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ABSTRACT

Han, Jaemin Ph.D., Purdue University, May 2016. Multi-session Network Coding
Characterization using New Linear Coding Frameworks. = Major Professor: Chih-
Chun Wang.

Recently, Network Coding (NC) has emerged as a promising technique in modern
communication networks and has shown extensive potentials in practical implemen-
tations and theoretical developments. Nevertheless, the NC problem itself remains
largely open especially where the multiple flows (sessions) exist. Unlike single-session
where all receivers want the same information, they demand different set of infor-
mation in multi-session and thus NC strategy should be carefully designed to avoid
interferences. However, characterizing an optimal strategy (even a simple solution)
has known to be of prohibitive complexity even we restrict to the linear network
coding (LNC) problem.

This thesis provides a fundamental approach to overcome this multi-session com-
plexity. We first consider the Directed Acyclic Integer-Capacity network model that
characterizes the real-life instantaneous Wireline Networks. In this model, people
recently applied the results of wireless interference channels to evade the multi-
session difficulties. However, our NC understanding is still nascent due to differ-
ent wireline channel characteristics to that of wireless. Therefore, motivated by the
graph-theoretic characterizations of classic linear NC results, we first propose a new
Precoding-based Framework and its fundamental properties that can bridge between
the point-to-point network channel and the underlying graph structures. Such rela-
tionships turn out to be critical when characterizing graph-theoretically the feasibil-

ity of the Precoding-based solutions. One application of our results is to answer the



conjecture of the 3-unicast interference alignment technique and the corresponding
graph-theoretic characterization conditions.

For Wireless Networks, we use the packet erasure network model that characterizes
the real-life harsh wireless environment by the probabilistic arguments. In this model,
we consider the multi-session capacity characterization problem. Due to the signal
fading and the wireless broadcasting nature, the linear NC designer needs to optimize
the following three considerations all together: LNC encoding operations; scheduling
between nodes; and the feedback and packet reception probabilities. As a result, the
problem itself is more convoluted than that of wireline networks where we only need
to focus on how to mix packets, i.e., coding choices, and thus our understandings
have been limited on characterizing optimal /near-optimal LNC strategies of simple
network settings. To circumvent the intrinsic hardness, we have developed a frame-
work, termed Space-based Framework, that exploits the inherent linear structure of
the LNC problem and that can directly compute the LP(Linear Programming)-based
LNC capacity outer bound. Motivated by this framework, this thesis fully charac-
terizes more complex/larger network settings: The Shannon capacity region of the
3-node network with arbitrary traffic patterns; and The LNC capacity region of the

2-flow smart repeater network.



1. INTRODUCTION

In the communication network where multiple nodes are intertwined with each other,
it was commonly believed that an information packet should be unchanged during
delivery. As a result, the routing (store-and-forward) was an dominant form of dis-
tributing packets and thus network solution was approached as to optimize multi-
commodities (flow demands) between nodes.

This long-lasting routing paradigm has been enlightened by the seminal work from
Ahlswede et al., the concept of Network Coding (NC) in 2000 [1]. The new concept
that information packets can be mixed to be beneficial, not only achieved the single
multicast capacity, but also broadened our understandings of the notoriously chal-
lenging network information problem. Network Coding has been further concreted
by the follow-up works from theory to practice. Li et al. showed that linear network
coding (LNC) suffices to achieve a single-session (also known as intra-session) ca-
pacity [2], which followed by the well-formulated framework for general multi-session
(also known as inter-session) settings [3]. This classic framework bridged a straight
connection between a given network information flow problem and a finite field al-
gebraic variety (the set of solutions of a system of polynomial equations), providing
a critical step in shifting Network Coding from knowledge to application. Network
Coding became further implementation-friendly by the packet-header padding of mix-
ing coefficients [4] along with the success of a polynomial-time algorithm [5] and the
distributed random linear network coding [6], all in single-session scenario.

Thanks to these fundamental efforts, NC became an promising technique in mod-
ern communication systems. The numerous applications such as P2P file systems and
recent wireless testbeds [7,8] have also demonstrated that LNC can provide substan-
tial throughput gains over the traditional 802.11 protocols in a practical environment.

Several literatures also showed some potential extensions to the reliable communica-



tions from a security perspective [9,10]; over network errors and erasures [11-14];
to the broadcasting systems for the multi-resolution support [15,16]; to the resilient

storage recovery [17,18]; and even to the index coding problem [19,20]

1.1 Limited Understandings in Multi-session Network Coding

Despite its great potentials, the NC problem itself is largely open in general,
especially where multiple flows (sessions) exist. Unlike single-session where all re-
ceivers want the same set of information, in multi-session scenario, receivers re-
quire different set of information from sources. Therefore, “how to mix informa-
tion” should be carefully designed over the entire network, otherwise an inevitable
interference from undesired senders may occur. Since the design needs to avoid inter-
ferences while satisfying the given traffic demands, our multi-session understandings
in optimal/near-optimal NC strategies have been limited: over some special network
topologies [21-23]; under restrictive rate constraints [24-26]; and by inner and outer
bounding approaches [22,27,28]. Even we restrict our focus on the linear NC problem,
the simplest scenarios of 2-unicast/multicast with single rates are only people have
solved completely [24,29,30]. There are some achievability results for larger than
single rates [25,26] but still the LNC capacity for arbitrary 2-unicast/multicast has
not been resolved up to date. This is also one reason why the simple form of 2-unicast
instances, i.e., the famous Butterfly structure, has been exploited mostly in practical
implementations and theoretical developments [7,31-35]. Therefore in this thesis, we
propose two new frameworks that help us to characterize the multi-session NC prob-
lem. Both frameworks are built upon the linear structure of the packet-mixing nature,
and are designed to provide an tractable analysis of the notorious multi-session Net-
work Coding problems. Although it is known that there are some cases that the linear
network coding (LNC) is not sufficient to achieve the multi-session capacity [36], the
problem characterization based upon the linear structure will be invaluable in broad-

ening our currently-limited understandings and in practical viewpoints as well. From



the following section, we will introduce these two linear frameworks and develop our

motivations in more depth.

1.2 Wireline Networks - Directed Acyclic Integer-Capacity Network

The NC problem in Wireline Networks has been considered in the Directed Acyclic
Integer-Capacity network model [3]. Unlike the error-prone wireless environment, a
packet transmission over a wired link (or edge) can be easily made error-free by
forward error correcting codes. We can thus exclusively focus on the information
delivery without worrying too much about erroneous receptions. There might be
some topological changes in the network (such as a temporal link failure), but we
focus on fixed topologies to understand the problem more clearly. We further assume
that the network is directed acyclic (there are no cycles) and follow the widely-used

instantaneous transmission model for the directed acyclic integer-capacity network [3].

1.2.1 Linear Network Coding : The Classic Algebraic Framework

Consider the following scenarios as shown in Fig. 1.1. The directed acyclic integer-
capacity network model and the corresponding algebraic framework [3] for the LNC
problem can be understood by looking into these examples. Fig. 1.1(a) illustrates the
famous Butterfly topology where d; and ds wants to receive packets from s; and s»,
respectively. At each node, a packet transmitted through an outgoing link is a linear
combination of the packets from all incoming links. For example, a packet transmitted
through an link e is a linear combination of the packets from two incoming links,
whose coefficients are x5 and xg, respectively. At each node, we have such coefficients
for all incoming to outgoing relationships, and the collection of such coefficients in
the network is called local encoding kernels (or network variables). For example,
the network variables in Fig. 1.1(a) are {z1,...,x12}. Then once transmitted, by
the instantaneous transmission model, each destination will see the following linear

combination of the packets X and Y whose coefficients are high-order polynomials



Fig. 1.1. (a) The Butterfly structure (2-unicast) with the corresponding network
variables {xi,...,z12} and the resulting LNC transmission that satisfies the traffic
demand of (R, q4,, Rs,—d,) = (1,1); and (b) The 2-unicast and 1-multicast combi-
nation scenario and the resulting LNC transmission that satisfies the traffic demand

(R81—>d2a Rsz—>{d1,d4}a R53—>d3) = (]-7 {1a 1}7 1)

with respect to the network variables: (zixg + xexszr219) - X + (x32627210) - Y at
dy; and (zowszsxyy) « X + (w3w628211 + T4212) - Y at dy, respectively. The objective
of the LNC problem is to find a specific assignment of the network variables that
can satisfy the given traffic demand while being interference-free, i.e., solving the

following feasibility equations:

dy i w3xex3T11 + T4T12 = 0, Toxsxgx1y 7 0,

d2 . T1XT9 + ToX5X7T10 = 0, T3TeL7T10 §£ 0.

Note that the first column of equations are to be interference-free from the undesired
packets (removing interferences) while the second column of equations are to receive
the desired packets (satisfy the traffic demand).

In this example, we can easily find a solution that satisfies (R, a,, Rsy—d,) =

(1,1): set —1 to both xg and x9, and set 1 to all the other variables. The resulting



packet transmissions are shown by a red color in Fig. 1.1(a). Notice that without
packet-mixing, an link e would be a bottleneck for each unicast. As a result, any
routing solutions cannot simultaneously meet the rate (1, 1) for this 2-unicast.

How about the scenario in Fig. 1.1(b)? For this 2-unicast and 1-multicast combi-
nation scenario, [37] has shown that (R, _4,, Rey—{di,ds}s Rsy—a;) = (1,{1,1},1) can
be LNC-achievable. The feasibility equations and the corresponding LNC solutions
(assignment of network variables) are left to the reader but one solution is shown by
a red color. Notice that both dy and ds do not want Y5 from s,, and we are canceling
Y5 at two edges € and €” to be interference-free, while satisfying the multicast traffic
from sy to {dy,d4}.

