. �

We prove S5 as follows.
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Proof. Suppose G1∧E0∧E1∧C3 is true. By E0∧E1 being true, G3ANA of interest

satisfies (N.2). Since ist= jst, we can divide List =Ljst on both sides of (N.2), which

leads to

iend
∑

i=ist

αim11m23R
n−iLi−ist =

jend
∑

j=jst

βjm13m21R
n−jLj−jst.

Note that if ist= jst=n meaning that ist= jst= iend= jend=n, then (N.2) reduces

to m11m23 ≡m13m21 (since αist 6= 0 and βjst 6= 0). This contradicts the assumption

G1.

Thus for the following, we only consider the case when ist=jst≤n− 1. Note that

each term with non-zero βj on the RHS has a common factor m13m21. Similarly, each

term with non-zero αi on the LHS has a common factor L = m13m32m21 except for the

first term (i= ist). As a result, the first term αistm11m23R
n−ist must contain m13m21

as a factor. Since ist≤n− 1, we have GCD(m11m
k
12m

k+1
23 mk

31, m13m21) = m13m21 for

some integer k≥1. Therefore, we have D4. �

We prove S6 as follows.

Proof. Suppose E0∧E1∧C4 is true. By E0∧E1 being true, G3ANA of interest

satisfies (N.2). Since iend<jend, we can divide Rn−jend on both sides of (N.2). Then,

we have

iend
∑

i=ist

αim11m23R
jend−iLi =

jend
∑

j=jst

βjm13m21R
jend−jLj .

Each term with non-zero αi on the LHS has R as a common factor. Similarly,

each term with non-zero βj on the RHS has R as a common factor except for the

last term (since βjend 6=0). Thus, the last term βjendm13m21L
jend must be divisible by

R=m12m23m31, which implies that GCD(mk+1
13 mk

32m
k+1
21 , m12m23m31) =m12m23m31

for some integer k=jend≥ iend+1≥1. This observation has two implications. Firstly,

GCD(m11m
l3
13m

l3
32m

l3
21, m12m31) = m12m31 for some positive integer l3 = k + 1 and
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thus we have proven D3. Secondly, we also have GCD(ml2
13m

l2
32m

l2
21, m23) = m23 for

some positive integer l2 = k + 1 and thus we have proven D2. The proof is thus

complete. �

We prove S7 as follows.

Proof. Suppose E0∧E1∧C5 is true. By E0∧E1 being true, G3ANA of interest

satisfies (N.2). Since iend>jend, we can divide Rn−iend on both sides of (N.2). Then

we have

iend
∑

i=ist

αim11m23R
iend−iLi =

jend
∑

j=jst

βjm13m21R
iend−jLj .

Each term on the RHS has R as a common factor. Similarly, each term on the

LHS has R as a common factor except for the last term (since αiend 6=0). Thus, the

last term αiendm11m23L
iend must be divisible by R=m12m23m31, which implies that

GCD(m11L
k, m12m31) = m12m31 for some integer k= iend ≥jend +1≥1. This further

implies D3. �

We prove S8 as follows.

Proof. Suppose G1∧E0∧E1∧C6 is true. By E0∧E1 being true, G3ANA of interest

satisfies (N.2). SinceG5, iend = jend, is true, define t= iend=jend andm=min{ist, jst}.
Then by dividing Rn−t and Lm from both sides of (N.2), we have

t
∑

i=ist

αim11m23R
t−iLi−m =

t
∑

j=jst

βjm13m21R
t−jLj−m. (N.10)

Each term with non-zero αi on the LHS has a common factor m23. We first

consider the case of m < t. Then each term with non-zero βj on the RHS has a

common factor R = m12m23m31 except the last term βtm13m21L
t−m. As a result,

βtm13m21L
t−m must be divisible bym23, which implies that GCD(mk+1

13 mk
32m

k+1
21 , m23) =

m23 for some k= t−m≥1. This implies D2.
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On the other hand, we argue that we cannot have m= t. If so, then ist=jst= iend=

jend and (N.2) reduces to m11m23≡m13m21. However, this contradicts the assumption

G1. The proof is thus complete. �

We prove S9 as follows.

Proof. Suppose E0∧E1∧C0 is true. By E0∧E1 being true, G3ANA of interest

satisfies (N.2) with not-being-all-zero coefficients {αi}ni=0 and {βj}nj=0. Our goal is to

prove that, when ist>jst and iend=jend, we have E2: (i) αk 6=βk for some k∈{0, ..., n};
and (ii) either α0 6=0 or βn 6=0 or αk 6=βk−1 for some k∈{1, ..., n}.

Note that (i) is obvious since ist>jst. Note by definition that ist (resp. jst) is the

smallest i (resp. j) among αi 6=0 (resp. βj 6=0). Then, ist>jst implies that αjst =0

while βjst 6=0. Thus simply choosing k=jst proves (i).

We now prove (ii). Suppose (ii) is false such that α0=0; βn=0; and αk=βk−1 for

all k∈{1, ..., n}. Since βn=0, by definition, jend must be less than or equal to n− 1.

Since we assumed iend=jend, this in turn implies that αn=0. Then βn−1must be zero

because βn−1=αn. Again this implies jend≤n − 2. Applying iteratively, we have all

zero coefficients {αi}ni=0 and {βj}nj=0. However, this contradicts the assumption E0

since we assumed that at least one of each coefficient group is non-zero. The proof of

S9 is thus complete. �

We prove S10 as follows.

Proof. Suppose G1∧E0∧E1∧ (¬C0) is true. By E0∧E1 being true, G3ANA of

interest satisfies (N.2) with some values of ist, jst, iend, and jend. Investigating their

relationships, there are total 9 possible cases that G3ANA can satisfy (N.2): (i) ist < jst

and iend < jend; (ii) ist < jst and iend > jend; (iii) ist < jst and iend = jend; (iv) ist > jst

and iend < jend; (v) ist > jst and iend > jend; (vi) ist > jst and iend = jend; (vii) ist = jst

and iend < jend; (viii) ist = jst and iend > jend; and (ix) ist = jst and iend = jend.

Note that C0 is equivalent to (vi). Since we assumed that C0 is false, G3ANA can

satisfy (N.2) with all the possible cases except (vi). We also note that (i) is equivalent

to C1∧C4, (ii) is equivalent to C1∧C5, etc. By applying S3 and S6, we have
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• E0∧E1∧ (i) ⇒ (D4∧D5)∧ (D2∧D3).

By similarly applying S3 to S8, we have the following relationships:

• E0∧E1∧ (ii) ⇒ (D4∧D5)∧D3.

• G1∧E0∧E1∧ (iii) ⇒ (D4∧D5)∧D2.

• E0∧E1∧ (iv) ⇒ D1∧ (D2∧D3).

• E0∧E1∧ (v) ⇒ D1∧D3.

• G1∧E0∧E1∧ (vii) ⇒ D4∧ (D2∧D3).

• G1∧E0∧E1∧ (viii) ⇒ D4∧D3.

• G1∧E0∧E1∧ (ix) ⇒ D4∧D2.

Then, the above relationships jointly imply G1∧E0∧E1∧ (¬C0) ⇒ (D1∧D3)

∨ (D2∧D4)∨ (D3∧D4). The proof of S10 is thus complete. �

N.6 Proof of S11

N.6.1 The third set of logic statements

To prove S11, we need the third set of logic statements.

• G7: There exists an edge ẽ such that both the following conditions are satisfied:

(i) ẽ can reach d1 but cannot reach any of d2 and d3; and (ii) ẽ can be reached from

s1 but not from any of s2 nor s3.

• G8: S36=∅ and D26=∅.
The following logic statements are well-defined if and only if G4∧G8 is true.

Recall the definition of e∗3 and e∗2 when G4 is true.

• G9: {e∗3, e∗2} ⊂ 1cut(s2; d3).

• G10: e∗3 ∈ 1cut(s2; d1).

• G11: e∗3 ∈ 1cut(s1; d1).

• G12: e∗2 ∈ 1cut(s1; d3).

• G13: e∗2 ∈ 1cut(s1; d1).

The following logic statements are well-defined if and only if ¬G4 is true. Recall

the definition of e32u and e32v when ¬G4 is true.
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• G14: e32u 6∈1cut(s1; d1).

•G15: Let ẽu denote the most downstream edge among 1cut(s1; d1)∩1cut(s1; tail(e32u )).

Also let ẽv denote the most upstream edge among 1cut(s1; d1) ∩ 1cut(head(e32v ); d1).

Then we have (a) head(ẽu)≺ tail(e32u ) and head(e32v )≺ tail(ẽv); there exists as1-to-d1

path P ∗
11 through ẽu and ẽv satisfying the following two conditions: (b) P ∗

11 is vertex-

disjoint from anys3-to-d2path; and (c) there exists an edge ẽ ∈ P ∗
11 where ẽu≺ ẽ≺ ẽv

that is not reachable from any of {e32u , e32v }.

N.6.2 The skeleton of proving S11

We prove the following relationships, which jointly prove S11. The proofs for the

following statements are relegated to Appendix N.6.3.

• R1: D1 ⇒ G8.

• R2: G4∧G8∧D1 ⇒ G9.

• R3: G4∧G8∧G9∧D3 ⇒ (G10∨G11)∧ (G12∨G13).

• R4: G4∧G8∧G9∧ (¬G10)∧G11∧E0 ⇒ false.

• R5: G4∧G8∧G9∧ (¬G12)∧G13∧E0 ⇒ false.

• R6: G4∧G8∧G9∧G10∧G12 ⇒ (¬LNR).

• R7: G1∧ (¬G4) ⇒ G14.

• R8: (¬G4)∧G14 ⇒ G15.

• R9: (¬G4)∧G14∧D3 ⇒ G7.

• R10: G7∧E0 ⇒ false.

One can easily verify that jointly R4 to R6 imply

LNR ∧G4 ∧G8 ∧G9 ∧ E0 ∧ (G10 ∨G11) ∧ (G12 ∨G13) ⇒ false. (N.11)

Together with R3, (N.11) reduces to

LNR ∧G4 ∧G8 ∧G9 ∧ E0 ∧D3 ⇒ false. (N.12)
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Jointly with R1 and R2, (N.12) further reduces to

LNR ∧G4 ∧ E0 ∧D1 ∧D3 ⇒ false. (N.13)

In addition, R7, R9, and R10 jointly imply

G1 ∧ (¬G4) ∧E0 ∧D3 ⇒ false. (N.14)

One can easily verify that jointly (N.13) and (N.14) imply S11. The skeleton of

the proof of S11 is complete.

N.6.3 Proofs of R1 to R10

We prove R1 as follows.

Proof. Suppose D1 is true. By Corollary 5.4.2, any channel gain cannot have the

other channel gain as a factor. Therefore, m32 must be reducible. Furthermore we

must have GCD(m12, m32) 6≡ 1 since m12 is the only channel gain in the LHS of D1

that reaches d2. (See the proof of Lemma 6.2.1 for detailed discussion). Similarly, we

must have GCD(m31, m32)6≡1. Lemma 6.1.7 then implies S36=∅ and D26=∅. �

We prove R2 as follows.

Proof. Suppose G4∧G8∧D1 is true. From G4∧G8 being true, by definition, e∗3

(resp. e∗2) is the most downstream (resp. upstream) edge of S3 (resp. D2) and e
∗
3≺e∗2.

For the following, we will prove that {e∗3, e∗2}⊂1cut(s2; d3).

We now consider me∗3;e
∗

2
, a part of m32. From D1 and Property 2 of G4, we have

GCD(ml1
23, me∗3;e

∗

2
) = me∗3;e

∗

2
, (N.15)

for some positive integer l1. This implies that me∗3;e
∗

2
is a factor of m23. By Proposi-

tion 5.4.3, we have {e∗3, e∗2}⊂1cut(s2; d3). The proof is thus complete. �
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We prove R3 as follows.

Proof. Suppose G4∧G8∧G9∧D3 is true. Therefore, the e∗3 (resp. e∗2) defined in

the properties of G4 must also be the most downstream (resp. upstream) edge of

S3 (resp. D2). Moreover, since {e∗3, e∗2}⊂ 1cut(s2; d3), we can express m23 as m23 =

mes2 ;e
∗

3
me∗3;e

∗

2
me∗2;ed3

. For the following, we will prove that e∗3∈1cut(s1; d1)∪1cut(s2; d1).
We use the following observation: For any edge e′ ∈ 1cut(s3; d2) that is in the

upstream of e∗2, there must exist a path from s1 to tail(e∗2) that does not use such e′.

Otherwise, e′∈1cut(s3; d2) is also a 1-edge cut separating s1 and d2, which contradicts

that e∗2 is the most upstream edge of D2.

We now consider me∗3;ed1
, a factor of m31. From D3 and Property 2 of G4, we

have GCD(m11m
l3
13m

l3
21, me∗3;ed1

) = me∗3;ed1
. By Proposition 5.4.3, we must have e∗3 ∈

1cut(s1; d1) ∪ 1cut(s1; d3) ∪ 1cut(s2; d1). We also note that by the observation in

the beginning of this proof, there exists a path from s1 to tail(e∗2) not using e∗3.

Furthermore, e∗2 ∈ 1cut(s2; d3) implies that e∗2 can reach d3. These jointly shows

that there exists a path from s1 through e∗2 to d3 without using e∗3, which means

e∗3 6∈ 1cut(s1; d3). Therefore, e∗3 belongs to 1cut(s1; d1) ∪ 1cut(s2; d1). The proof

of e∗2 ∈ 1cut(s1; d1) ∪ 1cut(s1; d3) can be derived similarly. The proof R3 is thus

complete. �

We prove R4 as follows.

Proof. Assume G4∧G8∧G9∧ (¬G10)∧G11∧E0 is true. Recall that e∗3 is the

most downstream edge in S3 and e∗2 is the most upstream edge in D2. For the

following we construct 8 path segments that interconnects s1 to s3, d1 to d3, and two

edges e∗3 and e∗2.

• P1: a path from s1 to tail(e∗2) without using e∗3. This is always possible due to

Properties 1 and 2 of G4.

• P2: a path from s2 to tail(e∗3). This is always possible due to G8 and G9 being

true.
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s1 s2

d1 d2

s3

d3

Fig. N.1. The subgraph G′ of the 3-unicast ANA network G3ANA induced by the
union of the 8 paths plus two edges e∗3 and e∗2 in the proof of R4.

• P3: a path from s3 to tail(e∗3). This is always possible due to G4 and G8 being

true.

• P4: a path from s2 to d1 without using e
∗
3. This is always possible due to G10 being

false.

• P5: a path from head(e∗3) to d1 without using e∗2. This is always possible due to

Properties 1 and 2 of G4.

• P6: a path from head(e∗3) to tail(e∗2). This is always possible due to Property 1 of

G4.

• P7: a path from head(e∗2) to d2. This is always possible due to G4 and G8 being

true.

• P8: a path from head(e∗2) to d3. This is always possible due to G8 and G9 being

true.