As you can see from these examples, finding a solution (or algebraic variety) that
satisfies the feasibility equations directly tells us how to design an linear network code.
This classic algebraic framework [3] thus bridges a straight connection between a given
network information flow problem and an algebraic solution. Notice that it is easy to
check whether the given solution is feasible but not easy to come up with a solution
from the beginning. This is mainly due to the interference-free requirements of the
multi-session problem that must be zero in the feasibility equations, unlike single-
session where we only need to satisfy the non-zero-equations (satisfying the traffic
demand), which can be done with high probability by choosing the values of local
encoding kernels independently and randomly. It turned out that the complexity of
finding a algebraic solution in multi-session scenarios becomes NP-hard for arbitrary

communication demands [3, 38].

1.2.2 New Precoding-based Framework

To circumvent this NP-hard complexity, people recently focused on the analogy
between the Directed Acyclic Wireline Network and the Wireless Interference Chan-
nel that the instantaneous transmission is assumed in the directed acyclic model as

in wireless. Therefore, applying the techniques developed in Wireless Interference



Channels was a natural sequence. Such applications are the linear deterministic
interference cancellation technique of 2-user Interference Channel [25,26] and the in-
terference alignment technique [39] to 3-unicast, called 3-unicast Asymptotic Network
Alignment (ANA) scheme [40,41].

This brings a new perspective on the multi-session LNC problem. As there is
no control on wireless channels between two end points, the network designer can
focus on designing the precoding and decoding mappings at the source and destina-
tion nodes while allowing randomly generated local encoding kernels [6] within the
network. Compared to the classic algebraic framework that fully controls the local
encoding kernels [3], this precoding-based approach trades off the ultimate achievable
throughput with a distributed, implementation-friendly structure that exploits an al-
gebraic network channel by a pure random linear NC in the interior of the network.
These initial studies show that, under certain network topology and traffic demand,
the precoding-based NC can perform as good as a few widely-used LNC solutions.
Such results demonstrates a new balance between practicality and throughput en-
hancement.

However, due to different wireline channel characteristics to that of wireless, our
NC understanding is still nascent, especially in a graph-theoretic sense. Notice that
many known NC scenarios were characterized graph-theoretically. For example, if
there exists only a single session (s,{d;}) in the network, the existence of a NC
solution is equivalent to that the rate being no larger than the minimum of min-cuts
from a source s to each destination d;. Another example is the 2-unicast with single
rates. The existence of an LNC solution is equivalent to the conditions that the some
cuts or paths are properly placed in certain ways [24,29,30]. Moreover, such graph-
theoretic characterizations can be easily checked in polynomial time, which is not
the case and intractable for the algebraic conditions as discussed above. Therefore,
bridging a straight connection between an algebraic network channel and a graph-

theoretic structure will be an influential direction in enlarging our understandings.



We believe that our work of establishing such connection will be a precursor along

this leap.

1.3 Wireless Networks - Broadcast Packet Erasure Channel

In Wireless Networks, a packet transmission over a link suffers from a severe
channel fading and thus a packet erasure is sometimes inevitable during delivery.
Unlike Wireline Networks where an edge can be easily made error-free, an erasure-
control mechanism such as Automatic Repeat-reQuest (ARQ) feedback is a common
practice in Wireless Networks. We thus assume the casual network-wide channel state
information feedback between nodes in the network. This can be accomplished by
each node broadcasting its packet reception status (ACK/NACK) over the network
via a very low-rate control channel or via piggybacking the forward traffic [42].

What makes the wireless multi-session LNC problem more intriguing is that, in
addition to the feedback, we need to jointly consider the transmission orders be-
tween nodes as well. Unlike Wireline Networks where the packet transmissions are
directive along the deployed links, in Wireless Networks, the transmission signals
are dispersed/broadcasted around. Moreover, unlike Wireline Networks where si-
multaneous reception from different incoming edges can be processed separately, in
Wireless Networks, simultaneous receptions are additive and thus may create severe
interference from undesired senders such as the Hidden Node problem. As a result,
the interference avoidance is a common baseline for most wireless advancements and
thus scheduling between nodes needs to be jointly considered. Moreover, if there are
multiple co-existing flows in a multi-hop network that go in different directions, then
each node sometimes has to assume different roles (say, being a sender and/or being
a relay) simultaneously. An optimal solution thus needs to balance the roles of each
node either through scheduling [35,43] or through ingenious ways of coding and co-
operation [44,45]. Also see the discussion in [46] for the very detailed case studies

for a 3-node network. As a result, the linear NC designer needs to jointly optimize



not only “how to mix the available packets for delivery” but also “how to schedule
transmissions between nodes”, both of which depend on the feedback and the packet
erasure events of the wireless channel. Therefore, it becomes even harder to char-
acterize and to design the optimal/near-optimal LNC strategy. Due to the wireless
broadcasting nature, such erasure behaviors can be modeled by some probabilistic
arguments, termed Broadcast Packet Erasure Channel (PEC). For the following sub-
sections, we will look into some PEC example networks and develop these discussions

more deeply.

1.3.1 Linear Network Coding : Illustrative Examples

Fig. 1.2(a) illustrates the 2-user Broadcast PEC scenario where a common node
s would like to send different information to d; and dy. If we let n be the total
time budget and would like to achieve a specific rate tuple (R, Ry), then there are
n(Ry + Ry) packets that need to be delivered over the course of n time slots. For the
LNC design of “how to mix the available information”, such coding choices can be as

TL(R1 +Rso

many as ¢ ) if we use a packet size to be a finite field [F,. Moreover, sending a

nR1+R2) s coupled with the feedback and the reception

specific coding choice out of ¢
probabilities. Thus, one can see that the characterization problem in Wireless Packet
Erasure Channels are more convoluted that that of Wireline Networks. Recently, the
LNC capacity region of the 2-user Broadcast PEC was fully characterized and proven
that it is indeed the information-theoretic capacity [47]. Moreover, the LNC capacity
region for arbitrary K-receiver extension of Fig. 1.2(a) was also fully characterized
by the intelligent packet-evolution scheme [48].

Fig. 1.2(b) illustrates the 2-flow 1-hop relay scenario where two sources s; and o
would like to deliver packets to d; and ds, respectively, via a relay node r. Unlike
the previous literature where there is no scheduling consideration between nodes (the

single source s is the only transmitting node), here we need to consider transmission

orders between si, Sso, and r. Namely, the scheduling design is coupled with the
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Fig. 1.2. The illustration of the wireless Packet Erasure Channel (PEC) scenarios:
(a) 2-user broadcast channel; and (b) 2-flow 1-hop relay channel (Wireless Butterfly).

coding choices of “how to mix the available information”, and also with the feedback
and the reception probabilities. It is not hard to see the immediate throughput
advantage because without Network Coding the relay r would require more time-
slots to transmit X and Y to each receiver. However, creating NC opportunities and
the use of smart coding choices is correlated to the scheduling decisions, the feedback,
and the reception probabilities as explained above. Recently, the LNC capacity region
and the achieving scheme of the 2-flow 1-hop relay network was fully characterized
even with the direct overhearing between each source-receiver pair [35,49]. Due
to the inherent hardness of the problem, the network capacity understandings are
limited to some simpler scenarios, most of which involve only 1-hop transmissions,
say broadcast channels or multiple access channels, and/or with all co-existing flows

in parallel directions (i.e., flows not forming cycles).

1.3.2 New Space-based Framework

One critical reason for the successful characterization of the simple PEC scenarios
is that the network itself admits a strikingly simple solution that achieves the capac-

ity. For example, the capacity-achieving scheme of Fig. 1.2(a) is that the source s
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first transmits X and Y packets uncodedly, and then later perform the classic XOR
operation of sending a packet mixture [X + Y], for those which X is overheard by dj
and Y is overheard by d;. For the case of Fig. 1.2(b), the capacity approaching solu-
tion is to similarly take advantage of the classic butterfly-styles operations as much
as possible at the relay r. Notice that there is a clear separation between the roles
of source, relay, and receiver in these examples. However in real scenarios, there is
no such distinct roles and nodes may communicate with each other in an arbitrary
way. For such complex network with arbitrary multi-hop traffics in-between, one can
imagine that an intelligent but rather simple solution would be extremely hard to find
as more coding choices, scheduling decisions, feedback, and reception probabilities are
convoluted with each other.

To circumvent this intrinsic hardness, we proposed a novel LNC framework, termed
the Space-based Framework [50]. This framework incorporates the joint design of
choosing the coding choices and the scheduling decisions into an easily-solvable lin-
ear programming (LP) problem. Specifically, the framework enables us to divide the
entire set of the LNC choices into some necessary subspaces and formulate the evolu-
tion of the rank of each subspace to the scheduling decisions over the course of total
time budget n. Once we carefully design the coding spaces to cover the entire LNC
operations in a lossless way, then the LP solver directly finds the LNC capacity outer
bound. This framework is innovative in a sense that not only it can be applied to
arbitrary PEC network, but also the LNC capacity outer bound can be found without

1 This exhaustive search-based approach was

the need of finding any cut-condition.
previously not possible since there are already too many LNC design choices even in
the simpler examples as in Fig. 1.2. Moreover, each variable in the LP formulation
is associated to a subset of the entire linear space, i.e., an LNC operation that a
sender can perform. Therefore, a careful analysis of the LP structure can lead us to

design a simpler but intelligent LNC achievability strategy. Thanks to this frame-

work, the LNC capacity (and even information-theoretic capacity) of many scenarios

'The cut-condition is usually for the traditional information-theoretic approach where we first finds
a cut and an achievability scheme and later proves that both meet.
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and the corresponding achieving schemes have been found [42,43,50]. Motivated by
this Space-based Framework, this thesis characterizes the capacity and the simple
achievability scheme of the larger/complex PEC networks: the 3-node multi-session

PEC network with arbitrary traffic directions and the 2-flow smart repeater network.