Fig. N.1 illustrates the relative topology of these 8 paths. We now consider the

subgraph G′ induced by the 8 paths and two edges e∗3 and e∗2. One can easily check

that si can reach dj for any i 6= j. In particular, s1 can reach d2 through P1e
∗
2P7; s1

can reach d3 through P1e
∗
2P8; s2 can reach d1 through either P4 or P2e

∗
3P5; s2 can
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reach d3 through P2e
∗
3P6e

∗
2P8; s3 can reach d1 through P3e

∗
3P5; and s3 can reach d2

through P3e
∗
3P6e

∗
2P7.

We first show the following topological relationships: P1 is vertex-disjoint with

P2, P3, and P4, respectively, in the induced subgraph G′. From G9, {P1, P2} must

be vertex-disjoint paths otherwise s2 can reach d3 without using e∗3 ∈ 1cut(s2; d3).

Similarly from the fact that e∗3 ∈ S3, {P1, P3} must be vertex-disjoint paths. Also

notice that by G11, e∗3 is a 1-edge cut separating s1 and d1 in the original graph.

Therefore anys1-to-d1path in the subgraph must use e∗3 as well. But by definition,

both P1 and P4 do not use e∗3 and s1 can reach d1 if they share a vertex. This thus

implies that {P1, P4} are vertex-disjoint paths.

The above topological relationships further imply that s1 cannot reach d1 in the

induced subgraph G′. The reason is as follows. We first note that P1 is the only path

segment that s1 can use to reach other destinations, and anys1-to-d1path, if exists,

must use path segment P1 in the very beginning. Since P1 ends at tail(e
∗
2), using path

segment P1 alone is not possible to reach d1. Therefore, if as1-to-d1path exists, then

at some point, it must use one of the other 7 path segments P2 to P8. On the other

hand, we also note that e∗3 ∈ 1cut(s1; d1) and the path segments P5 to P8 are in the

downstream of e∗3. Therefore, for anys1-to-d1path, if it uses any of the vertices of P5

to P8, it must first go through tail(e∗3), the end point of path segments P2 and P3. As

a result, we only need to consider the scenario in which one of {P2, P3, P4} is used

by thes1-to-d1path when this path switches from P1 to a new path segment. But we

have already showed that P1 and {P2, P3, P4} are vertex-disjoint with each other. As

a result, nos1-to-d1path can exist. Thus s1 cannot reach d1 on the induced graph G′.

By E0 being true and Proposition 5.4.2, any subgraph who contains the source

and destination edges (hence G′) must satisfy E0. Note that we already showed

there is nos1-to-d1path on G′. Recalling (N.1), its LHS becomes zero. Thus, we have

g({mij : ∀ (i, j) ∈ I3ANA})ψ(n)
β (R,L) = 0 with at least one non-zero coefficient βj .

But note also that any channel gain mij where i 6= j is non-trivial on G′. Thus R,

L, and g({mij : ∀ (i, j) ∈ I3ANA}) are all non-zero polynomials. Therefore, G′ must
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satisfy ψ
(n)
β (R,L) = 0 with at least one non-zero coefficient βj and this further implies

that the set of polynomials {Rn, Rn−1L, · · · , RLn−1, Ln} is linearly dependent on G′.

Since this is the Vandermonde form, it is equivalent to that L≡R holds on G′.

For the following, we further show that in the induced graph G′, the following

three statements are true: (a) S2 ∩ S3=∅; (b) S1 ∩ S2=∅; and (c) S1 ∩ S3=∅, which
implies by Proposition 6.2.1 that G′ must have L 6≡R. We thus have a contradiction.

(a) S2 ∩ S3= ∅ on G′: Suppose there is an edge e∈S2 ∩ S3 on G′. Since e∈S2,

such e must belong to P4 and anys2-to-d3path. Since both e∈P4 and e∗3 6∈P4 belong

to 1cut(s2; d3), we have either e≺e∗3 or e≻e∗3. We first note that e must not be in the

downstream of e∗3. Otherwise, s2 can use P4 to reach e without using e∗3 and finally to

d3 (since e∈S2), which contradicts the assumption of G9 that e∗3∈1cut(s2; d3). As a

result, e≺ e∗3 and any path from s2 to tail(e∗3) must use e. This in turn implies that

P2 uses e. We now argue that P3 must also use e. The reason is that thes3-to-d1path

P3e
∗
3P5 must use e since e∈S3 and e≺e∗3. Then these jointly contradict that e∗3∈S3

since s3 can follow P3, switch to P4 through e, and reach d1 without using e∗3.

(b) S1 ∩ S2= ∅ on G′: Suppose there is an edge e∈S1 ∩ S2. Since e∈S2, by the

same arguments as used in proving (a), we know that e≺ e∗3 and e must be used by

both P2 and P4. We then note that e must also be used by thes1-to-d3path P1e
∗
2P8

since e ∈ S1. This in turn implies that P1 must use e since e ≺ e∗3 ≺ e∗2. However,

these jointly contradict the fact P1 and {P2, P3, P4} being vertex-disjoint, which were

proved previously. The proof of (b) is complete.

(c) S1 ∩ S3= ∅ on G′: Suppose there is an edge e∈ S1 ∩ S3. We then note that

e must be used by thes1-to-d3path P1e
∗
2P8 since e∈S1. Then e must be either e∗3 or

used by P3 since e∗3 is the most downstream edge of S3. Therefore, P1 must use e

(since e∗3≺e∗2). In addition, since by our construction P1 does not use e
∗
3, it is P3 who

uses e. However, P1 and P3 are vertex-disjoint with each other, which contradicts

what we just derived e∈P1 ∩ P3. The proof of (c) is complete. �

We prove R5 as follows.
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Proof. We notice that R5 is a symmetric version of R4 by simultaneously reversing

the roles of sources and destinations and relabeling flow 2 by flow 3, i.e., we swap the

roles of the following three pairs: (s1, d1), (s2, d3), and (s3, d2). We can then reuse

the proof of R4. �

We prove R6 as follows.

Proof. Assume G4∧G8 is true and recall that e∗3 is the most downstream edge in

S3 and e∗2 is the most upstream edge in D2. From G9∧G10∧G12 being true, we

further have e∗3 ∈ 1cut(s2; d1) ∩ 1cut(s2; d3) and e∗2 ∈ 1cut(s1; d3) ∩ 1cut(s2; d3). This

implies that e∗3 (resp. e
∗
2) belongs to S2∩S3 (resp. D2∩D3). We thus have ¬LNR by

Proposition 6.2.1. �

We prove R7 as follows.

Proof. We prove an equivalent relationship: (¬G4)∧ (¬G14) ⇒ (¬G1). From G4

being false, we have e32u ∈ S3∩D2 ⊂ 1cut(s3; d2) ∩ 1cut(s1; d2) ∩ 1cut(s3; d1). From

G14 being false, we have e32u ∈1cut(s1; d1). As a result, e32u is a 1-edge cut separating

{s1, s3} and {d1, d2}. This implies m11m32≡m12m31 and thus ¬G1. The proof of R7

is thus complete. �

We prove R8 as follows.

Proof. Suppose that (¬G4)∧G14 is true. From Property 3 of ¬G4, anys1-to-d1

path who uses a vertex w where tail(e32u )�w� head(e32v ) must use both e32u and e32v .

Since we have e32u 6∈ 1cut(s1; d1) from G14, there must exist as1-to-d1path not using

e32u . Then, these jointly imply that there exists as1-to-d1path which does not use any

vertex in-between tail(e32u ) and head(e32v ). Fix arbitrarily one such path as P ∗
11.

If the chosen P ∗
11 shares a vertex with any path segment from s3 to tail(e32u ), then

s3 can reach d1 without using e32u , contradicting e32u ∈ S3 ∩ D2 ⊂ 1cut(s3; d1). By

the similar argument, P ∗
11 should not share a vertex with any path segment from
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head(e32v ) to d2. Then jointly with the above discussion, we can conclude that P ∗
11 is

vertex-disjoint with anys3-to-d2path. We thus have proven (b) of G15.

Now consider ẽu (we have at least the s1-source edge es1) and ẽv (we have at least

the d1-destination edge ed1) defined in G15. By definition, ẽu ≺ e32u and e32v ≺ ẽv,

and the chosen P ∗
11 must use both ẽu and ẽv. Thus if head(ẽu) = tail(e32u ), then

this contradicts the above discussion since tail(e32u ) ∈ P ∗
11. Therefore, it must be

head(ẽu) ≺ tail(e32u ). Similarly, it must also be head(e32v ) ≺ tail(ẽv). Thus we have

proven (a) of G15.

We now prove (c) of G15. We prove this by contradiction. Fix arbitrarily one

edge e∈P ∗
11 where ẽu ≺ e≺ ẽv and assume that this edge e is reachable from either

e32u or e32v or both. We first prove that whenever e32u reaches e, then e must be in the

downstream of e32v . The reason is as follows. If e32u reaches e, then e∈P ∗
11 should not

reach e32v because it will be located in-between e32u and e32v , and this contradicts the

above discussion. The case when e are e32v are not reachable from each other is also

not possible because s1 can first reach e through e32u and follow P ∗
11 to d1 without

using e32v , which contradicts the Property 3 of ¬G4. Thus, if e32u ≺ e, then it must

be e32v ≺ e. By the similar argument, we can show that if e≺ e32v , it must be e≺ e32u .

Therefore, only two cases are possible when e is reachable from either e32u or e32v or

both: either e≺ e32u or e32v ≺ e. Extending this result to every edges of P ∗
11 from ẽu

to ẽv, we can group them into two: edges in the upstream of e32u ; and edges in the

downstream of e32v . Since ẽu≺ e32u ≺ e32v ≺ ẽv, this further implies that the chosen P ∗
11

must be disconnected. This, however, contradicts the construction P ∗
11. Therefore,

there must exist an edge ẽ∈P ∗
11 where ẽu ≺ e≺ ẽv that is not reachable from any of

{e32u , e32v }. We thus have proven (c) of G15. The proof of R8 is complete. �

We prove R9 as follows.

Proof. Suppose (¬G4)∧G14∧D3 is true. From R8, G15 must also be true, and

we will use thes1-to-d1path P
∗
11, the two edges ẽu and ẽv, and the edge ẽ∈P ∗

11 defined

in G15. For the following, we will prove that the specified ẽ satisfies G7. Since
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ẽ∈P ∗
11, we only need to prove that ẽ cannot be reached by any of {s2, s3} and cannot

reach any of {d2, d3}.
We first claim that ẽ cannot be reached from s3. Suppose not. Then we can

consider a news3-to-d1path: s3 can reach ẽ and follow P ∗
11 to d1. Since ẽ is not reachable

from any of {e32u , e32v } by (c) of G15, this news3-to-d1 path must not use any of

{e32u , e32v }. However, this contradicts the construction {e32u , e32v }⊂S3∩D2⊂1cut(s3; d1).

We thus have proven the first claim that ẽ cannot be reached from s3. Symmetrically,

we can also prove that ẽ cannot reach d2.

What remains to be proven is that ẽ cannot be reached from s2 and cannot reach

d3. Since D3 is true, there exists a positive integer l3 satisfying

GCD(m11m
l3
13m

l3
32m

l3
21, m12m31) = m12m31. Consider mes1 ;e

32
u
, a part of m12, and

me32v ;ed1
, a part of m31. By Property 1 of ¬G4, we have

GCD(m11m
l3
13m

l3
21, mes1 ;e

32
u
me32v ;dd1

) = mes1 ;e
32
u
me32v ;dd1

.

Recall the definition of ẽu (resp. ẽv) being the most downstream (resp. upstream)

edge among 1cut(s1; tail(e
32
v )) ∩ 1cut(s1; d1) (resp. 1cut(head(e32v ); d1) ∩ 1cut(s1; d1)).

Then we can further factorize mes1 ;e
32
u

= mes1 ;ẽu
mẽu;e32u and me32v ;ed1

= me32v ;ẽvmẽv;ed1
,

respectively. Since both ẽu and ẽv separate s1 and d1, we can express m11 as m11 =

mes1 ;ẽu
mẽu;ẽvmẽv;ed1

. Then one can see that the middle part of m11, i.e., mẽu;ẽv ,

must be co-prime to both mẽu;e32u and me32v ;ẽv , otherwise it violates the construc-

tion of ẽu (resp. ẽv) being the most downstream (resp. upstream) edge among

1cut(s1; tail(e
32
v )) ∩ 1cut(s1; d1) (resp. 1cut(head(e32v ); d1) ∩ 1cut(s1; d1)). The above

equation thus reduces to

GCD(ml3
13m

l3
21, mẽu;e32u

me32v ;ẽv) = mẽu;e32u
me32v ;ẽv . (N.16)

Using (N.16) and the previous constructions, we first prove that ẽ cannot reach d3.

Since head(ẽu)≺ tail(e32u ) by (a) of G15, we must have 0<EC(head(ẽu); tail(e
32
u ))<∞.

By Proposition 5.4.3, mẽu;e32u
is either irreducible or the product of irreducibles corre-
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sponding to the consecutive edges among ẽu, 1cut(head(ẽu); tail(e
32
u )), and e32u . Con-

sider the following edge set Eu={ẽu}∪ 1cut(head(ẽu); tail(e
32
u ))∪ {e32u }, the collection

of 1cut(head(ẽu); tail(e
32
u )) and two edges ẽu and e32u . Note that in the proof of R8, P ∗

11

was chosen arbitrarily such that ẽu∈P ∗
11 and e

32
u 6∈P ∗

11 but there was no consideration

for the 1-edge cuts from head(ẽu) to tail(e32u ) if non-empty. In other words, when s1

follow the chosen P ∗
11, it is obvious that it first meets ẽu but it is not sure when it

starts to deviate not to use e32u if we have non-empty 1cut(head(ẽu); tail(e
32
u )). Let eu1

denote the most downstream edge of Eu ∩P ∗
11 (we have at least ẽu) and let eu2 denote

the most upstream edge of Eu\P ∗
11 (we have at least e32u ). From the constructions

of P ∗
11 and Eu, the defined edges eu1 ∈ P ∗

11 and eu2 6∈ P ∗
11 are edges of Eu such that

ẽu � eu1 ≺ eu2 � e32u ; meu1 ;e
u
2
is irreducible; and mẽu;e32u contain meu1 ;e

u
2
as a factor. By

doing this way, we can clearly specify the location (in-between eu1 ∈P ∗
11 and eu2 6∈P ∗

11)

when P ∗
11 starts to deviate not to use e32u .

For the following, we first argue that GCD(m13, meu1 ;e
u
2
) 6≡ 1. Suppose not then

we have GCD(m21, meu1 ;e
u
2
) = meu1 ;e

u
2
from (N.16). By Proposition 5.4.3, we have

{eu1 , eu2}⊂1cut(s2; d1). However from the above construction, eu1 ∈1cut(s2; d1) implies

that s2 can first reach eu1 ∈ P ∗
11 and then follow P ∗

11 to d1 without using eu2 since

eu1 ≺ eu2 and eu2 6∈ P ∗
11. This contradicts eu2 ∈ 1cut(s2; d1) that we just established.

This thus proves that GCD(m13, meu1 ;e
u
2
) 6≡ 1. Since meu1 ;e

u
2
is irreducible, again by

Proposition 5.4.3, we further have {eu1 , eu2}⊂1cut(s1; d3).

We now argue that ẽ cannot reach d3. Suppose not and assume that there exists a

path segment Q from ẽ to d3. Since ẽ∈P ∗
11 is not reachable from any of {e32u , e32v } by

(c) of G15, it is obvious that ẽ must be in the downstream of eu1 ∈P ∗
11 since eu1 ≺e32u

from the above construction. Then when s1 follow P ∗
11 to ẽ (through eu1) and switch

to Q to reach d3, it will not use e
u
2 unless ẽ≺ eu2 and eu2 ∈Q, but ẽ cannot be in the

upstream of eu2 since eu2 �e32u from the above construction. Therefore, thiss1-to-d3path

P ∗
11ẽQ will not use eu2 and thus contradicts eu2 ∈1cut(s1; d3) that we just established.

As a result, ẽ cannot reach d3.
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The proof that ẽ cannot be reached from s2 can be derived symmetrically. In

particular, we can apply the above proof arguments (ẽ cannot reach d3) by symmet-

rically using the following: the edge set Ev = {e32v } ∪ 1cut(head(e32v ); tail(ẽv)) ∪ {ẽv}
and denote ev1 (resp. ev2) be the most downstream (resp. upstream) edge of Ev\P ∗

11

(resp. Ev ∩ P ∗
11) such that {ev1, ev2}⊂1cut(s2; d1) from (N.16).

Therefore we have proven that ẽ cannot be reached from s2 and cannot reach d3.

The proof of R9 is thus complete. �

We prove R10 as follows.

Proof. We prove an equivalent relationship: G7⇒ (¬E0). Suppose G7 is true and

consider the edge ẽ defined in G7. Consider ans1-to-d1path P11 that uses ẽ and an

edge e∈P11 that is immediate downstream of ẽ along this path, i.e., head(ẽ)= tail(e).

Such edge e always exists since ẽ cannot be the d1-destination edge ed1 . (Recall that

ẽ cannot be reached by s2.) We now observe that since G7 is true, such e cannot

reach any of {d2, d3} (otherwise ẽ can reach one of {d2, d3}). Now consider a local

kernel xẽe from ẽ to e. Then, one can see that by the facts that ẽ cannot be reached

by any of {s2, s3} and e cannot reach any of {d2, d3}, any channel gain mij where

i 6=j cannot depend on xẽe. On the other hand, the channel gain polynomial m11 has

degree 1 in xẽe since both ẽ and e are used by a path P11.

Since any channel gain mij where i 6=j is non-trivial on a given G3ANA, the above

discussion implies that f({mij : ∀ (i, j)∈I3ANA}), g({mij : ∀ (i, j)∈I3ANA}), R, and L
become all non-zero polynomials, any of which does not depend on xẽe. Thus recalling

(N.1), its RHS does not depend on xẽe. However, the LHS of (N.1) has a common

factor m11 and thus has degree 1 in xẽe. This implies that G3ANA does not satisfy

(N.1) if we have at least one non-zero coefficient αi and βj , respectively. This thus

implies ¬E0. �
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N.7 Proof of S12

If we swap the roles of sources and destinations, then the proof of S11 in Ap-

pendix N.6 can be directly applied to show S12. More specifically, note that D1

(resp. D3) are converted back and forth fromD2 (resp. D4) by such (s, d )-swapping.

Also, one can easily verify that LNR, G1, and E0 remain the same after the index

swapping. Thus we can see that S11 becomes S12 after reverting flow indices. The

proofs of S11 in Appendix N.6 can thus be used to prove S12.

N.8 Proof of S13

N.8.1 The fourth set of logic statements

To prove S13, we need the fourth set of logic statements.

• G16: There exists a subgraph G′ ⊂ G3ANA such that in G′ both the following

conditions are true: (i) si can reach dj for all i 6=j; and (ii) s1 can reach d1.

• G17: Continue from the definition of G16. The considered subgraph G′ also

contains an edge ẽ such that both the following conditions are satisfied: (i) ẽ can

reach d1 but cannot reach any of {d2, d3}; (ii) ẽ can be reached from s1 but not from

any of {s2, s3}.
• G18: Continue from the definition of G16. There exists a subgraph G′′⊂G′ such

that (i) si can reach dj for all i 6=j; and (ii) s1 can reach d1. Moreover, the considered

subgraph G′′ also satisfies (iii) m11m23 = m13m21; and (iv) L 6≡R.
• G19: Continue from the definition of G16. There exists a subgraph G′′⊂G′ such

that (i) si can reach dj for all i 6=j; and (ii) s1 can reach d1. Moreover, the considered

subgraph G′′ also satisfies (iii) m11m32 = m12m31; and (iv) L 6≡R.
• G20: S26=∅ and D36=∅.

The following logic statements are well-defined if and only if G3∧G20 is true.

Recall the definition of e∗2 and e∗3 when G3 is true.

• G21: {e∗2, e∗3} ⊂ 1cut(s3; d2).
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The following logic statements are well-defined if and only if (¬G3)∧ (¬G4) is

true. Recall the definition of e23u , e23v , e32u , and e32v when (¬G3)∧ (¬G4) is true.

• G22: There exists a path P ∗
11 from s1 to d1 who does not use any vertex in-between

tail(e23u ) and head(e23v ), and any vertex in-between tail(e32u ) and head(e32v ).

• G23: e23u ≺e32u .

• G24: e32u ≺e23u .

• G25: e32u ≺e23v .

• G26: e23u ≺e32v .

N.8.2 The skeleton of proving S13

We prove the following relationships, which jointly prove S13. The proofs for the

following statements are relegated to Appendix N.8.3.

• R11: D1 ⇒ G8 (identical to R1).

• R12: G4∧G8∧D1 ⇒ G9 (identical to R2).

• R13: LNR∧G4∧G8∧G9∧D2 ⇒ false.

• R14: D2 ⇒ G20.

• R15: G3∧G20∧D2 ⇒ G21.

• R16: LNR∧G3∧G20∧G21∧D1 ⇒ false.

• R17: LNR∧G2∧ (¬G3)∧ (¬G4)∧ (¬G5) ⇒ G7.

• R18: G16∧G17∧E0 ⇒ false.

• R19: G16∧ (G18∨G19)∧E0∧E1∧E2 ⇒ false.

• R20: G1∧ (¬G3)∧ (¬G4)∧ (¬G22)∧G23 ⇒ G16∧G18.

• R21: LNR∧ (¬G3)∧ (¬G4)∧G22∧G23∧G25 ⇒ G16∧G17.

• R22: LNR∧ (¬G3)∧ (¬G4)∧G22∧G23∧ (¬G25) ⇒ G16∧ (G17∨G18).

• R23: G1∧ (¬G3)∧ (¬G4)∧ (¬G22)∧G24 ⇒ G16∧G19.

• R24: LNR∧ (¬G3)∧ (¬G4)∧G22∧G24∧G26 ⇒ G16∧G17.

• R25: LNR∧ (¬G3)∧ (¬G4)∧G22∧G24∧ (¬G26) ⇒ G16∧ (G17∨G19).
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One can easily verify that jointly R11 to R13 imply

LNR ∧G4 ∧D1 ∧D2 ⇒ false. (N.17)

Similarly, R14 to R16 jointly imply

LNR ∧G3 ∧D1 ∧D2 ⇒ false. (N.18)

Thus, (N.17) and (N.18) together imply

LNR ∧ (G3 ∨G4) ∧D1 ∧D2 ⇒ false. (N.19)

Now recall R10, i.e., G7∧E0 ⇒ false. Then, jointly R10 and R17 imply

LNR ∧G2 ∧ (¬G3) ∧ (¬G4) ∧ (¬G5) ∧ E0 ⇒ false. (N.20)

One can easily verify that jointly R18 and R19 imply

G16 ∧ (G17 ∨G18 ∨G19) ∧ E0 ∧E1 ∧E2 ⇒ false. (N.21)

One can see that jointly (N.21), R20, R21, and R22 imply

LNR ∧G1 ∧ (¬G3) ∧ (¬G4) ∧G23 ∧E0 ∧ E1 ∧E2 ⇒ false. (N.22)

By similar arguments as used in deriving (N.22), jointly (N.21), R23, R24, and

R25 imply

LNR ∧G1 ∧ (¬G3) ∧ (¬G4) ∧G24 ∧E0 ∧ E1 ∧E2 ⇒ false. (N.23)
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Since by definition (¬G3)∧ (¬G4)∧G5 ⇒ (¬G3)∧ (¬G4)∧ (G23∨G24),

jointly (N.22) and (N.23) imply

LNR ∧G1 ∧ (¬G3) ∧ (¬G4) ∧G5 ∧E0 ∧E1 ∧ E2 ⇒ false. (N.24)

By similar arguments as used in deriving (N.22), (N.24) and (N.20) further imply

LNR ∧G1 ∧G2 ∧ (¬G3) ∧ (¬G4) ∧E0 ∧E1 ∧ E2 ⇒ false. (N.25)

Finally, one can easily verify that jointly (N.19) and (N.25) imply that we have

LNR∧G1∧G2∧E0∧E1∧E2∧D1∧D2 ⇒ false, which proves S13. The skele-

ton of the proof of S13 is complete.

N.8.3 Proofs of R11 to R25

Since R11 and R12 is identical to R1 and R2, respectively, see Appendix N.6.3

for their proofs.

We prove R13 as follows.

Proof. We prove an equivalent relationship: G4∧G8∧G9∧D2 ⇒ ¬LNR. Sup-

pose G4∧G8∧G9 is true. The e∗3 (resp. e∗2) defined in the properties of G4 must

be the most downstream (resp. upstream) edge of S3 (resp. D2), both of which

belongs to 1cut(s2; d3).

For the following, we will prove that there exists an edge in-between {es2, es3} and

e∗3 who belongs to S2∩S3. We will also prove that there exists an edge in-between e∗2

and {ed2 , ed3} who belongs to D2∩D3. By Proposition 6.2.1 we thus have LNR being

false.

Define a node u= tail(e∗3). Since e
∗
3∈1cut(s2; d3), u is reachable from s2. Since e

∗
3∈

S3, u is also reachable form s3. Consider the set of edges {1cut(s2; u)∩ 1cut(s3; u)}∪
{e∗3} and choose e′′ as the most upstream one (we have at least e∗3). Let e

′ denote the

most downstream edge of 1cut(s2; tail(e
′′)) (we have at least the s2-source edge es2).
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Since we choose e′ to be the most downstream one, by Proposition 5.4.3 the channel

gain me′;e′′ must be irreducible.

Moreover, since e∗3 ∈ 1cut(s2; d3), both e′ and e′′ must be in 1cut(s2; d3). The

reason is that by e∗3∈1cut(s2; d3) any path from s2 to d3 must use e∗3, which in turn

implies that any path from s2 to d3 must use e′′ since e′′ separates s2 and tail(e∗3).

Therefore e′′∈1cut(s2; d3). Similarly, anys2-to-d3path must use e′′, which means any

s2-to-d3path must use e′ as well since e′ ∈ 1cut(s2; tail(e
′′)). As a result, the channel

gain m23 contains me′;e′′ as a factor.

Since D2 is true, it implies that me′;e′′ must be a factor of one of the following

three channel gains m13, m32, and m21. We first argue that me′;e′′ is not a factor of

m32. The reason is that if me′;e′′ is a factor of m32, then e
′∈1cut(s3; d2), which means

that e′ ∈ 1cut(s3; tail(e
∗
3)). Since e′ is also in 1cut(s2; tail(e

∗
3)), this contradicts the

construction that e′′ is the most upstream edge of 1cut(s2; tail(e
∗
3))∩ 1cut(s3; tail(e

∗
3)).

Now we argue that GCD(m13, me′;e′′)≡ 1. Suppose not. Then since me′;e′′ is

irreducible, Proposition 5.4.3 implies that {e′, e′′} are 1-edge cuts separating s1 and

d3. Also from Property 1 of G4, there always exists a path segment from s1 to e∗2

without using e∗3. Since e∗2 ∈ 1cut(s2; d3), e
∗
2 can reach d3 and we thus have as1-to-d3

path without using e∗3. However by the assumption that e′∈1cut(s1; d3), this chosen

path must use e′. As a result, s2 can first reach e′ and then reach d3 through the chosen

path without using e∗3, which contradicts the assumption G9, i.e., e∗3∈1cut(s2; d3).

From the above discussion me′;e′′ must be a factor of m21, which by Proposi-

tion 5.4.3 implies that {e′, e′′} also belong to 1cut(s2; d1). Since by our construction

e′′ satisfies e′′ ∈ S3 ∩ 1cut(s2; d3), we have thus proved that e′′ ∈S2 ∩ S3. The proof

for the existence of an edge satisfying D2 ∩ D3 can be followed symmetrically. The

proof of R12 is thus complete. �

By swapping the roles of s2 and s3, and the roles of d2 and d3, the proofs of

R11 to R13 can also be used to prove R14 to R16, respectively. More specifically,

D1 and D2 are converted back and forth from each other when swapping the flow

indices. The same thing happens between G3 and G4; between G20 and G8; and
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between G21 and G9. Moreover, LNR remains the same after the index swapping.

The above proofs can thus be used to prove R14 to R16.

We prove R17 as follows.

Proof. Suppose LNR∧G2∧ (¬G3)∧ (¬G4)∧ (¬G5) is true. Recall the definitions

of e23u , e32u , e23v , and e32v from Properties of both ¬G3 and ¬G4. Since LNR∧ (¬G3)∧ (¬G4)

is true, we have G6 if we recall N7. Together with ¬G5, e23u and e32u are distinct

and not reachable from each other. Thus from G2 being true, there must exist a

s1-to-d1path who does not use any of {e23u , e32u }. Combined with Property 3 of ¬G3

and ¬G4, this further implies that suchs1-to-d1path does not use any of {e23v , e32v }.
Fix one suchs1-to-d1path as P ∗

11.

We will now show that there exists an edge in P ∗
11 satisfying G7. To that end,

we will show that if an edge e∈P ∗
11 can be reached from s2, then it must be in the

downstream of e23v . We first argue that e23v and e are reachable from each other. The

reason is that we now have as2-to-d1path by first going from s2 to e∈P ∗
11 and then

use P ∗
11 to d1. Since e23v ∈ 1cut(s2; d1) by definition, such path must use e23v . As a

result, we either have e23v ≺ e or e≺ e23v . (e= e23v is not possible since e23v 6∈P ∗
11.) We

then prove that e≺ e23v is not possible. The reason is that P ∗
11 does not use e23u and

thus s1 must not reach e23v through P ∗
11 due to Property 3 of ¬G3. As a result, we

must have e23v ≺ e. By symmetric arguments, any e∈ P ∗
11 that can be reached from

reach s3 must be in the downstream of e32v and any e∈P ∗
11 that can reach d3 (resp.

d2) must be in the upstream of e23u (resp. e32u ).