1.4 Owur Contributions

Our contributions consists of three parts. In the first part, this thesis, motivated by
the proposed Space-based Framework, characterizes the full Shannon capacity of the
3-node multi-session PEC network with the most general traffic demands, i.e., when
three nodes {1, 2,3} are communicating with each other and each node is a source, a
relay, and a receiver simultaneously. Namely, there are six private-information flows
with rates (Ri_2, R13, Ro1, Roy3, R3 41, R3_s»), respectively, and three common-
information flows with rates (R1_23, Ra—31, R3-12), respectively. We characterize the
9-dimensional Shannon capacity region within a gap that is inversely proportional
to the packet size (bits). The gap can be attributed to exchanging reception status
(ACK/NACK) and can be further reduced to zero if we allow such feedbacks to be
transmitted via a separate control channel. For normal-sized packets, say 12000 bits,
our results effectively characterize the capacity region for many important scenarios,
e.g., wireless access-point networks with client-to-client cooperative communications,
and wireless 2-way relay networks with packet-level coding and processing. Notice
that most existing works on packet erasure networks have studied either < 2 co-
existing flows [7,8,35,42,43,47] or all flows originating from the same node [43,48,
50-54]. By characterizing the most general 9-dimensional Shannon capacity region
with arbitrary flow directions, this work significantly improves our understanding
for communications over the 3-node network. Technical contributions of this work
also includes a new converse for many-to-many network communications and a new

capacity-approaching scheme based on simple LNC operations.
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In the second part of contributions, this thesis, motivated by the proposed Space-
based Framework, characterizes the LNC capacity region of the 2-flow smart repeater
PEC network. Namely, we consider a 4-node 2-hop relay network with one source
s, two destinations {d;,d>}, and a common relay r inter-connected by two broad-
cast PECs. The smart repeater PEC network is a new topology by combining two
sources 1 and sy in the 2-flow wireless butterfly PEC network of Fig. 1.2(b). Un-
like Fig. 1.2(b) where two separate sources s; and sp are not coordinating with each
other and thus the LNC encoding operation of each source is limited to mixing its
own packets at most, our single source s has no limitation for any LNC operation,
thereby mixing packets of different sessions freely. As a result, our smart repeater
problem is a strict generalization of the 2-flow wireless butterfly problem. In such a
setting, we effectively characterize the LNC capacity with a new capacity-approaching
scheme that utilizes the newly-identified LNC operations other than the previously
known classic butterfly-style operations. Technical contributions of this work also in-
cludes a queue-based analysis of our capacity-approaching LNC scheme and the new
correctness proof based on the properties of the queue invariance.

In the third part of contributions, this thesis, motivated by its practical advan-
tages over the classic linear NC framework, focuses exclusively on the Precoding-
based Framework and characterize its corresponding properties. To that end, we first
formulate the Precoding-based Framework that embraces the results of Wireless In-
terference Channels, and compare it to the classic algebraic framework [3]. We then
identify several fundamental properties which allow us to bridge the gap between
the network channel gains and the underlying network topology. We then use the
newly developed results to analyze the 3-unicast ANA scheme proposed in [40,41].
Specifically, the existing results [40,41] show that the 3-unicast ANA scheme achieves
asymptotically half of the interference-free throughput for each transmission pair
when a set of algebraic conditions on the channel gains of the networks are satisfied.
Note that for the case of Wireless Interference Channels, these algebraic feasibility

conditions can be satisfied with close-to-one probability provided the channel gains



13

are continuously distributed random variables [39]. For comparison, the “network
channel gains” are usually highly correlated? discrete random variables and thus the
algebraic channel conditions do not always hold with close-to-one probability. More-
over, except for some very simple networks, checking whether the algebraic channel
conditions hold turns out to be computationally prohibitive. As a result, we need
new and efficient ways to decide whether the network of interest admits a 3-unicast
ANA scheme that achieves half of the interference-free throughput. Motivated by the
graph-theoretic characterizations of classic linear NC results, this thesis answers this
question by developing new graph-theoretic conditions that characterize the feasibil-
ity of the 3-unicast ANA scheme. The proposed graph-theoretic conditions can be

easily computed and checked within polynomial time.

1.5 Thesis Outline

In the next chapter, we formulate the wireless multi-session PEC problems of the
3-node network and the smart repeater network, which incorporates the broadcast
packet erasure channels with feedback and scheduling decisions all together. In Chap-
ter 3, we describe the 9-dimensional Shannon capacity of the 3-node packet erasure
network with a simple capacity-approaching LNC scheme. In Chapter 4, we propose
the LNC capacity outer bound of the smart repeater problem based on the Space-
based Framework, and provide a close-to-optimal LNC inner bound. In Chapter 5,
we formulate the Precoding-based Framework with some necessary graph-theoretic
and algebraic definitions. The comparison to the classic algebraic framework [3], and
some applications and fundamental properties of the Precoding-based Framework are
also discussed. In Chapter 6, we characterize the graph-theoretic feasibility condi-
tions of one application of the Pecoding-based Framework, the 3-unicast Asymptotic
Network Alignment (ANA) scheme. In Chapter 7, we conclude this thesis and discuss

the possible extensions and future works.

2The correlation depends heavily on the underlying network topology.
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2. MODEL FORMULATION FOR WIRELESS PACKET
ERASURE NETWORKS

In this chapter, we will first mathematically formulate the 1-to-K broadcast packet
erasure channel (PEC). Based on the PEC definition, we formulate the problems of
the 3-node wireless packet erasure network and the wireless smart repeater packet
erasure network, which incorporates the broadcast packet erasure channels with the
network-wide feedback, encoding/decoding descriptions, and the scheduling decisions

all together. We also define some useful channel probability notations.

2.1 The Broadcast Packet Erasure Channels

For any positive integer K, an 1-to-K broadcast packet erasure channel (PEC) is
defined as to take an input X from a finite field F, with size ¢ > 0 and output a K-
dimensional vector Y = (Y3, Y5, - -+, Y). We assume that the input is either received
perfectly or completely erased, i.e., each output Y, must be either the input X or an
erasure symbol €, where Y, = ¢ means that the k-th receiver does not correctly receive
the input X. As a result, the reception status can be described by a K-dimensional
binary vector Z = (Z1, Zs, - -+ , Zx) where Z, = 1 and ¢ represents whether the k-th
receiver successfully received the input X or not, respectively. Any given PEC can

then be described by its distribution of the binary reception status Z.

2.2 The 3-node Packet Erasure Network

Consider a network of three nearby nodes labeled as {1,2,3}, see Fig. 2.1(a).
For the ease of exposition, we will use (4,7, k) to represent one of three cyclically

shifted tuples of node indices {(1,2,3),(2,3,1),(3,1,2)}. The 3-node Packet Erasure
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(a) 3 nearby nodes (b) The 3-node Packet Erasure Network

@

Fig. 2.1. Ilustrations of the wireless 3-node Packet Erasure Network (PEN). There
are nine co-existing flows possible in general.

Network (PEN) is then defined as the collection of three separate 1-to-2 broadcast
PECs, each from node i to the other two nodes j and k for all i € {1,2,3}, see
Fig. 2.1(b).

The channel behaviors of the 3-node PEN can be described by the following def-
initions. For any time slot ¢, we use a 6-dimensional channel reception status vector

Z(t) to represent the reception status of the entire network:
Z(t) = (Zl—>2(t)7 Z1—>3(t)7 Z2—>1(t)7 Z2—>3(t)7 Z3—>1(t)7 Z3—>2(t)) € {17 8}67

where Z; ,;(t) = 1 and e represents whether node h can receive the transmission
from node ¢ or not, respectively. We assume that the 3-node PEN is memoryless and
stationary,! i.e., we allow arbitrary joint distribution for the 6 coordinates of Z(t) but
assume that Z(t;) and Z(ts) are independently and identically distributed for any
t1 # to. We use piji £ Prob(Z,_;(t) = 1, Z;_,1(t) = 1) to denote the probability
that the packet transmitted from node 7 is successfully received by both nodes j and
k; and use p;_, z to denote the probability Prob(Z;,;(t) = 1, Z;x(t) = €) that node-
i packet is successfully received by node j but not by node k. Probability p; 7 is
defined symmetrically. Define p;_, ;v =S PisiitPimsjk+ D 5 8 the probability that at
least one of nodes j and k receives the packet, and define p;_,; = Pisjk TPiyik (resp.

Dink = Pisjk + Piyj) as the marginal reception probability from node i to node j

!The 3-node PEN is a special case of the discrete memoryless network channel [44].
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(resp. node k). We also assume that the random process {Z(t) : Vt} is independent
of any information messages.