For the following, we prove that there exists an edge ẽ ∈ P ∗
11 that cannot reach

any of {d2, d3}, and that cannot be reached from any of {s2, s3}. Since ẽ∈P ∗
11, this

will imply G7. Let e′ denote the most downstream edge of P ∗
11 that can reach at

least one of {d2, d3} (we have at least the s1-source edge es1). Among all the edges

in P ∗
11 that are downstream of e′, let e′′ denote the most upstream one that can be

reached by at least one of {s2, s3} (we have at least the d1-destination edge ed1). In

the next paragraph, we argue that e′′ is not the immediate downstream edge of e′,
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i.e., head(e′)≺ tail(e′′). This conclusion directly implies that we have at least one edge

ẽ that satisfies G7 (which is in-between e′ and e′′).

Without loss of generality, assume that head(e′) = tail(e′′) and e′ can reach d2.

Then, by our previous arguments, e′ is an upstream edge of e32u . Consider two cases:

Case 1: Suppose e′′ is reachable from s3, then by our previous arguments, e′′ is a

downstream edge of e32v . However, this implies that we can go from head(e′) through

e32u to e32v and then back to tail(e′′)=head(e′), which contradicts the assumption that

G is acyclic. Consider the Case 2: e′′ is reachable from s2. Then by our previous

arguments, e′′ is a downstream edge of e23v . Then we can go from e23u to e23v , then to

tail(e′′) = head(e′) and then to e32u . This contradicts the assumption of ¬G5. The

proof of R17 is thus complete. �

We prove R18 as follows.

Proof. Suppose G16∧G17∧E0 is true. From E0 being true, G3ANA satisfies (N.1)

with at least two non-zero coefficients αi and βj . FromG16 being true, the considered

subgraph G′ has the non-trivial channel gain polynomials mij for all i 6= j and m11.

By Proposition 5.4.2, G′ also satisfies (N.1) with the same set of non-zero coefficients

αi and βj .

From G17 being true, consider the defined edge ẽ∈G′ that cannot reach any of

{d2, d3} (but reaches d1) and cannot be reached by any of {s2, s3} (but reached from

s1). This chosen ẽ must not be the s1-source edge es1 otherwise (ẽ=es1) ẽ will reach

d2 or d3 and thus contradict the assumption G17.

Choose an edge e ∈ G′ such that es1 � e and head(e) = tail(ẽ). This is always

possible because s1 can reach ẽ and es1 ≺ ẽ on G′. Then, this chosen edge e should

not be reached from s2 or s3 otherwise s2 or s3 can reach ẽ and this contradicts the

assumption G17. Now consider a local kernel xeẽ from e to ẽ. Then, one can quickly

see that the channel gains m21, m23, m31, and m32 must not have xeẽ as a variable

since e is not reachable from s2 nor s3. Also m12 and m13 must not have xeẽ as a

variable since ẽ doe not reach any of {d2, d3}.
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This further implies that the RHS of (N.1) does not depend on xeẽ. However, the

LHS of (N.1) has a common factor m11 and thus has degree 1 in xeẽ. This contradicts

the above discussion that G′ also satisfies (N.1). �

We prove R19 as follows.

Proof. Equivalently, we prove the following two relationships: G16∧G18∧E0∧E1

∧E2 ⇒ false; and G16∧G19∧E0∧E1∧E2 ⇒ false.

We first prove the former. Suppose thatG16∧G18∧E0∧E1∧E2 is true. From

E0∧E1∧E2 being true, there exists some coefficient values {αi}ni=0 and {βj}nj=0 such

that G3ANA of interest satisfies

m11m23 ψ
(n)
α (R,L) = m13m21 ψ

(n)
β (R,L), (N.26)

with (i) At least one of αi is non-zero; (ii) At least one of βj is non-zero; (iii) αk 6=βk for
some k∈{0, ..., n}; and (iv) either α0 6=0 or βn 6=0 or αk 6=βk−1 for some k∈{1, ..., n}.

From the assumption that G16 is true, consider a subgraph G′ which has the non-

trivial channel gain polynomials mij for all i 6=j and m11. Thus by Proposition 5.4.2,

G′ also satisfies (N.26) with the same coefficient values.

Now fromG18 being true, we will prove the first relationship, i.e., G16∧G18∧E0

∧E1∧E2 ⇒ false. Since G18 is true, there exists a subgraph G′′ ⊂G′ which also

has the non-trivial channel gains mij for all i 6= j and m11. Thus again by Propo-

sition 5.4.2, G′′ satisfies (N.26) with the same coefficients. Since G′′ also satisfies

m11m23 = m13m21, by (N.26), we know that G′′ satisfies

ψ(n)
α (R,L) = ψ

(n)
β (R,L). (N.27)

Note that by (iii), the coefficient values were chosen such that αk 6= βk for some

k ∈ {0, ..., n}. Then (N.27) further implies that G′′ satisfies
∑n

k=0 γkR
n−kLk = 0

with at least one non-zero γk. Equivalently, this means that the set of polynomials

{Rn, Rn−1L, · · · , RLn−1, Ln} is linearly dependent. Since this is the Vandermonde
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form, it is equivalent to that L ≡ R holds on G′′. However, this contradicts the

assumption G18 that G′′ satisfies L 6≡R.
To prove the second relationship, i.e., G16∧G19∧E0∧E1∧E2 ⇒ false, we

assume G19 is true. Since G19 is true, there exists a subgraph G′′ ⊂ G′ which

also has the non-trivial channel gains mij for all i 6= j and m11. Thus again by

Proposition 5.4.2,G′′ satisfies (N.26) with the same coefficients. Moreover, G′′ satisfies

m11m32 = m12m31, which together with (N.26) imply that G′′ also satisfies

Rψ(n)
α (R,L) = Lψ

(n)
β (R,L), (N.28)

where we first multiply m32 on both sides of (N.26).

Expanding (N.28), we have

Rψ(n)
α (R,L)− Lψ

(n)
β (R,L) = α0R

n+1 +
n
∑

k=1

(αk − βk−1)R
n+1−kLk + βnL

n+1

=
n+1
∑

k=0

γkR
n+1−kLk = 0

(N.29)

By (iv), the coefficient values were chosen such that either α0 6= 0 or βn 6= 0

or αk 6= βk−1 for some k ∈ {1, ..., n}. Then (N.29) further implies that G′′ satisfies
∑n+1

k=0 γkR
n+1−kLk = 0 with some non-zero γk. Equivalently, this means that the

set of polynomials {Rn+1, RnL, · · · , RLn, Ln+1} is linearly dependent, and thus G′′

satisfies L≡R. This contradicts the assumption G19 that L 6≡R holds on G′′. The

proof of R19 is thus complete. �

We prove R20 as follows.

Proof. Suppose G1∧ (¬G3)∧ (¬G4)∧ (¬G22)∧G23 is true. Recall the defini-

tions of e23u , e32u , e23v , and e32v when (¬G3)∧ (¬G4) is true. From Property 1 of both

¬G3 and ¬G4, we know that s1 can reach e23u (resp. e32u ) and then use e23v (resp.

e32v ) to arrive at d1. Note that ¬G22 being true implies that everys1-to-d1path must

use a vertex w in-between tail(e23u ) and head(e23v ) or in-between tail(e32u ) and head(e32v )
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or both. Combined with Property 3 of both ¬G3 and ¬G4, this further implies that

everys1-to-d1path must use {e23u , e23v } or {e32u , e32v } or both.

From G23 being true, we have e23u ≺ e32u . For the following we prove that (i)

head(e23v )≺ tail(e32u ); and (ii) there exists a path segment from head(e23v ) to d1 which

is vertex-disjoint with any vertex in-between tail(e32u ) and head(e32v ). First we note

that e23u is not an 1-edge cut separating s1 and tail(e32u ). The reason is that if e23u ∈
1cut(s1; tail(e

32
u )), then e23u must be an 1-edge cut separating s1 and d1 since anys1-to-d1

path must use {e23u , e23v } or {e32u , e32v } or both. However, since e23u ∈S2∩D3, this implies

e23u ∈ 1cut({s1, s2}; {d1, d3}). This contradicts the assumption G1. We now consider

all the possible cases: either e23v ≺ e32u or e32u � e23v or not reachable from each other.

We first show that the last case is not possible. The reason is that suppose e23v and

e32u are not reachable from each other, then s1 can first reach e23u , then reach e32u to d1

without using e23v . This contradicts Property 3 of ¬G3. Similarly, the second case

is not possible because when e32u �e23v , we can find a path from s1 to e32u to e23v to d1

not using e23u since e23u 6∈1cut(s1; tail(e
32
u )). This also contradicts Property 3 of ¬G3.

We thus have shown e23v ≺ e32u . Now we still need to show that e23v and e32u are not

immediate neighbors: head(e23v ) ≺ tail(e32u ). Suppose not, i.e., head(e23v ) = tail(e32u ).

Then by Property 3 of ¬G3, we know that any path from head(e23v )= tail(e32u ) to d1

must use both e32u and e32v . By the conclusion in the first paragraph of this proof,

we know that this implies {e32u , e32v }⊂1cut(s1; d1). However, this further implies that

{e32u , e32v }⊂1cut({s1, s3}; {d1, d2}), which contradictsG1. The proof of (i) is complete.

We now prove (ii). Suppose that every path from head(e23v ) to d1 has at least

one vertex w that satisfies tail(e32u ) � w � head(e32v ). Then by Property 3 of ¬G3,

everys1-to-d1path that uses e23v must use both e32u and e32v . By the findings in the

first paragraph of this proof, this also implies that anys1-to-d1path must use both e32u

and e32v . However, this further implies that {e32u , e32v }⊂ 1cut({s1, s3}; {d1, d2}). This

contradicts G1. We have thus proven (ii).

Using the assumptions and the above discussions, we construct the following 11

path segments.
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s1 s2

d1 d2

s3

d3

Fig. N.2. The subgraph G′ of the 3-unicast ANA network G3ANA induced by the
union of the 11 paths in the proof of R20.

• P1: a path from s1 to tail(e23u ). This is always possible due to G3 being false.

• P2: a path from s2 to tail(e
23
u ), which is edge-disjoint with P1. This is always possible

due to G3 being false.

• P3: a path starting from e23u and ending at e23v . This is always possible due to G3

being false.

• P4: a path from head(e23v ) to tail(e23u ). This is always possible since we showed (i)

in the above discussion.

• P5: a path starting from e32u and ending at e32v . This is always possible due to G4

being false.

• P6: a path from head(e32v ) to d1. This is always possible due to G4 being false.

• P7: a path from head(e32v ) to d2, which is edge-disjoint with P6. This is always

possible due to G4 being false and Property 2 of ¬G4.

• P8: a path from s3 to tail(e32u ). This is always possible due to G4 being false.

• P9: a path from head(e23v ) to d3. This is always possible due to G3 being false.

• P10: a path from head(e23v ) to d1, which is vertex-disjoint with P5. This is always

possible since we showed (ii) in the above discussion.
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• P11: a path from head(e23v ) to d1, which is edge-disjoint with P9. This is always

possible due to G3 being false.

Fig. N.2 illustrates the relative topology of these 11 paths. We now consider the

subgraph G′ induced by the above 11 path segments. First, one can see that si can

reach dj for all i 6= j. In particular, s1 can reach d2 through P1P3P4P5P7; s1 can

reach d3 through P1P3P9; s2 can reach d1 through either P2P3P4P5P6 or P2P3P10 or

P2P3P11; s2 can reach d3 through P2P3P9; s3 can reach d1 through P8P5P6; and s3

can reach d2 through P8P5P7. Moreover, s1 can reach d1 through either P1P3P4P5P6

or P1P3P10 or P1P3P11. Thus we showed G16.

For the following, we will prove that m11m23 = m13m21 and L 6≡ R hold in the

above G′. Note that {P1, P2, P3, P10} must be vertex-disjoint with P8, otherwise s3

can reach d1 without using P5 and this contradicts {e32u , e32v }⊂S3 ∩D2⊂1cut(s3; d1).

Since P8 is vertex-disjoint from {P1, P2}, one can easily see that removing P3 separates

{s1, s2} and {d1, d3}. Thus G′ satisfies m11m23 = m13m21.

To show that L 6≡ R holds on G′, we make the following arguments. First, we

show that G′ satisfies S2∩S3=∅. Note that any S2 edge can exist only as one of four

cases: (i) P2; (ii) P3; (iii) an edge that P4, P9, P10, and P11 share; and (iv) an edge

that P6, P9, P10, and P11 share. Note also that any S3 edge can exist only as one of

three cases: (i) P8; (ii) P5; and (iii) an edge that P6 and P7 shares. But since P6 and

P7 were chosen to be edge-disjoint with each other from the above construction, any

S3 edge can exist on either P8 or P5. However, P5 was chosen to be vertex-disjoint

with P10 from the above construction and we also showed that P8 is vertex-disjoint

with {P2, P3, P10}. Thus, S2 ∩ S3=∅ on G′.

Second, we show that G′ satisfies D1 ∩D2= ∅. Note that any D1 edge can exist

on an edge that all P6, P10, and P11 share since P6 cannot share an edge with any of

its upstream paths (in particular P2, P3, P4, and P5); P5 cannot share an edge with

P10 due to vertex-disjointness; and P8 cannot share edge with {P2, P3, P10} otherwise

there will be ans3-to-d1path not using P5. Note also that any D2 edge can exist on (i)

an edge that both P4 and P8 share; (ii) P5; and (iii) P7. However, P7 was chosen to
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be edge-disjoint with P6, and P5 was chosen to be vertex-disjoint with P10. Moreover,

we already showed that P8 is vertex-disjoint with P10. Thus, D1 ∩D2=∅ on G′.

Third, we show that G′ satisfies D1 ∩D3=∅. Note that any D1 edge can exist on

an edge that P6, P10 and P11 share. Note also that any D3 edge can exist on (i) P3;

and (ii) P9. However, all P6, P10 and P11 are the downstream paths of P3. Moreover,

P9 was chosen to be edge-disjoint with P11 by our construction. Thus, D1 ∩ D3= ∅
on G′.

Hence, the above discussions, together with Proposition 6.2.1, implies that the

considered G′ satisfies L 6≡R. Thus we have proven G18 being true. The proof is

thus complete. �

We prove R21 as follows.

Proof. Suppose LNR∧ (¬G3)∧ (¬G4)∧G22∧G23∧G25 is true. Recall the def-

initions of e23u , e32u , e23v , and e32v when (¬G3)∧ (¬G4) is true. From Property 1 of

both ¬G3 and ¬G4, s1 reaches e23u and e32u , respectively. From G22 being true,

there exists as1-to-d1path P
∗
11 who does not use any vertex in-between tail(e23u ) and

head(e23v ), and any vertex in-between tail(e32u ) and head(e32v ).

Note that G23∧G25 implies e23u ≺ e32u ≺ e23v . For the following, we prove that

e32v ≺ e23v . Note that by our construction e32u � e32v . As a result, we have e23u ≺
e32u � e32v ≺ e23v . To that end, we consider all the possible cases between e32v and e23v :

e32v ≺e23v ; or e23v ≺e32v ; or e32v =e23v ; or they are not reachable from each other. We first

show that the third case is not possible. The reason is that if e32v =e23v , then we have

S2∩S3∩D2∩D36=∅, which contradicts the assumption LNR. The last case in which

e32v and e23v are not reachable from each other is also not possible. The reason is that

by our construction, there is always ans1-to-d1path through e23u , e32u , and e32v without

using e23v . Note that by Property 3 of ¬G3, suchs1-to-d1path must use e23v , which is

a contradiction. We also claim that the second case, e23v ≺ e32v , is not possible. The

reason is that if e23v ≺ e32v , then together with the assumption G23∧G25 we have

e23u ≺ e32u ≺ e23v ≺ e32v . We also note that e32u must be an 1-edge cut separating s1
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and tail(e23v ), otherwise s1 can reach tail(e23v ) without using e32u and then use e23v and

e32v to arrive at d2. This contradicts the construction e32u ∈ S3 ∩ D2 ⊂ 1cut(s1; d2).

Since e23v ∈ S2 ∩ D3 is also an 1-edge cut separating s1 and d3, this in turn implies

that e32u ∈ 1cut(s1; d3). Symmetrically following this argument, we can also prove

that e23v ∈ 1cut(s3; d1). Since e32u ∈ S3∩D2 and e23v ∈ S2∩D3, these further imply

that e32u ∈ S1∩S3∩D2 and e23v ∈ S2∩D1∩D3, which contradicts the assumption

LNR by Proposition 6.2.1. We have thus established e32v ≺e23v and together with the

assumption G23∧G25, we have e23u ≺ e32u � e32v ≺e23v .

Using the assumptions and the above discussions, we construct the following 7

path segments.

• P1: a path from s1 to tail(e23u ). This is always possible due to G3 being false.

• P2: a path from s2 to tail(e23u ) which is edge-disjoint with P1. This is always possible

due to G3 being false and Property 2 of ¬G3.

• P3: a path starting from e23u , using e32u and e32v , and ending at e23v . This is always

possible from the above discussion.

• P4: a path from head(e23v ) to d1. This is always possible due to G3 being false.

• P5: a path from head(e23v ) to d3 which is edge-disjoint with P4. This is always

possible due to G3 being false and Property 2 of ¬G3.

• P6: a path from s3 to tail(e32u ). This is always possible due to G4 being false.

• P7: a path from head(e32v ) to d2. This is always possible due to G4 being false.

We now consider the subgraph G′ induced by the above 7 path segments and P ∗
11.

First, one can easily check that si can reach dj for all i 6= j. In particular, s1 can

reach d2 through P1P3e
32
v P7; s1 can reach d3 through P1P3P5; s2 can reach d1 through

P2P3P4; s2 can reach d3 through P2P3P5; s3 can reach d1 through P6e
32
u P3P4; and s3

can reach d2 through P6e
32
u P3e

32
v P7. Moreover, s1 can reach d1 through either P ∗

11 or

P1P3P4. As a result, G16 must hold.

We now prove G17. To that end, we will show that there exists an edge ẽ∈P ∗
11

that cannot reach any of {d2, d3}, and cannot be reached from any of {s2, s3}. Note

from G22 being true that P ∗
11 was chosen to be vertex-disjoint with P3. Note that



260

P ∗
11 must also be vertex-disjoint with P2 (resp. P6) otherwise s2 (resp. s3) can reach

d1 without using P3 (resp. e
32
u P3e

32
v ). Similarly, P ∗

11 must also be vertex-disjoint with

P5 (resp. P7) otherwise s1 can reach d3 (resp. d2) without using P3 (resp. e32u P3e
32
v ).

Hence, among 7 path segments constructed above, the only path segments that can

share a vertex with P ∗
11 are P1 and P4. Without loss of generality, we also assume

that P1 is chosen such that it overlaps with P ∗
11 in the beginning but then “branches

out”. That is, let u∗ denote the most downstream vertex among those who are used

by both P1 and P ∗
11 and we can then replace P1 by s1P

∗
11u

∗P1tail(e
23
u ). Note that the

new construction still satisfies the requirement that P1 and P2 are edge-disjoint since

P ∗
11 is vertex-disjoint with P2. Similarly, we also assume that P4 is chosen such that

it does not overlap with P ∗
11 in the beginning but then “merges” with P ∗

11 whenever

P4 shares a vertex v∗ with P ∗
11 for the first time. The new construction of P4, i.e.,

head(e23v )P4v
∗P ∗

11d1 is still edge-disjoint from P5. Then in the considered subgraph G′,

in order for an edge e∈P ∗
11 to reach d2 or d3, we must have head(e)�u∗. Similarly,

in order for an edge e ∈ P ∗
11 to be reached from s2 or s3, this edge e must satisfy

v∗� tail(e). If there does not exist such an edge ẽ∈P ∗
11 satisfying G17, then it means

that u∗ = v∗. This, however, contradicts the assumption that G is acyclic because

now we can walk from u∗ through P1P3P4 back to v∗=u∗. Therefore, we thus have

G17. The proof of R21 is thus complete. �

We prove R22 as follows.

Proof. Suppose LNR∧ (¬G3)∧ (¬G4)∧G22∧G23∧ (¬G25) is true. Recall the

definitions of e23u , e32u , e23v , and e32v when (¬G3)∧ (¬G4) is true. From Property 1

of both ¬G3 and ¬G4, s1 reaches e23u and e32u , respectively. From G22 being true,

there exists as1-to-d1path P
∗
11 who does not use any vertex in-between tail(e23u ) and

head(e23v ), and any vertex in-between tail(e32u ) and head(e32v ).

Note that G23 implies e23u ≺ e32u . For the following, we prove that head(e23v ) ≺
tail(e32u ). To that end, we consider all the possible cases by ¬G25 being true: either

e23v ≺e32u or e23v =e32u or not reachable from each other. We first show that the second
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case is not possible. The reason is that if e23v =e32u , then we have S2∩S3∩D2∩D36=∅,
which contradicts the assumption LNR. The third case in which e23v and e32u are not

reachable from each other is also not possible. The reason is that by our construction,

there is always ans1-to-d1path through e23u , e32u , and e32v without using e23v . Note that by

Property 3 of ¬G3, suchs1-to-d1path must use e23v , which is a contradiction. We have

thus established e23v ≺ e32u . We still need to show that e23v and e32u are not immediate

neighbors since we are proving head(e23v )≺ tail(e32u ). We prove this by contradiction.

Suppose not, i.e., w=head(e23v )= tail(e32u ). Since e32u ∈S3∩D2⊂1cut(s1; d2), anys1-to-d2

path must use its tail w. By Property 3 of ¬G3 we have e23v ∈ 1cut(s1;w). This in

turn implies that e23v is also an 1-edge cut separating s1 and d2. By symmetry, we can

also prove e32u ∈1cut(s2; d1). Jointly the above argument implies that e23v ∈S1∩S2∩D3

and e32u ∈S3∩D1∩D2, which contradicts the assumption LNR by Proposition 6.2.1.

Based on the above discussions, we construct the following 9 path segments.

• P1: a path from s1 to tail(e23u ). This is always possible due to G3 being false.

• P2: a path from s2 to tail(e23u ) which is edge-disjoint with P1. This is always possible

due to G3 being false and Property 2 of ¬G3.

• P3: a path starting from e23u and ending at e23v . This is always possible due to G3

being false.

• P4: a path from head(e23v ) to tail(e32u ). This is always possible from the above

discussion.

• P5: a path starting from e32u and ending at e32v . This is always possible due to G4

being false.

• P6: a path from head(e32v ) to d1. This is always possible due to G4 being false.

• P7: a path from head(e32v ) to d2 which is edge-disjoint with P6. This is always

possible due to G4 being false and Property 2 of ¬G4.

• P8: a path from s3 to tail(e32u ). This is always possible due to G4 being false.

• P9: a path from head(e23v ) to d3. This is always possible due to G3 being false.

From G22 being true, P ∗
11 was chosen to be vertex-disjoint with {P3, P5}. Note

that P ∗
11 must also be vertex-disjoint with P2 (resp. P8) otherwise s2 (resp. s3) can
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reach d1 without using P3 (resp. P5). Similarly, P ∗
11 must also be vertex-disjoint with

P7 (resp. P9) otherwise s1 can reach d2 (resp. d3) without using P5 (resp. P3). Hence,

among 9 path segments constructed above, the only path segments that can share a

vertex with P ∗
11 are P1, P4, and P6.

We now consider the subgraph G′ induced by the above 9 path segments and P ∗
11.

First, one can easily check that si can reach dj for all i 6=j. In particular, s1 can reach

d2 through P1P3P4P5P7; s1 can reach d3 through P1P3P9; s2 can reach d1 through

P2P3P4P5P6; s2 can reach d3 through P2P3P9; s3 can reach d1 through P8P5P6; and

s3 can reach d2 through P8P5P7. Moreover, s1 can reach d1 through either P ∗
11 or

P1P3P4P5P6. Thus we showed G16.

Case 1: P ∗
11 is also vertex-disjoint with P4. In this case, we will prove that G17

is satisfied. Namely, we claim that there exists an edge ẽ∈P ∗
11 that cannot reach any

of {d2, d3}, and cannot be reached from any of {s2, s3}. Note that only path segments

that P ∗
11 can share a vertex with are P1 and P6. Without loss of generality, we assume

that P1 is chosen such that it overlaps with P ∗
11 in the beginning but then “branches

out”. That is, let u∗ denote the most downstream vertex among those who are used

by both P1 and P ∗
11 and we can then replace P1 by s1P

∗
11u

∗P1tail(e
23
u ). Note that the

new construction still satisfies the requirement that P1 and P2 are edge-disjoint since

P ∗
11 is vertex-disjoint with P2. Similarly, we also assume that P6 is chosen such that

it does not overlap with P ∗
11 in the beginning but then “merges” with P ∗

11 whenever

P6 shares a vertex v∗ with P ∗
11 for the first time. The new construction of P6, i.e,

head(e32v )P6v
∗P ∗

11d1, is still edge-disjoint from P7. Then in the considered subgraph G′,

in order for an edge e∈P ∗
11 to reach d2 or d3, we must have head(e)�u∗. Similarly,

in order for an edge e ∈ P ∗
11 to be reached from s2 or s3, this edge e must satisfy

v∗� tail(e). If there does not exist such an edge ẽ∈P ∗
11 satisfying G17, then it means

that u∗ = v∗. This, however, contradicts the assumption that G is acyclic because

now we can walk from u∗ through P1P3P4P5P6 back to v∗ = u∗. Therefore, we thus

have G17 for Case 1.
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Case 2: P ∗
11 shares a vertex with P4. In this case, we will prove that G18 is

true. Since P ∗
11 is vertex-disjoint with {P3, P5}, P ∗

11 must share a vertex w with

P4 where head(e23v ) ≺ w ≺ tail(e32u ). Choose the most downstream vertex among

those who are used by both P ∗
11 and P4 and denote it as w′. Then, denote the path

segment head(e23v )P4w
′P ∗

11d1 by P10. Note that we do not introduce new paths but

only introduce a new notation as shorthand for a combination of some existing path

segments. We observe that there may be some edge overlap between P4 and P9 since

both starts from head(e23v ). Let w̃ denote the most downstream vertex that is used

by both P4 and P9. We then replace P9 by w̃P9d3, i.e., we truncate P9 so that P9 is

now edge-disjoint from P4.

Since the path segment w′P10d1 originally comes from P ∗
11, w

′P10d1 is also vertex-

disjoint with {P2, P3, P5, P7, P8, P9}. In addition, P8 must be vertex-disjoint with

{P1, P2, P3, P10}, otherwise s3 can reach d1 without using P5.

Now we consider the another subgraph G′′⊂G′ induced by the path segments P1

to P8, the redefined P9, and newly constructed P10, i.e., when compared to G′, we

replace P ∗
11 by P10. One can easily verify that si can reach dj for all i 6= j, and s1 can

reach d1 on this new subgraph G′′. Using the above topological relationships between

these constructed path segments, we will further show that the induced G′′ satisfies

m11m23 = m13m21 and L 6≡R.
Since P8 is vertex-disjoint from {P1, P2}, one can see that removing P3 separates

{s1, s2} and {d1, d3}. Thus, the considered G′′ also satisfies m11m23 = m13m21.

To prove L 6≡R, we first show that G′′ satisfies S2 ∩S3=∅. Note that any S2 edge

can exist only as one of three cases: (i) P2; (ii) P3; (iii) an edge that P4 and P10 share,

whose head is in the upstream of or equal to w̃, i.e., {e∈P4∩P10 : head(e)� w̃} (may

or may not be empty); and (iv) an edge that P6, P9, and P10 share. Note also that

any S3 edge can exist only as on of three cases: (i) P8; (ii) P5; and (iii) an edge that

P6 and P7 share. But since P6 and P7 were chosen to be edge-disjoint from the above

construction, any S3 edge can exist on either P8 or P5. We then notice that P8 is

vertex-disjoint with {P2, P3, P10}. Also, P5 was chosen to be vertex-disjoint with P10
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and both P2 and P3 are in the upstream of P5. The above arguments show that no

edge can be simultaneously in S2 and S3. We thus have S2 ∩ S3=∅ on G′′.

Second, we show that G′′ satisfies D1 ∩D2= ∅. Note that any D1 edge can exist

only an edge that both P6 and P10 share since any of {P5, P8} does not share an

edge with any of {P2, P3, P10}. Note also that any D2 edge can exist only as one of

three cases: (i) an edge that both P4 and P8 share; (ii) P5; and (iii) P7. However, P7

was chosen to be edge-disjoint with P6, and we have shown that P5 is vertex-disjoint

with P10. Moreover, we already showed that P8 is vertex-disjoint with P10. Thus,

D1 ∩D2=∅ on G′′.

Third, we show that G′′ satisfies D1 ∩ D3= ∅. Note that any D1 edge can exist

only on an edge that both P10 and P6 share. Note also that any D3 edge can exist

only as one of three cases: (i) a P3 edge; (ii) a P4 edge whose head is in the upstream

of or equal to w̃, i.e., {e∈P4 : head(e)� w̃} (may or may not be empty); and (iii) P9.

However, P6 is in the downstream of P3 and P4. Moreover, P9 is edge-disjoint with

P ∗
11 and thus edge-disjoint with w′P10d1. As a result, no edge can be simultaneously

in D1 and D3. Thus D1 ∩D3=∅ on G′′.

Hence, the above discussions, together with Proposition 6.2.1, implies that the

considered G′′ satisfies L 6≡R. We thus have proven G18 being true for Case 2. �

By swapping the roles of s2 and s3, and the roles of d2 and d3, the proofs of

R20 to R22 can also be used to prove R23 to R25, respectively. More specifically,

G3 and G4 are converted back and forth from each other when swapping the flow

indices. The same thing happens between G23 and G24; between G25 and G26;

and between G18 and G19. Moreover, LNR, G1, G16, G17, and G22 remain the

same after the index swapping. Thus the above proofs of R20 to R22 can thus be

used to prove R23 to R25.
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N.9 Proof of S14

N.9.1 The fifth set of logic statements

To prove S14, we need the fifth set of logic statements.