Assume synchronized time-slotted transmissions. To model interference, we as-
sume that only one node can successfully transmit at each time slot ¢t € {1,--- ,n}. If
> 2 nodes transmit, then the transmissions of both nodes fail. More specifically, we
define the following scheduling decision binary variable o;(t) for any node i € {1, 2, 3}.
Namely, o;(t) = 1 represents that node i decides to transmit at time ¢ and o;(t) = 0
represents not transmitting. Any transmission is completely destroyed if there are > 2
nodes transmitting simultaneously. For example, suppose node i decides to transmit
a packet X;(t) € F, in time ¢ (thus oy(t) =1). Then, only when o;(t) = ox(t) = 0
can node i transmit without any interference. Moreover, only when Z; ,,(t) = 1 will
node h # i receive Y; ,,(t) = X;(t). In all other cases, node h receives an erasure

Yi,n(t) = . To highlight this interference and erasure model, we sometimes write

Yion(t) = Xi(t) 0 Zisn(t) © Lioyt)=1,0; (t)=0r (t)=0} - (2.1)

Over the 3-node PEN described above, we consider the following 9-dimensional
traffic flows: 6 private-information flows with rates (R, R13, Ro1, Ro3, R31,
R3_,5), respectively; and 3 common-information flows with rates (Ry_23, Ro—31, R312),
respectively. Namely, R;_,»3 represents the rate of the common-information message
from node 1 to both nodes 2 and 3. We use R;, 2 (Ri—j, Risk, Rimsji) to denote
the rates of all three 3 flows originated from node i, for all i € {1,2,3}. We use a
9-dimensional rate vector R 2 (El*, éz*, ﬁ3*) to denote the rates of all possible flow
directions.

Within a total budget of n time slots, node ¢ would like to send nR;_ ., packets
(private-information messages), denoted by a row vector W, to node h # i, and
would like to send nR;_, j; packets (common-information messages), denoted by a row
vector W,_, i, to the other two nodes simultaneously. Each uncoded packet is chosen

independently and uniformly randomly from a finite field F, with size ¢ > 0.
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For the ease of exposition, we define W;, = W, UW,,, UW, ;. as the col-
lection of all messages originated from node 4. Similarly, we define W,; = W, U
W,k UWi,; UW,_,,; as the collection of all messages destined to node ¢. Some-
times we slightly abuse the above notation and define Wi e £ W, U W;, as the
collection of messages originated from either node ¢ or node j. Similar “collection-
based” notation can also be applied to the received symbols and we can thus define
Y.i(t) £ {Y;i(t), Yisi(t)} and Yiu (t) £ {Yi;(t), Yir(t)} as the collection of all sym-
bols received and transmitted by node ¢ during time ¢, respectively. For simplicity, we
also use brackets [-] to denote the collection from time 1 to ¢t. For example, [Y,;, Z]}™
is shorthand for the collection {Y;_(7), Yisi(7), Z(T) : VT € {1, --- ,t — 1}}.

To better understand the problem, we consider one of the following two scenarios.

Scenario 1: Motivated by the throughput benefit of the causal packet ACKnowl-
edgment feedback for erasure networks [20,35,42,43,47-50,53-57], in this scenario we
assume that the reception status is casually available to the entire network after each
packet transmission through a separate control channel for free. Such assumption can
be justified by the fact that the length of ACK/NACK is 1 bit, much smaller than
the size of a regular packet.

Scenario 2: In this scenario we assume that there is no inherent feedback mech-
anism. Any ACK/NACK signal, if there is any, has to be sent through the regular
forward channels along with information messages. As a result, any achievability
scheme needs to balance the amount of information and control messages. For exam-
ple, suppose a particular coding scheme chooses to divide the transmitted packet X
into the header and the payload. Then it needs to carefully decide what the content
of the control information would be and how many bits the header should have to
accommodate the control information. The timeliness of delivering the control mes-
sages is also critical since the control information, sent through the forward erasure
channel, may get lost as well. Therefore, the necessary control information may not

arrive in time. Such a setting in Scenario 2 is much closer to practice as it considers

the complexity/delay overhead of the coding solution. In Scenario 2, we also assume
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that the 3-node PEN is fully-connected, i.e, node ¢ can always reach node j, possi-
bly with the help of the third node k, for any 7 # j pairs. The formal definition of
fully-connectedness is provided in Definition 3.2.1. Note that the fully-connectedness
is assumed only in Scenario 2. When the casual reception status is available for free
(Scenario 1), our results do not need the fully-connectedness assumption.

In sum, the causal ACK/NACK feedback can be transmitted for free in Scenario 1
but has to go through the forward channel when in Scenario 2. For the following, we
first focus on the detailed formulation under Scenario 2.

Given the rate vector ﬁ, a joint scheduling and network coding scheme is described

by 3n binary scheduling functions: Vt€{1,---,n} and Vie{1,2,3},
0i(t) = fa (Yol ) (2.2)
plus 3n encoding functions: Vt€{l,---,n} and Vie{1,2,3},
Xi(t) = £ (Wi, [V, (2.3)

plus 3 decoding functions: Vi € {1,2,3},

A

W.i = gi(Wis, [Yail7)- (2.4)

To refrain from using the timing-channel® techniques [58], we also require the
following equality
I([Ola 02, 0’3]711 ) W{1,273}*) == Oa (25)

where I(-; -) is the mutual information and Wi 5 3. 2 Wy, UW,, U Ws, is all the
9-flow information messages as defined earlier.
Intuitively, at every time ¢, each node decides whether to transmit or not based

on what it has received in the past, see (2.2). Note that the received symbols [Y,]i ™"

2We believe that the use of timing channel techniques will not alter the capacity region much when
the packet size is large. One justification is that the rate of the timing channel is at most 3 bits per
slot, which is negligible compared to a normal packet size of 12000 bits.
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may contain both the message information and the control information. (2.5) ensures
that the “timing” of the transmission o;(t) cannot be used to carry® the message
information. Once each node decides whether to transmit or not,* it encodes X;(t)
based on its information messages and what it has received from other nodes in the
past, see (2.3). In the end of time n, each node decodes its desired packets based on
its information messages and what it has received, see (2.4).

We can now define the capacity region.

Definition 2.2.1. Fir the distribution of Z(t) and finite field F,. A 9-dimensional
rate vector R is achievable if for any € > 0 there exists a joint scheduling and network
code scheme with sufficiently large n such that Prob(W*,- # W,;) < € for all i €
{1,2,3}. The capacity region is the closure of all achievable R.

2.2.1 Comparison between Scenarios 1 and 2

The previous formulation focuses on Scenario 2. The difference between Scenar-
ios 1 and 2 is that the former allows the use of causal ACK/NACK feedbacks for free.
As a result, for Scenario 1, we simply need to insert the causal network-wide channel
status information [Z]{™" in the input arguments of (2.2) and (2.3), respectively; and
insert the overall network-wide channels status information [Z] in the input argu-

ment of (2.4). The formulation of Scenario 1 thus becomes as follows: Vte€{1,---,n}

and Vie{1,2,3},

0i(t) = Faon i (Y ZITY), (2.6)
Xi(t) = 1) (Wi, [Yar, 2171, (2.7)

3For example, one (not necessarily optimal) way to encode is to divide a packet X;(t) into the
header and the payload. The messages W;, will be embedded in the payload while the header
contains control information such as ACK. If this is indeed the way we encode, then (2.5) requires
that transmit decision depend only on the control information in the header, not the messages in
the payload.

4If two nodes i and j decide to transmit simultaneously, then our channel model (2.1) automatically
leads to full collision and erases both transmissions.
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while we still impose no-timing channel information (2.5). Obviously, with more
information to use, the capacity region under Scenario 1 is a superset of that of
Scenario 2, which is why we use overlines in the above function descriptions. Following
this observation, we will outer bound the (larger) capacity of Scenario 1 and inner
bound the (smaller) capacity of Scenario 2 in the subsequent sections.

Without loss of generality, we can further replace the distributed scheduling com-
putation in (2.6) (each node i computes its own scheduling) by the following central-

ized scheduling function

o(t) = Fen(Z)71) € {1,2,3}, (2.9)

that takes the values in the set of three nodes {1,2,3}. That is, o(t) = ¢ implies that
only node 7 is scheduled to transmit in time ¢.
To prove why we can replace (2.6) by (2.9) without loss of generality, we first

introduce the following lemma.

Lemma 2.2.1. Without loss of generality, we can replace (2.6) by the following form:
0 t—1
Ui<t> - SCH,i([Z]l )v (2’10)

which is still a binary scheduling function but the input argument [Y.;]\™" in (2.6) is

removed.

The proof of Lemma 2.2.1 is relegated to Appendix F. The intuition behind the
proof is to show that since the information equality (2.5) must hold, knowing the past
reception status [Z]%™" is sufficient for the scheduling purpose.

Lemma 2.2.1 ensures that we can replace the scheduling decision (2.6) of each
individual node i by (2.10). We then observe that every node ¢ makes its scheduling
decision based on the same input argument [Z]:™!, which, in Scenario 1, is available

to all three nodes for free via a separate control channel. Therefore, it is as if there is

a centralized scheduler in Scenario 1 and the centralized scheduler will never induce
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(a) 4-node 2-hop relay network (b) The BPEC network model

Fig. 2.2. The 2-flow wireless Smart Repeater network

any scheduling conflict. As a result, we can further replace the individual scheduler
(2.10) by a centralized global scheduling function (2.9) where o(¢) = 7 implies that
node 7 is the only scheduled node in time ¢.

In sum, under Scenario 1, the joint network coding and scheduling solution is
described by (2.7), (2.8), and (2.9). Here we do not impose (2.5) anymore since the
centralized scheduler (2.9) satisfies (2.5) naturally.

2.3 The Smart Repeater Packet Erasure Network

The 2-flow wireless smart repeater network with broadcast PECs, see Fig. 2.2(b),
can be modeled as follows. Consider two traffic rates (Ry, Ry) and assume slotted
transmissions. Within a total budget of n time slots, source s would like to send nRy
packets, denoted by a row vector Wy, to destination dj, for all k€ {1, 2} with the help
of relay 7. Each packet is chosen uniformly randomly from a finite field F, with size
¢>0. To that end, we denote W = (W}, W,) as an nRy-dimensional row vector of
all the packets, and define the linear space Q £ (F, )" as the overall message/coding
space.

To represent the reception status, for any time slot ¢ € {1,---,n}, we define two

channel reception status vectors:

Zs(t) = (ZS—>d1(t>7 ZS—>d2(t>7 ZS—H‘(t)) < {17 *}37
ZT(t) = (ZT—>d1 (t)v ZT—>d2(t>> < {17 *}27
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where “1”7 and “x” represent successful reception and erasure, respectively. For ex-
ample, Zs_,4,(t) = 1 and * represents whether d; can receive the transmission from
source s or not at time slot t. We then use Z(t) £ (Z4(t),Z,(t)) to describe the
5-dimensional channel reception status vector of the entire network. We also assume
that Z(t) is memoryless and stationary, i.e., Z(t) is independently and identically
distributed over the time axis t.

We assume that either source s or relay r can transmit at each time slot, and
express the scheduling decision by o(t) € {s,r}. For example, if o(t) = s, then
source s transmits a packet X,(t) € F ; and only when Z, ,;(t) = 1, node h (one of
{dy,ds, r}) will receive Y, _,;(t) = Xs(t). In all other cases, node h receives an erasure
Ysn(t) = *. The reception Y,_,(t) of relay r’s transmission is defined similarly.

Assuming that the 5-bit Z(¢) vector is broadcast to both s and r after each packet
transmission through a separate control channel, a linear network code contains n

scheduling functions
Vte{l,--n}, o(t) = fou([Z]17), (2.11)

where we use brackets [ - |7 to denote the collection from time 1 to 7. Namely, at every
time ¢, scheduling is decided based on the network-wide channel state information
(CSI) up to time (¢t—1). If source s is scheduled, then it can send a linear combination

of any packets. That is,
If o(t) = s, then X,(t) = ¢,W ' for some ¢, € Q, (2.12)

where ¢, is a row coding vector in €2. The choice of ¢; depends on the past CSI vectors
[Z]™!, and we assume that ¢, is known causally to the entire network.> Therefore,

decoding can be performed by simple Gaussian elimination.

5Coding vector c; can either be appended in the header or be computed by the network-wide causal
CSI feedback [Z]F.
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We now define two important linear space concepts: The individual message
subspace and the knowledge subspace. To that end, we first define e; as an nRyx-
dimensional elementary row vector with its [-th coordinate being one and all the
other coordinates being zero. Recall that the n Ry, coordinates of a vector in ) can be
divided into 2 consecutive “intervals”, each of them corresponds to the information
packets W, for each flow from source to destination dy. We then define the individual

message subspace
Q) = span{e; : | € “interval” associated to W}, (2.13)

That is, € is a linear subspace corresponding to any linear combination of Wy
packets. By (2.13), each Q is a linear subspace of the overall message space € and
rank(€2) = nRy.

We now define the knowledge space for {d;, dy,r}. To that end, we first define the

reception subspace in the end of time ¢ by

RS (t) = span{c,: V7 <t such that node h receives the linear

combination (c,-W') successfully in time 7} (2.14)

where he€{d,dy,r}. For example, RS,.(t) is the linear space spanned by the packets
successfully delivered from source to relay up to time ¢. RSy, (t) is the linear space
spanned by the packets received at destination d; up to time ¢, either transmitted
by source or by relay. The knowledge space® Sy(t) for h € {dy,ds, 7} can be simply
defined as

Sh(t) = RS(t). (2.15)

For shorthand, we use S1(t) and Sy (t) instead of Sy, (t) and Sg, (), respectively. Then,

by the above definitions, we quickly have that destination d; can decode the desired

6The knowledge space Sj,(t) is a superordinate concept that contains not only the reception subspace
RS} (t) but also the messages originated from node h, if any. In our problem of interest, the messages
are originated only from source and thus its meaning is identical to the reception subspace as (2.15).
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packets Wy, as long as Si(n) 2 €. That is, when the knowledge space in the end of
time n contains the desired message space.

With the above linear space concepts, we now can describe the packet transmission
from relay. Recall that, unlike the source where the packets are originated, relay can
only send a linear mixture of the packets that it has known. Therefore, the encoder

description from relay can be expressed by
If o(t)=r, then X,(t)= ¢, W' for some ¢, € S,(t — 1). (2.16)

For comparison, in (2.12), the source s chooses ¢; from 2. We can now define the

LNC capacity region.

Definition 2.3.1. Fiz the distribution of Z(t) and finite field F,. A rate vector
(R1, Ry) is achievable by LNC if for any € > 0 there ezists a joint scheduling and
LNC' scheme with sufficiently large n such that Prob(Sk(n) 2 Q) > 1 — € for all
k € {1,2}. The LNC capacity region is the closure of all LNC-achievable (R, Rs).

2.3.1 A Useful Notation

In the smart repeater network model, there are two broadcast PECs associated
with s and r, respectively. For shorthand, we call those PECs the s-PEC and the
r-PEC, respectively.

The distribution of the network-wide channel status vector Z(t) = (Z4(t), Z.(t))
can be described by the probabilities p, T T for all T" C {d;,dy, 7}, and
Py uTar T for all U C {d;y,ds}. In total, there are 8 + 4 = 12 channel parame-
ters.”

For notational simplicity, we also define the following two probability functions

ps(+) and p,(+), one for each PEC. The input argument of p, is a collection of the

"By allowing some of the coordinates of Z(t) to be correlated (i.e., spatially correlated as the correla-
tion is between coordinates, not over the time axis), our setting can also model the scenario in which
destinations d; and ds are situated in the same physical node and thus have perfectly correlated
channel success events.
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elements in {d;,dy,r,di,ds, 7}. The function p,(-) outputs the probability that the
reception event is compatible to the specified collection of {d;,ds,r,d;,ds, 7}. For

example,

Ps(daT) = Dy grgyr T Pssdrdor (2.17)

is the probability that the input of the source-PEC is successfully received by ds
but not by r. Herein, d; is a dont-care receiver and p,(ds7) thus sums two joint
probabilities together (d; receives it or not) as described in (2.17). Another example
is pr(d2) = Prosaydy + Py_gia,» Which is the probability that a packet sent by r is
heard by dy. To slightly abuse the notation, we further allow ps(-) to take multiple
input arguments separated by commas. With this new notation, p,() then represents
the probability that the reception event is compatible to at least one of the input

arguments. For example,

ps(d1d27 T) = ps_)dlﬁ + p5—>d1£7“ + ps—)dldgr

+ ps—)ﬂdzr + ps—)dldzr

That is, ps(dids, ) represents the probability that (Zs_q4,, Zs—d,, Zs—») equals one of
the following 5 vectors (1,x,%), (1,%,1), (1,1,1), (*,1,1), and (x,%,1). Note that
these 5 vectors are compatible to either d;dy or r or both. Another example of this
ps(+) notation is ps(dy, ds, ), which represents the probability that a packet sent by s

is received by at least one of the three nodes dy, ds, and r.

2.4 Chapter Summary

In this chapter, we formulate the model of the 1-to-K broadcast packet era-
sure channel in Section 2.1. In Section 2.2, we construct a wireless 3-node network
model including the encoding/decoding and scheduling descriptions, and the broad-

cast packet erasure channels with feedback. The corresponding Shannon capacity
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region is also defined in Section 2.2. Based on the feedback mechanism, two scenarios
are considered, and their comparison is described in Section 2.2.1. In Section 2.3,
we also construct a wireless 2-flow smart repeater network model including the LNC
encoding/decoding and scheduling descriptions, and the broadcast packet erasure
channels with feedback. The corresponding LNC capacity region is also defined in
Section 2.3. A useful probability notations for the broadcast packet erasure channels

are defined in Section 2.3.1.
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3. ACHIEVING THE SHANNON CAPACITY OF THE
3-NODE PACKET ERASURE NETWORK

In Section 2.2, we formulated the problem of the wireless 3-node packet erasure net-
work (PEN) with feedback, encoding/decoding descriptions, and scheduling decisions
between the three nodes {1,2,3}. In this chapter, we propose the corresponding
outer and inner bound. To that end, we will first provide the information-theoretic
capacity outer bound of the 3-node PEN based upon Scenario 1. We then propose the
capacity-achieving LNC scheme in Scenario 1 and the similar capacity-approaching
inner bound in Scenario 2. In Scenario 1, both outer and inner bound will be further
proven to be matched. Since both bounds are sufficient to describe the capacity, the
LNC outer bound description based on the Space-based Framework will be relegated
to Appendix A. The full details and arguments of the Space-based Framework can
be found in [59]. Finally, we will discuss some related works as special examples and

demonstrate the numerical results including the capacity region comparison.

3.1 The Shannon Capacity Outer Bound

Proposition 3.1.1. For any fized F,, a 9-dimensional R is achievable under' Sce-
nario 1 only if there exist 3 non-negative variables s for all i € {1,2,3} such that

jointly they satisfy the following three groups of linear conditions:

e Group 1, termed the time-sharing condition, has 1 inequality:

doosU< (3.1)

vie{1,2,3}

'Proposition 3.1.1 is naturally an outer bound for Scenario 2, see Section 2.2.1.
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e Group 2, termed the broadcast cut-set condition, has 3 inequalities: For all i €
{1’ 27 3}’
Rij+ R+ Ry, < s * Dis V- (3.2)

e Group 3, termed the 3-way multiple-access cut-set condition, has 3 inequalities: For

all i € {1,2,3},

Rj i+ Rjoki+ Rii + Ry < 59 pji + s prs

Pj—i Pr—i
- ( = Rj—>k + ;Rk—m’) .