• G27: S2 ∩D1=∅.
• G28: S3 ∩D1=∅.
• G29: D2 ∩ S1=∅.
• G30: D3 ∩ S1=∅.
• G31: Si6=∅ and Di6=∅ for all i∈{1, 2, 3}.

Several implications can be made when G27 is true. We term those implications

the properties of G27. Several properties of G27 are listed as follows, for which their

proofs are provided in Appendix N.9.3.

Consider the case in which G27 is true. Use e∗2 to denote the most downstream

edge in 1cut(s2; d1)∩1cut(s2; d3). Since the source edge es2 belongs to both 1cut(s2; d1)

and 1cut(s2; d3), such e
∗
2 always exists. Similarly, use e∗1 to denote the most upstream

edge in 1cut(s2; d1) ∩ 1cut(s3; d1). The properties of G27 can now be described as

follows.

⋄ Property 1 of G27: e∗2≺e∗1 and the channel gains m21, m23, and m31 can be ex-

pressed as m21 = mes2 ;e
∗

2
me∗2;e

∗

1
me∗1;ed1

, m23 = mes2 ;e
∗

2
me∗2;ed3

, and m31 = mes3 ;e
∗

1
me∗1;ed1

.

⋄ Property 2 of G27: GCD(mes3 ;e
∗

1
, mes2 ;e

∗

2
me∗2;e

∗

1
)≡1, GCD(me∗2;e

∗

1
me∗1;ed1

, me∗2;ed3
)≡

1, GCD(m31, me∗2;e
∗

1
)≡1, and GCD(m23, me∗2;e

∗

1
)≡1.

On the other hand, when G27 is false, we can also derive several implications,

which are termed the properties of ¬G27.

Consider the case in which G27 is false. Use e21u (resp. e21v ) to denote the most

upstream (resp. the most downstream) edge in S2 ∩ D1. By definition, it must be

e21u �e21v . We now describe the following properties of ¬G27.

⋄ Property 1 of ¬G27: The channel gains m21, m23, and m31 can be expressed as

m21 = mes2 ;e
21
u
me21u ;e21v me21v ;ed1

, m23=mes2 ;e
21
u
me21u ;e21v me21v ;ed3

, and m31=mes3 ;e
21
u
me21u ;e21v

me21v ;ed1
.
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⋄ Property 2 of ¬G27: GCD(mes2 ;e
21
u
, mes3 ;e

21
u
)≡1 and GCD(me21v ;ed1

, me21v ;ed3
)≡1.

Symmetrically, we define the following properties of G28 and ¬G28.

Consider the case in which G28 is true. Use e∗3 to denote the most downstream

edge in 1cut(s3; d1) ∩ 1cut(s3; d2), and use e∗1 to denote the most upstream edge in

1cut(s2; d1) ∩ 1cut(s3; d1). We now describe the following properties of G28.

⋄ Property 1 of G28: e∗3≺e∗1 and the channel gains m31, m32, and m21 can be ex-

pressed as m31 = mes3 ;e
∗

3
me∗3;e

∗

1
me∗1;ed1

, m32 = mes3 ;e
∗

3
me∗3;ed2

, and m21 = mes2 ;e
∗

1
me∗1;ed1

.

⋄ Property 2 of G28: GCD(mes2 ;e
∗

1
, mes3 ;e

∗

3
me∗3;e

∗

1
)≡1, GCD(me∗3;e

∗

1
me∗1;ed1

, me∗3;ed2
)≡

1, GCD(m21, me∗3;e
∗

1
)≡1, and GCD(m32, me∗3;e

∗

1
)≡1.

Consider the case in which G28 is false. Use e31u (resp. e31v ) to denote the most

upstream (resp. the most downstream) edge in S3 ∩ D1. By definition, it must be

e31u �e31v . We now describe the following properties of ¬G28.

⋄ Property 1 of ¬G28: The channel gains m31, m32, and m21 can be expressed as

m31 = mes3 ;e
31
u
me31u ;e31v me31v ;ed1

, m32=mes3 ;e
31
u
me31u ;e31v me23v ;ed2

, and m21=mes2 ;e
31
u
me31u ;e31v

me31v ;ed1
.

⋄ Property 2 of ¬G28: GCD(mes2 ;e
31
u
, mes3 ;e

31
u
)≡1 and GCD(me31v ;ed1

, me31v ;ed2
)≡1.

N.9.2 The skeleton of proving S14

We prove the following relationships, which jointly prove S14.

• R26: D3∧D4 ⇒ G31.

• R27: LNR∧ (¬G27)∧ (¬G28)∧ (¬G29)∧ (¬G30) ⇒ false.

• R28: D3∧D4∧G27∧G28 ⇒ false.

• R29: LNR∧G1∧E0∧D3∧D4∧ (¬G27)∧G28 ⇒ false.

• R30: LNR∧G1∧E0∧D3∧D4∧G27∧ (¬G28) ⇒ false.

• R31: D3∧D4∧G29∧G30 ⇒ false.

• R32: LNR∧G1∧E0∧D3∧D4∧ (¬G29)∧G30 ⇒ false.

• R33: LNR∧G1∧E0∧D3∧D4∧G29∧ (¬G30) ⇒ false.
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One can see that R28 and R31 imply, respectively,

LNR ∧G1 ∧ E0 ∧D3 ∧D4 ∧G27 ∧G28 ⇒ false, (N.30)

LNR ∧G1 ∧ E0 ∧D3 ∧D4 ∧G29 ∧G30 ⇒ false. (N.31)

Also R27 implies

LNR ∧G1 ∧ E0 ∧D3 ∧D4 ∧ (¬G27) ∧ (¬G28) ∧ (¬G29) ∧ (¬G30) ⇒ false.

(N.32)

R29, R30, R32, R33, (N.30), (N.31), and (N.32) jointly imply

LNR ∧G1 ∧ E0 ∧D3 ∧D4 ⇒ false,

which proves S14. The proofs of R26 and R27 are relegated to Appendix N.9.4. The

proofs of R28, R29, and R30 are provided in Appendices N.9.5, N.9.6, and N.9.7,

respectively.

The logic relationships R31 to R33 are the symmetric versions of R28 to R30.

Specifically, if we swap the roles of sources and destinations, then the resulting graph

is still a 3-unicast ANA network; D3 is now converted to D4; D4 is converted to

D3; G27 is converted to G29; and G28 is converted to G30. Therefore, the proof

of R28 can serve as a proof of R31. Further, after swapping the roles of sources and

destinations, the LNR condition (see (6.3)) remains the same; G1 remains the same

(see (6.4)); and E0 remains the same. Therefore, the proof of R29 (resp. R30) can

serve as a proof of R32 (resp. R33).

N.9.3 Proofs of the properties of G27, G28, ¬G27, and ¬G28

We prove Properties 1 and 2 of G27 as follows.
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Proof. By swapping the roles of s1 and s3, and the roles of d1 and d3, the proof of the

properties of G3 in Appendix M.4 can be used to prove the properties of G27. �

We prove Properties 1 and 2 of ¬G27 as follows.

Proof. By swapping the roles of s1 and s3, and the roles of d1 and d3, the proof of

Properties 1 and 2 of ¬G3 in Appendix M.4 can be used to prove the properties of

¬G27. �

By swapping the roles of s2 and s3, and the roles of d2 and d3, the above proofs

can also be used to prove Properties 1 and 2 of G28 and Properties 1 and 2 of ¬G28.

N.9.4 Proofs of R26 and R27

We prove R26 as follows.

Proof. Suppose D3∧D4 is true. By Corollary 5.4.2, we know that any channel gain

cannot have any other channel gain as a factor. Since D3∧D4 is true, any one of

the four channel gains m12, m31, m13, and m21 must be reducible.

Since D4 is true, we must also have for some positive integer l4 such that

GCD(m11m
l4
12m

l4
23m

l4
31, m21) = m21. (N.33)

We first note that m23 is the only channel gain starting from s2 out of the four

channel gains {m11, m12, m23, m31}. Therefore, we must have GCD(m23, m21) 6≡1 since

“we need to cover the factor of m21 that emits from s2.” Lemma 6.1.7 then implies

that S26=∅.
Further, D4 implies GCD(m11m

l4
12m

l4
23m

l4
31, m13) = m13 for some positive integer

l4, which, by similar arguments, implies GCD(m23, m13)6≡1. Lemma 6.1.7 then implies

that D3 6= ∅. By similar arguments but focusing on D3 instead, we can also prove

that S36=∅ and D26=∅.
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We also notice that out of the four channel gains {m11, m12, m23, m31}, both m11

and m12 are the only channel gains starting from s1. By D4, we thus have for some

positive integer l4 such that

GCD(m11m
l4
12, m13) 6≡ 1. (N.34)

Similarly, by D3 and D4, we have for some positive integers l2 and l4 such that

GCD(m11m
l4
31, m21) 6≡ 1, (N.35)

GCD(m11m
l2
13, m12) 6≡ 1, (N.36)

GCD(m11m
l2
21, m31) 6≡ 1. (N.37)

For the following, we will prove S16=∅. Consider the following subcases: Subcase 1:
If GCD(m12, m13)6≡1, then by Lemma 6.1.7, S16=∅. Subcase 2: If GCD(m12, m13)≡1,

then (N.34) and (N.36) jointly imply both GCD(m11, m13)6≡1 and GCD(m11, m12)6≡1.

Then by first applying Lemma 6.1.7 and then applying Lemma 6.1.6, we have S16=∅.
The proof of D1 6=∅ can be derived similarly by focusing on (N.35) and (N.37). The

proof of R26 is complete. �

We prove R27 as follows.

Proof. We prove an equivalent relationship: (¬G27)∧ (¬G28)∧ (¬G29)∧ (¬G30)

⇒ ¬LNR. Suppose (¬G27)∧ (¬G28)∧ (¬G29)∧ (¬G30) is true. By Lemma 6.1.4,

we know that (¬G27)∧ (¬G28) is equivalent to S2 ∩ S36=∅. Similarly, (¬G29)∧
(¬G30) is equivalent to D2∩D36=∅. By Proposition 6.2.1, we have L≡R. The proof
is thus complete. �
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N.9.5 Proof of R28

The additional set of logic statements

To prove R28, we need an additional set of logic statements. The following logic

statements are well-defined if and only if G27∧G28 is true. Recall the definition of

e∗2, e
∗
3, and e

∗
1 in Appendix N.9 when G27∧G28 is true.

• G32: e∗2 6=e∗3 and GCD(mes2 ;e
∗

2
me∗2;e

∗

1
, mes3 ;e

∗

3
me∗3;e

∗

1
)≡1.

• G33: GCD(m11, me∗2;e
∗

1
)≡1.

• G34: GCD(m11, me∗3;e
∗

1
)≡1.

The following logic statements are well-defined if and only if G27∧G28∧G31

is true.

• G35: {e∗2, e∗1}⊂1cut(s1; d2).

• G36: {e∗3, e∗1}⊂1cut(s1; d3).

The skeleton of proving R28

We prove the following logic relationships, which jointly proves R28.

• R34: G27∧G28 ⇒ G32.

• R35: D4∧G27∧G28∧G31∧G33 ⇒ G35.

• R36: D3∧G27∧G28∧G31∧G34 ⇒ G36.

• R37: G27∧G28∧ (¬G33)∧ (¬G34) ⇒ false.

• R38: G27∧G28∧G31∧ (¬G33)∧G36 ⇒ false.

• R39: G27∧G28∧G31∧ (¬G34)∧G35 ⇒ false.

• R40: G27∧G28∧G31∧G35∧G36 ⇒ false.

Specifically, R35 and R39 jointly imply that

D3 ∧D4 ∧G27 ∧G28 ∧G31 ∧G33 ∧ (¬G34) ⇒ false.
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Moreover, R36 and R38 jointly imply that

D3 ∧D4 ∧G27 ∧G28 ∧G31 ∧ (¬G33) ∧G34 ⇒ false.

Furthermore, R35, R36, and R40 jointly imply that

D3 ∧D4 ∧G27 ∧G28 ∧G31 ∧G33 ∧G34 ⇒ false.

Finally, R37 implies that

D3 ∧D4 ∧G27 ∧G28 ∧G31 ∧ (¬G33) ∧ (¬G34) ⇒ false.

The above four relationships jointly imply D3∧D4∧G27∧G28∧G31 ⇒ false.

ByR26 in Appendix N.9, i.e., D3∧D4 ⇒ G31, we thus haveD3∧D4∧G27∧G28

⇒ false. The proof of R28 is thus complete. The detailed proofs of R34 to R40 are

provided in the next subsection.

The proofs of R34 to R40

We prove R34 as follows.

Proof. Suppose G27∧G28 is true. Since e∗1 is the most upstream 1-edge cut separat-

ing d1 from {s2, s3}, there must exist two edge-disjoint paths connecting {s2, s3} and

tail(e∗1). By Property 1 of G27 and G28, one path must use e∗2 and the other must

use e∗3. Due to the edge-disjointness, e∗2 6= e∗3. Since we have two edge-disjoint paths

from s2 (resp. s3) to tail(e∗1), we also have GCD(mes2 ;e
∗

2
me∗2;e

∗

1
, mes3 ;e

∗

3
me∗3;e

∗

1
)≡1. �

We prove R35 as follows.

Proof. Suppose D4∧G27∧G28∧G31∧G33 is true. By the Properties of G27

and G28 and by G31, e∗2 (resp. e∗3) is the most downstream edge of S2 (resp.

S3). And both e∗2 and e∗3 are in the upstream of e∗1 where e∗1 is the most upstream
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edge of D1. Consider me∗2;e
∗

1
, a factor of m21. From Property 2 of G27, we have

GCD(m23, me∗2;e
∗

1
)≡1. In addition, since G27∧G28 ⇒ G32 as established in R34,

we have GCD(m31, me∗2;e
∗

1
)≡ 1. Together with the assumption that D4 is true, we

have for some positive integer l4 such that

GCD(m11m
l4
12, me∗2;e

∗

1
) = me∗2;e

∗

1
. (N.38)

Since we assume that G33 is true, (N.38) further implies GCD(ml4
12, me∗2;e

∗

1
) =

me∗2;e
∗

1
. By Proposition 5.4.3, we must have G35: {e∗2, e∗1}⊂1cut(s1; d2). The proof is

thus complete. �

R36 is a symmetric version of R35 and can be proved by relabeling (s2, d2) as

(s3, d3), and relabeling (s3, d3) as (s2, d2) in the proof of R35.

We prove R37 as follows.