Pj—kvi Pk—ivj

Proposition 3.1.1 considers arbitrary, possibly non-linear ways of designing the en-
coding/decoding and scheduling functions in (2.7), (2.8), and (2.9), and is derived by
entropy-based analysis. Proposition 3.1.1 can also be viewed as strict generalization
of the results of the simpler settings [48, 53].

The brief intuitions behind (3.1) to (3.3) are as follows. Each variable s®) counts
the expected frequency (normalized over the time budget n) that node 7 is scheduled
for successful transmissions. As a result, (3.1) holds naturally. (3.2) is a simple cut-
set condition for broadcasting from node ¢. One main contribution of this work is
the derivation of the new 3-way multiple-access outer bound in (3.3). The LHS of
(3.3) contains all the information destined for node i. The term s(j)pj_n + s®p_;
on the RHS of (3.3) is the amount of time slots that either node j or node k can
communicate with node i. As a result, it resembles a multiple-access cut condition
of a typical cut-set argument [60, Section 15.10]. What is special in our setting is
that, since node j may have some private-information for node k and vice versa,
sending those private-information has a penalty on the multiple access channel from
nodes {j, k} to node i. The last term on the RHS of (3.3) quantifies such penalty
that is inevitable regardless of what kind of coding schemes being used. The proof of
Proposition 3.1.1 and the detailed discussions are relegated to Section 3.4.

Remark: In addition to having a new penalty term on the RHS of (3.3), the 3-way

multiple-access cut-set condition (3.3) is surprising, not because that it upper bounds



29

the combined information-flow rate from nodes {j, k} entering node i but because
that, unlike the traditional multiple-access upper bounds, we do not need to upper
bound the individual rate from node j (resp. k) to node i.

More specifically, a traditional multi-access channel capacity result will also upper
bound the rate R;_,; + R;_; by considering the cut from node j to node ¢ (ignoring
node k completely). If we follow the above logic and write down naively the “cut

condition” from node j to i, then we will have

Risit+ Ry < 59 pyyy — 270 R (3.3)
Pj—kvi
where R;_,; + R;_; is the rate from nodes j to 1, 57 -Pj—i is the successful time slots,
and ﬁﬁ’j—m is the penalty term. One might expect that (3.3) is also a legitimate
outer bound if the naive cut condition arguments hold. It turns out that (3.3) is not
an outer bound and one can find some LNC solution that contradicts (3.3).

The reason why (3.3) is false is as follows. The W;_,; packets may not necessarily
go directly from node j to node ¢ and it is possible that node k can also help relay
those packets. As a result, how frequently node k is scheduled can also affect the
number of W_,; packets that one can hope to deliver from node j to node 7. Since
(3.3) does not involve s*), it does not consider the possibility of node k relaying the
packets for node j. In contrast, our outer bound (3.3) indeed captures such a subtle
but critical phenomenon by grouping all R;_.;, Ri—i, Rj—ki, Riij, Rjk, and Ry,
as a whole and upper bounds it with the (weighted) sum of scheduling frequencies of

nodes j and k.

3.2 A LNC Capacity Achieving Scheme

Scenario 2 requires the network to be fully-connected, which is defined as follows.
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Definition 3.2.1. In Scenario 2, we assume the 3-node PEN is fully-connected in
the sense that the given channel reception probabilities satisfy either p;—;, > 0 or

Min( Py —igs Pis—ip) > 0 for all distinct iy, 9,13 € {1,2,3}.

Namely, node i; must be able to communicate with node i, either through the di-
rect communication (i.e., p;, ., > 0) or through relaying (i.e., min(p;, s, Pis—si,) > 0).
Note that in Scenario 2, the control messages has to be sent through the regular
forward channel as well. The fully-connectedness assumption guarantees that feed-
back/control information can be sent successfully from one node to any other node,
either directly or through the help of another node.

We also need the following new math operator.

Definition 3.2.2. For any 2 non-negative values a and b, the operator nzmin{a, b},

standing for non-zero minimum, is defined as:

max(a,b) if min(a,b) =0,
nzmin{a, b} = @0) ¥ (@)

min(a,b) if min(a,b) # 0.

Intuitively, nzmin{a, b} is the minimum of the strictly positive entries.

Proposition 3.2.1. For any fivred ¥, a 9-dimensional R is LNC-achievable in Sce-
nario 2 if there exist 15 non-negative variables t;lu)] and {tﬁ) l] i, foralli e {1,2,3}
such that jointly they satisfy the following three groups of linear conditions:

e Group 1, termed the time-sharing condition, has 1 inequality:

@) L0 0 0
Dt ey Tty oy iy < 1 tre, (3.4)
vie{1,2,3}

where tgg is a constant defined as

trg = Z ’ (3.5)

vie{1,2,3} log,(q) - nzmin{pi—;, pisr}
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e Group 2 has 3 inequalities: For all (7,7, k) € {(1,2,3), (2,3,1),(3,1,2)},
Riyj+Risp+ Risji < tﬁ * DisjVk- (3.6)
e Group 3 has 6 inequalities: For all (7,7, k) € {(1,2,3), (2,3,1),(3,1,2)},

Pisj i i
(Risg + Risge) =2 < (80 4600 ) o pis + (60 4 60)) opiss (37)
Pi—jvk

Piik i i j j
(Ri—>k + Ri—>jk> ;jk < (tfc)l} + tfc)4]> *Pi—k + (tfg)g] + tfg)4}> *Pi—k- (38)
Pi—jvi ’ ’ ’ '

Proposition 3.2.2. Continue from Proposition 3.2.1, if we focus on Scenario 1 in-

stead, then the rate vector R is LNC-achievable if there exist 15 non-negative variables

t;’u)] and {t}gl/}?zl for alli € {1,2,3} such that (3.4), (3.6) to (3.8) hold while we set

trg = 0 in (5.5).

In short, the constant term t¢gg in (3.5) quantifies the overhead of sending the
ACK/NACK feedbacks through the forward erasure channel in Scenario 2 and can
be set to 0 in Scenario 1.

The sketch of the proof for Proposition 3.2.2 (Scenario 1) is provided in Sec-
tion 3.5 while the detailed construction for Proposition 3.2.1 (Scenario 2) is relegated
to Appendix B.

Since both the outer bound and the achievable regions can be computed by an LP
solver, one can numerically verify that for all possible channel parameters, the rate
regions of Propositions 3.1.1 and 3.2.2 of Scenario 1 always match. We can actually
prove this observation by analyzing the underlying linear algebraic structures of the

two LP problems.

Proposition 3.2.3. The outer bound in Proposition 3.1.1 and the closure of the
achievable region in Proposition 3.2.2 match for all possible channel parameters {p;_ i,
Pisjio Pisji - V(i,7,k)}. They thus describe the corresponding 9-dimensional Shannon

capacity region under Scenario 1.

The proof of Proposition 3.2.3 is relegated to Appendix C.
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From the above discussions, one can see that even for the more practical Scenario 2,
in which there is no dedicated feedback control channels, Proposition 3.2.1 is indeed
capacity-approaching when the 3-node PEN is fully-connected. The gap to the outer
bound is inversely proportional to log,(¢q) and diminishes to zero if the packet size
log,(q) (bits) is large enough. In real life, the actual payload of each packet is roughly
10* bits and the gap is thus negligible unless the reception probabilities p;_,; or p;_

is extremely small.

3.3 Comments On The Fully-Connected Assumption

We first consider Scenario 1, which does not require the fully-connected assump-
tion. It is possible that in Scenario 1, we have p;_, vy, = 0 for some (¢, j, k), which
implies that (3.7) and (3.8) being undefined. However, when p;_,;vx = 0, it is sim-
ply impossible to send any messages out of node 7. As a result, we can replace the
(undefined) (3.7) and (3.8) by a hard condition R, ,; = R, = Ri—,;x = 0. Proposi-
tion 3.2.3 still holds after such a simple revision.

We now consider Scenario 2. We note that Proposition 3.2.1 holds only when the
network is fully-connected. Actually, when the network is not fully-connected, the
denominator of (3.5) may be zero and (3.5) becomes undefined. When the network is
not fully-connected, it is an interesting open problem what the actual capacity region
is going to be. Specifically, the outer bound (Proposition 3.1.1) still holds even when
the network is not fully-connected. However, there are reasons to believe that the
outer bound is not tight anymore. For example, suppose p>_3y1 = 0, i.e., the PEC
from node 2 is completely erasure, there is no dedicated control channel, and any
feedback has to be sent through the forward channel, i.e., Scenario 2 but being not
fully-connected. In this example, node 2 is completely “in the dark”. Note that being
in the dark does not mean that we cannot send messages to node 2. For example,
we can use an MDS code to send messages from nodes 1 to node 2. When the MDS

code rate is slightly lower than the success probability p;_,», then node 2 can receive
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the correct messages with high probability without sending any ACK. However, when
node 2 is in the dark, neither node 1 nor node 3 can be made aware of the reception
status of node 2. Therefore, the classic network coding techniques in [48] do not apply
in this scenario. How to characterize the Shannon capacity region when some node is
in the dark is beyond the scope of this work and will be actively investigated in the
future.

Remark: The above “asymmetric” feedback scenario is theoretically interesting.
In practice, the PEC is usually used to model network communications, for which
ACK is often required for any transmission and also necessary for the purpose of
channel estimation. Therefore, if p, ,3,; = 0 and node 2 is in the dark, then nodes
1 and 3 will give up communicating to node 2 immediately due to the lack of any
ACK feedback. The aforementioned MDS code approach will not be used when node

2 cannot acknowledge the transmission in any way.

3.4 Sketch of The Proof of The Shannon Outer Bound

We now provide the sketch of the proof of Proposition 3.1.1. Given any reception
probabilities and any € > 0, consider a joint network coding and scheduling scheme
(2.7), (2.8), and (2.9) that can send 9 flows with rates R in n time slots with the
overall error probability no larger than e. Based on the given scheme, define s as

the normalized expected number of time slots for which node i is scheduled. That is,

i 1 -
S( ) A EE {Z l{o(t):i}} , (39)
t=1

where 17 is the indicator function. By the above definition, the computed scheduling

(2) 53} must satisfy the time-sharing condition (3.1).

frequencies {s™), s
We will now prove (3.2) and (3.3) of Proposition 3.1.1, respectively. To that end,

we assume that the logarithm of the mutual information and the entropy is of base
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q, the order of the underlying finite field IF,. For the case when the logarithm of the
entropy is base-2, we will distinguish it by using Hs(-).
The inequality (3.2) can be proven by proving the following two inequalities sep-

arately:

I(Wiss [Yag, Yarl? | Wiy [Z]7)

Hy(2
>n (Ri—>j + R + Ri—)jk — 2€ — ﬂ) , (32A)
nlog, q
(Wi [Yay, Yarl? | Wisikye [Z17) < 18Wpis june (3.2B)

Intuitively, (3.2A) follows from the Fano’s inequality and (3.2B) follows from a
simple cut condition. By choosing € — 0, we have proven (3.2). The detailed deriva-
tion of (3.2A) and (3.2B) are relegated to Appendix D.

We now prove (3.3) by proving the following two inequalities:

T(Wjisyes [Yal? | Wis, [Z]7)

Pj—i
> n(Rj_ﬂ- + Rii + Rjpi + Risij + LRJ’—%

Pj—kvi
: 3H.
+ 2 Ry —Ge— 2(¢) ) (3.3A)
Pk—ivj n 10g2 q
I(Wijpes Vel | Wi, [Z]7) < n(sYpjsi + 5% i) (3.3B)

Intuitively, (3.3B) follows a simple cut condition. By choosing ¢ — 0, we have
proven (3.3). The detailed derivation of (3.3A) and (3.3B) are relegated to Ap-
pendix D.

As discussed in Section 3.1, (3.3) is inspired by the multiple-access channel (MAC)
cut-set bound. When considering the MAC, one usually focuses on all incoming traffic
entering node ¢, i.e., R;_;, Rj_ i, Ry, and Ry_,;5, and thus might be interested in

quantifying /bounding the following mutual information term:

](Wj—n'a Wj—)kiawk—m Wk—)ij§ [Y*z]? | Wi*, Wj—)kawk—m'; [Z]?) (3-10)
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Unfortunately, (3.10) does not take into the fact that node j has some pri-
vate information that need to be delivered to node k (those W, packets) and
vice versa. Due to such an observation, we quantify the mutual information term
I(Wyjiys s [Yalt | Wi, [Z]7) instead of (3.10). Comparing I(W; ks [Yai]T | Wik, [Z]T)

and (3.10), we can use the chain rule to show that
(3.10) = I(Wyjikpe s [Yuill | Wins [Z]T) = I(W i, Wi 5 [Yaill [ Was, [Z]1),

and the difference I(W 5, Wi ; [Yul? | Wik, [Z]}) can be viewed as the amount of
the private information W,_,; and Wj_,; that has been “leaked” to the other node
i. In some broad sense, (3.3) (or equivalent (3.3A)) characterizes a new lower bound

on the information leakage

LW, Wil s [Vl [ Wi [Z]) > D20 Ryy + D20 R,

Pj—kvi Pk—ivj

This is why in our discussion right after Proposition 3.1.1 we referred to the term

Pj—i

R, + 2= Ry, as the penalty for sending those private-information. Note

Pj—kvi Pk—ivj

that similar information leakage arguments have been used in other channel models,

e.g., the wireless deterministic channels [61].

3.5 Sketch of The Correctness Proof

We only provide the so-called first-order analysis for the achievability of a LNC
solution.

We assume that all nodes know the channel reception probabilities, the total time
budget n, and the rate vector R they want to achieve in the beginning of time 0. As
a result, each node can compute the same 15 non-negative values tﬁ and {tfé) l]}f‘zl
for all ¢ € {1,2, 3} satisfying Proposition 3.2.2.

Our construction consists of 2 stages. Stage 1: Each node, say node ¢, has n(R;_,;+

R; .+ R, j;) unicast and multicast packets (i.e., W;,) that need to be sent to other
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nodes j and k. Assume that those packets are grouped together and indexed as | = 1
to n(Ri—; + Rix + Rijx). That is, the packet indices [ = 1 to nR;_,; correspond
to W,_,; packets, the packet indices | = nR;_,; + 1 to n(R,_; + R;_;) correspond to
W, packets, and so forth. Then in the beginning of time 1, node 1 chooses the first
packet (index 1) and repeatedly sends it uncodedly until at least one of nodes 2 and
3 receives it. Whether it is received or not can be known causally by network-wide
feedbacks Z(t—1). Then node 1 picks the next indexed packet and repeat the same
process until each of these n(R1_,+ R1_3+ R1_23) packets is heard by at least one of
nodes 2 and 3. By simple analysis, see [50], node 1 can finish the transmission in ntﬁ
slots since (3.6).2 We repeat this process for nodes 2 and 3, respectively.® Stage 1
can be finished in n(}_, tg) slots.

After Stage 1, the status of all packets is summarized as follows. Each of W,_,;
packets is heard by at least one of nodes 7 and k. Those that have already been

heard by node j, the intended destination, is delivered successfully and thus will not

be considered for future operations (Stage 2). We denote those W,_,; packets that are

o PGk
YT pisivie

overheard by node k only (not by node j) as w®

ij- In average, there are nR?

number of WZ(EZJ packets. Since the causal feedback is available to all network nodes
(not only node ), by letting all three nodes perform some simple bookkeeping, any

one of the three network nodes (not only node ) is aware of the indices of all the
(k)

WZ@] packets. We denote the corresponding index set by I7;. Symmetrically, we

also have nRHk:_H—?i number of WZ(J_)% packets that was intended for node k but was
’L*}J 7

overheard only by node j in Stage 1, and all three nodes can individually create the

corresponding index set ng
Similarly for the common-information packets W,_, ., each packet was heard by at

least one of nodes j and & in Stage 1. Those that have been heard by both nodes j and

2By the law of large numbers, we can ignore the randomness of the events and treat them as
deterministic when n is sufficiently large.

30nce node 1 has finished transmitting all its own packets Wi, node 2 can immediately take over and
start transmitting its own packets W, because node 2 knows the value of n(R1_2 + R1—3+ R123)
and from the instant, error-free, network-wide feedback, node 2 can count in the end of each time
slot how many packets node 1 finished transmission. By the same reason, node 3 can immediately
take over after node 2 has finished.
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k, is delivered successfully and thus will not be considered in Stage 2. We similarly

denote those W,_,;, packets that are heard by node k only (not by node j) as w®

i—jk"

pl*}jk

— number of w® i~jr backets. Symmetrically, we
—jVk

In average, there are nRHQk
also have ”Rz—mk p’””c number of WY i jx Packets that were heard only by node j in
—JjV

Stage 1. The correspondmg index sets are denoted by | x and v respectively,

Z—>] i—jk>

and they can be individually created by all three nodes through simple bookkeeping.

In sum, all three nodes individually know all 12 index sets {Iﬁi], Iz(i ik IZ o IZ(L ik

V(i,7,k)} after Stage 1. In addition, each node i knows the content of its own packets
W, Wz’—m, and W,_, i, and the content of what it has received from other nodes

w@  w@ W W

ik hos during Stage 1.

j—ki k—nj)

Stage 2 is the LNC phase, in which each node ¢ will send a linear combination of
the overheard packets. That is, for each time ¢, node i sends a linear combination
X;i(t) = [VT/] + Wk] with 4 possible ways of choosing the the constituent packets V~V]

and W, which are detailed as follows.

c,1]: W;ewW® uw® and W,ew?, uwY

i—7j z—)]k i—jk>
c,2]: W;eW) UW,. and W,e W, UWY,

c,3]: W,ew™. uw““) and WkGW]LkUW(Z)

i—J i—jk j—ki>
W (%)

To explain the intuition behind the 4 coding choices [c, 1] to [c, 4], we observe that
choice [c, 1] is the standard LNC operation for the 2-receiver broadcast channels [47]
since node ¢ sends a linear sum that benefits both nodes j and k simultaneously, i.e.,
the sum of two packets, each overheard by an undesired receiver. Choice [c, 2] is the
standard LNC operation for the 2-way relay channels, since node i, as a relay for
the 2-way traffic from 7 — k and from k — j, respectively, mixes the packets from
two opposite directions and sends their linear sum. Choices [c, 3] and [c, 4] are the
new “hybrid” cases that are proposed in this work, for which we can mix part of

the broadcast traffic and part of the 2-way traffic. We argue that transmitting such
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a linear mixture again benefits both nodes simultaneously. For example, suppose
that coding choice [c, 3] is used, and the linear sum [W; + Wj] is received by node
j. Since W, is a function of all packets originated from node j, node j can compute
Wy by itself and then subtract it from the linear sum and derive the desired packet

W— Similarly, if node k receives the linear sum, since it has overheard all packets

1nW() UW()

=] i—jk?

it can subtract V~V] and decode its desired Wj. The argument for
coding choice [c, 4] is symmetric.