Proof. Suppose G27∧G28∧ (¬G33)∧ (¬G34) is true. Since G27∧G28 is true,

we have two edge-disjoint paths Ps2tail(e∗1)
through e∗2 and Ps3tail(e∗1)

through e∗3 if we

recall R34. Consider me∗2;e
∗

1
, a factor of m21, and me∗3;e

∗

1
, a factor of m31. Since

¬G33 is true, there is an irreducible factor of me∗2;e
∗

1
that is also a factor of m11.

Since that factor is also a factor of m21, by Proposition 5.4.3 and Property 1 of G27,

there must exist at least one edge e′ satisfying (i) e∗2 � e′ ≺ e∗1; (ii) e
′ ∈D1;{1,2}; and

(iii) e′ ∈ Ps2tail(e∗1)
. Similarly, ¬G34 implies that there exists at least one edge e′′

satisfying (i) e∗3 � e′′ ≺ e∗1; (ii) e
′′ ∈D1;{1,3}; and (iii) e′′ ∈ Ps3tail(e∗1)

. Then the above

observation implies that e′ ∈ Ps2tail(e∗1)
∩ 1cut(s1; d1) and e′′ ∈ Ps3tail(e∗1)

∩ 1cut(s1; d1).

Since Ps2tail(e∗1)
and Ps3tail(e∗1)

are edge-disjoint paths, it must be e′ 6= e′′. But both e′

and e′′ are 1-edge cuts separating s1 and d1. Thus e
′ and e′′ must be reachable from

each other: either e′ ≺ e′′ or e′′ ≺ e′. However, both cases are impossible because

one in the upstream can always follow the corresponding Ps2tail(e∗1)
or Ps3tail(e∗1)

path

to e∗1 without using the one in the downstream. For example, if e′≺ e′′, then s1 can

first reach e′ and follow Ps2tail(e∗1)
to arrive at tail(e∗1) without using e

′′. Since e∗1∈D1
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reaches d1, this contradicts e
′′∈1cut(s1; d1). Since neither case can be true, the proof

is thus complete. �

We prove R38 as follows.

Proof. Suppose G27∧G28∧G31∧ (¬G33)∧G36 is true. By the Properties of

G27 and G28 and by G31, e∗2 (resp. e∗3) is the most downstream edge of S2 (resp.

S3). And both e∗2 and e
∗
3 are in the upstream of e∗1 where e

∗
1 is the most upstream edge

of D1. Since e∗1 is the most upstream D1 edge, there exist three edge-disjoint paths

Ps2tail(e∗1)
, Ps3tail(e∗1)

, and Phead(e∗1)d1
. Fix any arbitrary construction of these paths.

Obviously, Ps2tail(e∗1)
uses e∗2 and Ps3tail(e∗1)

uses e∗3.

Since ¬G33 is true, there is an irreducible factor of me∗2;e
∗

1
that is also a factor of

m11. Since that factor is also a factor of m21, by Proposition 5.4.3, there must exist

an edge e satisfying (i) e∗2� e≺ e∗1; (ii) e∈ 1cut(s1; d1)∩1cut(s2; d1). By (i), (ii), and

the construction e∗1 ∈D1 ⊂ 1cut(s2; d1), the pre-defined path Ps2tail(e∗1)
must use such

e.

Since G36 is true, e∗3 is reachable from s1 and e∗1 reaches to d3. Choose arbi-

trarily one path Ps1tail(e∗3)
from s1 to tail(e∗3) and one path Phead(e∗1)d3

from head(e∗1)

to d3. We argue that Ps1tail(e∗3)
must be vertex-disjoint with Ps2tail(e∗1)

. Suppose not

and let v denote a vertex shared by Ps1tail(e∗3)
and Ps2tail(e∗1)

. Then there is as1-to-d3

path Ps1tail(e∗3)
vPs2tail(e∗1)

e∗1Phead(e∗1)d3
without using e∗3. This contradicts the assumption

G36 since G36 implies e∗3∈1cut(s1; d3). However, if Ps1tail(e∗3)
is vertex-disjoint with

Ps2tail(e∗1)
, then there is ans1-to-d1path Ps1tail(e∗3)

e∗3Ps3tail(e∗1)
e∗1Phead(e∗1)d1

not using the

edge e defined in the previous paragraph since e ∈ Ps2tail(e∗1)
and Ps2tail(e∗1)

is edge-

disjoint with Ps3tail(e∗1)
. This also contradicts (ii). Since neither case can be true, the

proof of R38 is thus complete. �

R39 is a symmetric version of R38 and can be proved by swapping the roles of

s2 and s3, and the roles of d2 and d3 in the proof of R38.

We prove R40 as follows.
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Proof. Suppose G27∧G28∧G31∧G35∧G36 is true. By the Properties of G27

and G28 and by G31, e∗2 (resp. e∗3) is the most downstream edge of S2 (resp. S3).

Also e∗2≺e∗1 and e∗3≺e∗1 where e∗1 is the most upstream D1 edge.

ByG36, there exists a path from s1 to e
∗
3. Since e

∗
3∈S3, there exists a path from e∗3

to d2 without using e
∗
1. As a result, there exists a path from s1 to d2 through e

∗
3 without

using e∗1. This contradicts the assumption G35 since G35 implies e∗1 ∈ 1cut(s1; d2).

The proof is thus complete. �

N.9.6 Proof of R29

The additional set of logic statements

To prove R29, we need some additional sets of logic statements. The following

logic statements are well-defined if and only if G28 is true. Recall the definition of

e∗3 and e∗1 when G28 is true.

• G37: e∗3 ∈ 1cut(s1; d1).

• G38: e∗3 ∈ 1cut(s1; d3).

• G39: e∗1 ∈ 1cut(s1; d1).

• G40: e∗1 ∈ 1cut(s1; d3).

• G41: e∗3 ∈ 1cut(s1; d2).

The following logic statements are well-defined if and only if (¬G27)∧G28 is

true. Recall the definition of e21u , e21v , e∗3, and e
∗
1 when (¬G27)∧G28 is true.

• G42: e∗1 = e21u .

• G43: Let e′ be the most downstream edge of 1cut(s1; d2) ∩ 1cut(s1; tail(e
∗
3)) and

also let e′′ be the most upstream edge of 1cut(s1; d2) ∩ 1cut(head(e∗3); d2). Then, e′

and e′′ simultaneously satisfy the following two conditions: (i) both e′ and e′′ belong

to 1cut(s1; d3); and (ii) e′′∈1cut(head(e21v ); tail(ed3)) and e
′′≺ed2 .
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The skeleton of proving R29

We prove the following relationships, which jointly proves R29.

• R41: (¬G27)∧G28 ⇒ G42.

• R42: D3∧ (¬G27)∧G28∧G31 ⇒ (G37∨G38)∧ (G39∨G40).

• R43: G1∧G28∧G31∧G37 ⇒ ¬G41.

• R44: D3∧ (¬G27)∧G28∧G31∧G37∧ (¬G41) ⇒ G43.

• R45: G1∧E0∧D3∧ (¬G27)∧G28∧G31∧G37 ⇒ false.

• R46: (¬G27)∧G28∧G31∧ (¬G37)∧G38∧G39 ⇒ false.

• R47: LNR∧D4∧ (¬G27)∧G28∧G31∧ (¬G37)∧G38∧G40 ⇒ false.

One can easily verify that jointly R46 and R47 imply

LNR ∧D4 ∧ (¬G27) ∧G28 ∧G31 ∧ (¬G37) ∧ G38 ∧ (G39 ∨G40) ⇒ false.

From the above logic relationship and by R42, we have

LNR ∧D3 ∧D4 ∧ (¬G27) ∧G28 ∧G31 ∧ (¬G37) ∧G38 ⇒ false.

From the above logic relationship and by R45, we have

LNR ∧G1 ∧E0 ∧D3 ∧D4 ∧ (¬G27) ∧G28 ∧G31 ∧ (G37 ∨G38) ⇒ false.

By applyingR42 andR26, we have LNR∧G1∧E0∧D3∧D4∧ (¬G27)∧G28

⇒ false, which proves R29. The detailed proofs for R41 to R47 are provided in the

next subsection.

The proofs of R41 to R47

We prove R41 as follows.

Proof. Suppose (¬G27)∧G28 is true. By ¬G27 being true and its Property 1, we

have e21u (resp. e21v ), the most upstream (resp. downstream) edge of S2 ∩ D1. Since
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¬G27 implies that D16=∅, by Property 1 of G28, we also have e∗1, the most upstream

D1 edge.

Since D1∩S2 6=∅, we can partition the non-empty D1 by D1\S2 and D1∩S2. By

the (s, d )-symmetric version of Lemma 6.1.3, if D1\S26=∅, then any D1\S2 edge must

be in the downstream of e21v ∈D1 ∩ S2⊂S2. Thus, e21u , the most upstream D1 ∩ S2

edge, must also be the most upstream edge of D1. Therefore, e
∗
1 = e21u . The proof is

thus complete. �

We prove R42 as follows.

Proof. Suppose D3∧ (¬G27)∧G28∧G31 is true. Since (¬G27)∧G28∧G31 is

true, e∗3 (resp. e∗1) is the most downstream (resp. upstream) edge of S3 (resp. D1)

and e∗3≺e∗1. By R41, G42 is also true and thus e∗1 is also the most upstream edge of

S2 ∩D1.

Consider me∗3;e
∗

1
, a factor of m31. From Property 2 of G28, GCD(m32, me∗3;e

∗

1
)≡1.

ByG42 being true and Property 2 of ¬G27, we also have GCD(mes2 ;e
∗

1
, mes3 ;e

∗

3
me∗3;e

∗

1
)≡

1, which implies that GCD(m21, me∗3;e
∗

1
)≡1. Then since D3 is true, we have for some

positive integer l2 such that

GCD(m11m
l2
13, me∗3;e

∗

1
)=me∗3;e

∗

1
.

Proposition 5.4.3 then implies that both e∗3 and e∗1 must be in 1cut(s1; d1) ∪
1cut(s1; d3). This is equivalent to (G37∨G38)∧ (G39∨G40) being true. The proof

of R42 is complete. �

We prove R43 as follows.

Proof. We prove an equivalent form: G28∧G31∧G37∧G41 ⇒ ¬G1. Suppose

G28∧G31∧G37∧G41 is true. SinceG28∧G31 is true, we have e∗3 being the most

downstream edge of S3. Therefore e∗3∈ 1cut(s3; d1) ∩ 1cut(s3; d2). Since G37∧G41

is also true, e∗3 belongs to 1cut(s1; d1) ∩ 1cut(s1; d2) as well. As a result,

EC({s1, s3}; {d1, d2}) = 1, which, by Corollary 5.4.2 implies ¬G1. �
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We prove R44 as follows.

Proof. Suppose that D3∧ (¬G27)∧G28∧G31∧G37∧ (¬G41) is true, which by

R41 implies that G42 is true as well. Since G28∧G31 is true, e∗3 (resp. e∗1) is the

most downstream (resp. upstream) edge of S3 (resp. D1) and e
∗
3≺e∗1. Recall the def-

inition in G43 that e′ is the most downstream edge of 1cut(s1; d2) ∩ 1cut(s1; tail(e
∗
3))

and e′′ is the most upstream edge of 1cut(s1; d2) ∩ 1cut(head(e∗3); d2). By the con-

structions of e′ and e′′, we must have es1 �e′≺e∗3≺e′′�ed2 . Then, we claim that the

above construction together with ¬G41 implies EC(head(e′); tail(e′′))≥2. The reason

is that if EC(head(e′); tail(e′′))=1, then we can find an 1-edge cut separating head(e′)

and tail(e′′) and by ¬G41 such edge cut must not be e∗3. Hence, such edge cut is

either an upstream or a downstream edge of e∗3. However, either case is impossible,

because the edge cut being in the upstream of e∗3 will contradict that e′ is the most

downstream one during its construction. Similarly, the edge cut being in downstream

of e∗3 will contradict the construction of e′′. The conclusion EC(head(e′); tail(e′′))≥ 2

further implies me′;e′′ is irreducible.

Further, because e∗3 is the most downstream S3 edge and e′′, by construction,

satisfies e′′ ∈ 1cut(s3; d2), e
′′ must not belong to 1cut(s3; d1), which in turn implies

e′′ 6∈1cut(head(e∗3); d1). Since G37 is true, s1 can reach e∗3. Therefore, there exists an

s1-to-d1path using e∗3 but not using e′′. As a result, e′′ 6∈ 1cut(s1; d1). Together with

me′;e′′ being irreducible, we thus have GCD(m11, me′;e′′)≡1 by Proposition 5.4.3.

Now we argue that GCD(m21, me′;e′′)≡1. Suppose not. Since me′;e′′ is irreducible,

we must have e′ being an 1-edge cut separating s2 and d1. Since e∗1 is the most

upstream D1 edge, by Property 2 of G28, there exists as2-to-d1path P21 not using

e∗3. By the construction of e′, s1 reaches e′. Choose arbitrarily a path Ps1e′ from s1

to e′. Then, the followings1-to-d1path Ps1e′e
′P21 does not use e∗3, which contradicts

G37. As a result, we must have GCD(m21, me′;e′′)≡1.

Now we argue that GCD(m32, me′;e′′)≡1. Suppose not. Since me′;e′′ is irreducible,

both e′ and e′′ must belong to 1cut(s3; d2) and there is no 1-edge cut of 1cut(s3; d2)

that is strictly being downstream to e′ and being upstream to e′′. This, however,
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contradicts the above construction that e′ ≺ e∗3 ≺ e′′ and e∗3 ∈ S3 ⊂ 1cut(s3; d2). As a

result, we must have GCD(m32, me′;e′′)≡1.

Together with the assumption that D3 is true and the fact that me′;e′′ is a factor

of m12, we have for some positive integer l2 such that

GCD(ml2
13, me′;e′′) = me′;e′′.

Proposition 5.4.3 then implies {e′, e′′}⊂1cut(s1; d3), which shows the first half of

G43.

Therefore, anys1-to-d3path must use e′′. Since e∗3≺e′′ and s1 can reach e∗3, any path

from head(e∗3) to d3 must use e′′. Note that when we establish GCD(m11, me′;e′′)≡1 in

the beginning of this proof, we also proved that e′′ 6∈ 1cut(s1; d1). Thus, there exists a

path from head(e∗3) to d1 not using e
′′. Then such path must use e21v because e21v is also

an 1-edge cut separating head(e∗3) and d1 by the facts that e21v ∈S2 ∩ D1⊂1cut(s3; d1);

e∗3≺e21v ; s3 reaches e
∗
3. Moreover, since e21v ∈S2∩D1⊂1cut(s2; d3), head(e

21
v ) can reach

d3. In sum, we have shown that (i) any path from head(e∗3) to d3 must use e′′; (ii)

there exists a path from e∗3 to e21v not using e′′; (iii) head(e21v ) can reach d3. Jointly

(i) to (iii) imply that any path from head(e21v ) to d3 must use e′′. As a result, we

have e′′ ∈ 1cut(head(e21v ); d3). Also e′′ must not be the d3-destination edge ed3 since

by construction e′′ � ed2 , ed2 6= ed3 , and |Out(d3)| = 0. This further implies that e′′

must not be the d2-destination edge ed2 since e
′′≺ed3 and |Out(d2)|=0. We have thus

proven the second half of G43: e′′∈1cut(head(e21v ); tail(ed3)) and e
′′≺ed2 . The proof

of R44 is complete. �

We prove R45 as follows.

Proof. SupposeG1∧E0∧D3∧ (¬G27)∧G28∧G31∧G37 is true. ByR41,R43,

and R44, we know that G42, ¬G41, and G43 are true as well. For the following

we construct 10 path segments that interconnects s1 to s3, d1 to d3, and three edges

e′′, e∗3, and e
∗
1.
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• P1: a path starting from es1 and ending at e′. This is always possible due to G43

being true.

• P2: a path from s2 to tail(e∗1) without using e
∗
3. This is always possible due to the

properties of G28.

• P3: a path from s3 to tail(e∗3). This is always possible due to G28 and G31 being

true. We also impose that P3 is edge-disjoint with P2. Again, this is always possible

due to Property 2 of G28.

• P4: a path from head(e′) to tail(e′′). This is always possible due to G43 being true.

We also impose the condition that e∗3 6∈P4. Again this is always possible since ¬G41

being true, which implies that one can always find a path from s1 to d2 not using e∗3

but uses both e′ and e′′ (due to the construction of e′ and e′′ of G43).

• P5: a path from head(e∗3) to tail(e∗1). We also impose the condition that P5 is edge-

disjoint with P2. The construction of such P5 is always possible due to the Properties

of G28.

• P6: a path from head(e∗1) to d1. This is always possible due to (¬G27)∧G28 being

true. We also impose the condition that e′′ 6∈P6. Again this is always possible. The

reason is that e∗3 is the most downstream S3 edge and thus there are two edge-disjoint

paths connecting head(e∗3) and {d1, d2}. By our construction e′′ must be in the latter

path while we can choose P6 to be part of the first path.

• P7: a path from head(e∗3) to tail(e′′), which is edge-disjoint with {P5, e
∗
1, P6}. This

is always possible due to the property of e∗3 and the construction of G43.

• P8: a path from head(e′′) to d2, which is edge-disjoint with {P5, e
∗
1, P6}. This is

always possible due to the property of e∗3 and the construction of G43.

• P9: a path from head(e∗1) to tail(e′′). This is always possible due to G43 being true

(in particular the (ii) condition of G43).

• P10: a path from head(e′′) to d3. This is always possible due to G43 being true (in

particular the (ii) condition of G43).

Fig. N.3 illustrates the relative topology of these 10 paths. We now consider the

subgraph G′ induced by the 10 paths plus the three edges e′′, e∗3, and e∗1. One can
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s1 s2

d1 d2

s3

d3

Fig. N.3. The subgraph G′ of the 3-unicast ANA network G3ANA induced by 10 paths
and three edges e′′, e∗3, and e

∗
1 in the proof of R45.

easily check that si can reach dj for all i 6= j. In particular, s1 can reach d2 through

P1P4e
′′P8; s1 can reach d3 through P1P4e

′′P10; s2 can reach d1 through P2e
∗
1P6; s2 can

reach d3 through P2e
∗
1P9e

′′P10; s3 can reach d1 through P3e
∗
3P5e

∗
1P6; and s3 can reach

d2 through either P3e
∗
3P5e

∗
1P9e

′′P8 or P3e
∗
3P7e

′′P8. Furthermore, topologically, the 6

paths P5 to P10 are all in the downstream of e∗3.

For the following we argue that s1 cannot reach d1 in the induced subgraph G′.

To that end, we first notice that by G37, e∗3 ∈ 1cut(s1; d1) in the original graph.

Therefore anys1-to-d1path in the subgraph must use e∗3 as well. Since P5 to P10 are

in the downstream of e∗3, we only need to consider P1 to P4.

By definition, P3 reaches e∗3. We now like to show that e∗3 6∈P2, and {P2, P3} are

vertex-disjoint paths. The first statement is done by our construction. Suppose P2 and

P3 share a common vertex v (v can possibly be tail(e∗3)), then there exists as3-to-d1path

P3vP2e
∗
1P6 not using e

∗
3. This contradictsG28 (specifically e∗3∈S3⊂1cut(s3; d1)). The

above arguments show that the first time a path enters/touches part of P3 (including

tail(e∗3)) must be along either P1 or P4 (cannot be along P2). As a result, when deciding

whether there exists ans1-to-d1path using e∗3, we only need to consider whether P1

(and/or P4) can share a vertex with P3. To that end, we will prove that (i) e∗3 6∈P1; (ii)
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{P1, P3} are vertex-disjoint paths; (iii) e∗3 6∈P4; and (iv) {P3, P4} are vertex-disjoint

paths. Once (i) to (iv) are true, then there is nos1-to-d1path in the subgraph G′.

We now notice that (i) is true since e′ ≺ e∗3; (iii) is true due to our construction;

(ii) is true otherwise let v denote the shared vertex and there will exist as3-to-d2path

P3vP1P4e
′′P8 without using e

∗
3, which contradicts G28 (e∗3∈S3⊂1cut(s3; d2)); and by

the same reason, (iv) is true otherwise let v denote the shared vertex and there will

exist as3-to-d2path P3vP4e
′′P8 without using e∗3. We have thus proven that there is

nos1-to-d1path in G′.

Since E0 is true, G3ANA must satisfy (N.1) with at least one non-zero coefficients

αi and βj, respectively. Applying Proposition 5.4.2 implies that the subgraph G′ must

satisfy (N.1) with the same coefficient values. Note that there is no path from s1 to

d1 on G′ but any channel gain mij for all i 6= j is non-trivial on G′. Recalling the

expression of (N.1), its LHS becomes zero since it contains the zero polynomial m11

as a factor. We have g({mij : ∀ (i, j)∈ I3ANA})ψ(n)
β (R,L) = 0 and thus ψ

(n)
β (R,L) =

0 with at least one non-zero coefficients βj . This further implies that the set of

polynomials {Rn, Rn−1L, · · · , RLn−1, Ln} is linearly dependent on G′. Since this is

the Vandermonde form, it is equivalent to that L≡R holds on G′. However for the

following, we will show that (a) D1 ∩ D2= ∅; (b) S1 ∩ S3= ∅; and (c) S2 ∩ S3= ∅
on G′, which implies by Proposition 6.2.1 that G′ indeed satisfies L 6≡R. This is a

contradiction and thus proves R45.

(a) D1 ∩ D2= ∅ on G′: Note that any D1 edge can exist on (i) e∗1; and (ii) P6.

Note also that any D2 edge can exist on (i) e′′; and (ii) P8. But from the above

constructions, P6 was chosen not to use e′′. In addition, P8 was chosen to be edge-

disjoint with {e∗1, P6}. Moreover, e∗1≺e′′. Thus, we must have D1 ∩D2=∅ on G′.

(b) S1∩S3=∅ on G′: Note that any S1 edge can exist on (i) P1; (ii) P4; (iii) e
′′; and

(iv) an edge that P8 and P10 shares. Note also that any S3 can exist on (i) P3; and

(ii) e∗3. But e
∗
3 is in the upstream of e′′, P8, and P10. Also, e

∗
3 is in the downstream of

e′, ending edge of P1. In addition, P4 was chosen not to use e∗3. Moreover, we already
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showed that {P1, P3} are vertex-disjoint paths; and {P3, P4} are vertex-disjoint paths.

Thus, we must have S1 ∩ S3=∅ on G′.

(c) S2 ∩ S3= ∅ on G′: Note that any S2 edge can exist on (i) P2; (ii) e
∗
1; (iii) an

edge that P6 and P9 shares; and (iv) an edge that P6 and P10 share. Note also that

any S3 edge can exist on (i) P3; and (ii) e∗3. However, e
∗
3 is in the upstream of e∗1, P6,

P9, and P10. In addition, P2 was chosen not to use e∗3. Moreover, we already showed

that {P2, P3} are vertex-disjoint paths. Thus, we must have S2 ∩ S3=∅ on G′. �

We prove R46 as follows.

Proof. Suppose that (¬G27)∧G28∧G31∧ (¬G37)∧G38∧G39 is true. ByR41,

G42 is true as well. Since G28∧G31 is true, e∗3 (resp. e∗1) is the most downstream

(resp. upstream) edge of S3 (resp. D1). From (¬G37)∧G38∧G39 being true, we

also have e∗3∈1cut(s1; d3)\1cut(s1; d1) and e∗1∈1cut(s1; d1).

Since G42 is true, we have e∗1= e
21
u is in S2. Any arbitrarys2-to-d3path P23 thus

must use e∗1. Since e∗3 6∈ 1cut(s1; d1) and e
∗
1 ∈ 1cut(s1; d1), there exists ans1-to-d1path

Q11 using e∗1 but not using e∗3. Then, we can create as1-to-d3path Q11e
∗
1P23 not using

e∗3, which contradicts e∗3∈1cut(s1; d3). The proof of R46 is complete. �

We prove R47 as follows.

Proof. Suppose that LNR∧D4∧ (¬G27)∧G28∧G31∧ (¬G37)∧G38∧G40 is

true. Since G28∧G31 is true, e∗3 (resp. e
∗
1) is the most downstream (resp. upstream)

edge of S3 (resp. D1). Since (¬G27)∧G28 implies G42, e∗1 also belongs to S2,

which implies that e∗1 ∈ 1cut(s2; d3). Since G40 is true, we have e∗1 ∈ 1cut(s1; d3).

Jointly the above arguments imply e∗1 ∈ D1 ∩ D3. Also, G38 being true implies

e∗3 ∈S3 ∩ 1cut(s1; d3). Since LNR is true and D1 ∩ D3 6= ∅, by Proposition 6.2.1 we

must have S1 ∩ S3=∅, which implies that e∗3 cannot belong to 1cut(s1; d2).

Let a node u be the tail of the edge e∗3. Since e∗3 ∈ 1cut(s1; d3), u is reachable

from s1. Since e∗3∈S3, u is also reachable form s3. Consider the collection of edges,

1cut(s1; u) ∩ 1cut(s3; u) (may be empty), all edges of which are in the upstream of
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e∗3 if non-empty. Note that (1cut(s1; u) ∩ 1cut(s3; u)) ∪ {e∗3} is always non-empty

(since it contains at least e∗3). Then, we use e′′ to denote the most upstream edge

of (1cut(s1; u) ∩ 1cut(s3; u)) ∪ {e∗3}. Let e′ denote the most downstream edge among

all edges in 1cut(s1; tail(e
′′)). Such choice is always possible since 1cut(s1; tail(e

′′))

contains at least one edge (the s1-source edge es1) and thus we have es1�e′≺e′′�e∗3.
Since we choose e′ to be the most downstream one, by Proposition 5.4.3 the channel

gain me′;e′′ must be irreducible. Moreover, since e∗3 ∈ 1cut(s1; d3), any path from s1

to d3 must use e∗3. Consequently since e′′ ∈ 1cut(s1; u) ∪ {e∗3}, any path from s1 to

d3 must also use e′′. Consequently since e′∈1cut(s1; tail(e
′′)), any path from s1 to d3

must also use e′. As a result, {e′, e′′} ⊂ 1cut(s1; d3). Therefore me′;e′′ is a factor of

m13.

Now we argue that GCD(m31, me′;e′′)≡1. Suppose not. Since me′;e′′ is irreducible,

by Proposition 5.4.3 we must have e′ ∈ 1cut(s3; d1). Note that e′ = es1 cannot be

a 1-edge cut separating s3 and d1 from the definitions (i) and (ii) of the 3-unicast

ANA network. Thus, we only need to consider the case when es1 ≺ e′ since es1 � e′

from the construction of e′. Since e∗3 ∈ 1cut(s3; d1) and e′ ≺ e∗3 is an 1-edge cut sep-

arating s3 and d1, we must have e′ ∈ 1cut(s3; u). Note that the most downstream

1cut(s1; tail(e
′′)) edge e′ also belongs to 1cut(s1; u) from our construction. There-

fore, jointly, this contradicts the construction that e′′ is the most upstream edge of

(1cut(s1; u)∩1cut(s3; u))∪{e∗3} since e′≺e′′.
Now we argue that GCD(m23, me′;e′′)≡1. Suppose not. Since me′;e′′ is irreducible,

we must have e′ ∈ 1cut(s2; d3) and thus es1 ≺ e′. Choose arbitrarily a path from

s1 to e′. Since we have already established e∗3 ≺ e∗1 and e∗1 is the most upstream

edge of D1, there exists a path Ps2tail(e∗1)
from s2 to tail(e∗1) not using e∗3. Since e∗1

is also in D3, head(e
∗
1) can reach d3. Note that the chosen path Ps2tail(e∗1)

must use

e′ since e′ ∈ 1cut(s2; d3). As a result, s1 can reach d3 by going to e′ first, and then

following Ps2tail(e∗1)
to e∗1, and then going to d3, without using e

∗
3. This contradicts the

assumption that e∗3∈1cut(s1; d3).
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Now we argue that GCD(m12, me′;e′′)≡ 1. Suppose not. Since me′;e′′ is irre-

ducible, we must have e′′ ∈ 1cut(s1; d2). Since we have established ¬G41 (i.e.,

e∗3 6∈ 1cut(s1; d2)), we only need to consider the case when e′′ ≺ e∗3. Then by con-

struction there exists as1-to-d2path P12 going through e′′ but not e∗3. However, since

by construction e′′ is reachable from s3, there exists a path from s3 to e′′ first and

then use P12 to arrive at d2. Such as3-to-d2path does not use e∗3, which contradicts

the assumption that e∗3∈S3⊂1cut(s3; d2).

Now we argue that GCD(m11, me′;e′′)≡1. Suppose not. Since me′;e′′ is irreducible,

we must have e′′ ∈ 1cut(s1; d1). Since ¬G37 is true (i.e., e∗3 6∈ 1cut(s1; d1)), we only

need to consider the case when e′′≺e∗3. Then by construction there exists as1-to-d1path

P11 going through e′′ but not e∗3. However, since by construction e′′ is reachable from

s3, there exists a path from s3 to e
′′ first and then use P11 to arrive at d1. Such as3-to-d1

path does not use e∗3, which contradicts the assumption that e∗3∈S3⊂1cut(s3; d1).

The four statements in the previous paragraphs shows that

GCD(m11m12m23m31, me′;e′′)≡1.

This, however, contradicts the assumption that D4 is true since we have shown

that me′;e′′ is a factor of m13. The proof of R47 is thus complete. �

N.9.7 Proof of R30

If we swap the roles of s2 and s3, and the roles of d2 and d3, then the proof of

R29 in Appendix N.9.6 can be directly applied to show R30. More specifically, note

that both D3 and D4 are converted back and forth from each other when swapping

the flow indices. Similarly, the index swapping also converts G27 to G28 and vice

versa. Since LNR, G1, and E0 remain the same after swapping the flow indices, we

can see that R29 becomes R30 after swapping the flow indices. The proofs of R29

in Appendix N.9.6 can thus be used to prove R30.
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