We now explain in details how to implement the above 4 coding choices for each
of the time slots in Stage 2. The best way to explain the implementation is to
temporarily view the overheard packets as being stored in a big queue. Namely, in
the beginning of Stage 2, all the packets in WZ ;U w
Similarly, all the packets in WEJ L uwY W

i—jk> k—)]

» are put into a big queue.

and W(_% uw

j—ki

Z—)]

uwW

kesijo are

put into 3 big queues as well, one queue for each set of packets respectively. Then
coding choice [c, 1] means that node i takes the head-of-line packet from the queue

of W¥ ywh

i ijr» and combines it with the head-of-line packet from the queue of

W(J )kUW( Coding choices [c, 2] to [c, 4] can be interpreted similarly by combining

i—jk"

the head-of-line packets from different queues.

Since each node i has 4 possible coding choices, we perform coding choice [c, [] for

exactly ntg) 1 times sequentially for [=1 to 4. After sending the 4 coding choices for

a combined total of n(tg)l] + tfé)z} + tfé)?)] +tf2)4}) time slots for node i, we set 1 =i +1

and repeat the same process until all three nodes have finished transmission. Totally,

Stage 2 takes Zi€{172’3} n(tf ) T tfé)z] + tfgg] + tf§?4}) time slots. We now describe how

to manage the “queues” within each node during transmission.

Suppose that node i is performing the coding choice |c, 1] and chooses two head-

of-line packets W; & wH uw® p and Wy € W U w)

iyj i from the individual

i—jk
queues, respectively. If the linear combination [VV] + Wk] is received by node j, then
node 7 will decode the desired Wj by subtracting the overheard packet Wy. As a
result, we remove the successfully delivered packet Wj from its queue. Similarly,

if the combination [Wj + W] is received by node k, then node k can decode the
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desired packet Wj and we remove Wy from the corresponding queue. If any one of

the two queues is empty, say the queue corresponding to w® . uwh

1—J i—jk

is empty
during coding choice [c, 1], then we simply set Wj = (0. Namely, in such a degenerate
case we choose to send an uncoded packet [0 + W;] instead of a linear combination
[V~V] + Wk] If both queues are empty, then we simply send a 0 packet. The same
queue management is applied to coding choices [c, 2] to [c, 4] as well.

Note that the above process requires very detailed bookkeeping at each node.
Namely, both nodes j and k needs to know the indices of the head-of-line packet
Wj and W, while node 7 is executing Stage 2. So that they can know which of the
overheard packets it needs to subtract from the linear combination [Wj + Wk] when
received. This is possible since in the beginning of Stage 2, each node knows all 12
index sets: {IH], Zﬁjk,lfj_))k,Igjk : (i, 4, k)}. Since the reception status [Z]}™" is
available to all nodes for free, through detailed bookkeeping, each node (not only
node ¢ but also nodes j and k) can successfully trace the status of the queues when
node i is executing Stage 2. In this way each node maintains a synchronized view of
the queue status of the other nodes and can thus know the indices of the head-of-line
packets that constitute the linear combination.

Another important point worth emphasizing is that the queues cannot be replen-
ished during Stage 2. Namely, if a packet is removed from the queue in one coding
operation, then it will be removed from the synchronized queues at all three nodes
and will not participate in any future coding operations. For example, the packets
in WZ ;U W( i Will participate in coding choice [c, 1] of node 7, but they can also
participate in coding choice [c, 3] of node i, and coding choices [c, 2] and [c, 3] of node
k. If a packet in Wl(i] W( ik 18 successfully delivered through coding choice [c, 1]
of node 7, then it will be removed from the queue and will not participate in any
subsequent coding choices |c, 3] of node i, and coding choices [c, 2] and [c, 3] of node k
in the future time slots. Again, this LNC design is possible since each node maintains
a synchronized view of the queue status of the other nodes with the help of the causal

feedback [Z]i*
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(DK R1-23

Ri3

(a) A 1-to-2 PEC (b) PEC w. receiver coordination

Ri3 g Rz Ri3 Ra_y1

(¢) A Two-way relay PEC (d) A Two-way relay PEC
w. opportunistic routing

Fig. 3.1. Special examples of the 3-node Packet Erasure Network (PEN) considered
in this work. The rectangle implies the broadcast packet erasure channel.

Since WZ@] U szk participates in coding choices [c, 1] and [c, 3] of node i and
k
)

coding choices [c,2] and [c, 3] of node k, (3.7) guarantees that the queue of W
wt)

i—jk

al W yw k)

i—] i—J

will be empty in the end of Stage 2, which means that we can finish sending
 backets and they will all successfully arrive at node j, the intended
destination.? Symmetrically, (3.8) guarantees that the queue of WZ(J_)% uwd i will

11—

be empty, which means that we can finish sending all Wz(j—)ﬂc U Wl(j_z ;i backets to their
intended destination node k in the end of Stage 2. Finally, (3.4) guarantees that we
can finish Stages 1 and 2 in the allotted n time slots. The sketch of the proof is

complete.

3.6 Special Examples and Numerical Evaluation

In the following, we apply Propositions 3.1.1 and 3.2.2 to the four special exam-
ples. We also numerically evaluate the 9-dimensional capacity region for some specific

channel parameter values.

4Those Wm

ik Packets are the common-information packets that are intended for both nodes j and

k. However, since our definition of Wl(iz ji counts only those that have already been received by

node k, we say herein their new intended destination is node j as instead.
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The considered 3-node PEN contains many important practical and theoretically
interesting scenarios as sub-cases. Example 1: If we set the broadcast PECs of
nodes 2 and 3 to be always erasure (i.e., neither nodes can transmit anything), then
Fig. 2.1(b) collapses to Fig. 3.1(a), the 2-receiver broadcast PEC scenario. The ca-
pacity region (R1_, R1_3, R1_,03) derived in our Scenario 1 is identical to the existing
results in [47,55]. Example 2: Instead of setting the PECs of nodes 2 and 3 to all
erasure, we set Ry .1, Ro 3, R3 1, R3_o, Ra.31, R3_,12 to be zeros. Namely, we still
allow nodes 2 and 3 to transmit but there is no information message emanating from
nodes 2 and 3. In this case, node 2 can potentially be a relay that helps forwarding
those node-1 packets destined for node 3 and node 3 can be a relay for flow 1—2, see
Fig. 3.1(b). This work then characterizes the Shannon capacity®(R; 2, R1_3, R1523)
of a broadcast PEC with receiver coordination.

Example 3: If we set Ry, Ro1, Ro3, R3n, Ri03, Ro.31, R3.,1o to be
zeros and prohibit any direct communication between nodes 1 and 3, Fig. 2.1(b)
now collapses to Fig. 3.1(c), in which node 2 is a two-way relay for unicast flows
1—3 and 3— 1. The results in this work thus characterizes the Shannon capacity
region (Rj_,3, R3-1) of this two-way relay network Fig. 3.1(c), which is identical to
the existing result in [23]. Example 4: If we additionally allow direct communication
between nodes 1 and 3, Fig. 2.1(b) now collapses to Fig. 3.1(d). Namely, when node 1
is sending packets to the relay node 2, the packets might be overheard directly by the
destination node 3. If indeed node 3 overhears the communication, then node 1 could
inform node 2 opportunistically that there is no need to forward that packet to node 3
anymore. Such a scheme is called opportunistic routing and testbed implementation
[8] has shown that opportunistic routing can potentially improve the throughput
by 20x. The results in this work thus characterize the Shannon capacity region
(R1_3, R3_,1) of Fig. 3.1(d), which allows for the possibility of both opportunistic
routing and two-way-relay coding. The Shannon capacity region computed by this

work again matches the existing result in [35].

°In [43], the LNC capacity of Fig. 3.1(b) was characterized, but the most general Shannon capacity
region was unknown in [43].
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3.6.1 Example 1: The Simplest 1-to-2 Broadcast PEC

Consider the simplest setting of a 1-to-2 broadcast PEC with 2 private-information
flows of rates R;_,, and R;_3, and 1 common-information flow of rate Rj_3. See
Fig. 3.1(a) for illustration. In this scenario, we assume that only node 1 can transmit
and nodes 2 and 3 can only listen and send ACK/NACK feedback after each packet
transmission. This simple 1-to-2 broadcast PEC can be viewed as a special example
of the general problem by setting p,_3v1 = p3_1v2 = 0, and by hardwiring the un-
used rates {Ry_.1, Roy3, R3,1, R3_s2} and {Rp_y31, R3412} to zeros. One can thus use
Proposition 3.1.1 to compute the 3-dimensional capacity region (R1_», R1_3, R123)
of the 1-to-2 broadcast PEC. More explicitly, by setting s(Y) =1 and s® = s® =0,
(3.3) with ¢ = 2 leads to the following (3.11) and (3.3) with ¢ = 3 leads to the following
(3.12):

p
Rio+ Ri03 < p1oyo — 12 Ry3, (3.11)
P1-2v3
P13
Ri3+ Ri03 < prosys — Ry, (3.12)
P1-2v3

As expected, the capacity region (R, R13, R1_23) described by (3.11) and
(3.12) is identical to the existing 1-to-2 broadcast PEC capacity results in [47].

3.6.2 Example 2: 1-to-2 Broadcast PEC With Receiver Coordination

Another special example is the 1-to-2 broadcast PEC with receiver coordination,
see Fig. 3.1(b). In this scenario, node 1 still likes to communicate and send 3 flows
to nodes 2 and 3 with rates (Ri_», R13, R123). However, we allow nodes 2 and 3
to communicate with each other with the constraint that whenever node 2 (or node
3) transmits, node 1 has to remain silent. The communication between nodes 2 and
3 can be used either to relay some overheard packets to the intended destination, or

to send carefully designed coded packets that can further enhance the throughput.
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Similar to the previous example, such a scenario is a special case of the general
problem by setting p, .1 = p31 = 0, and by hardwiring {R,_,1, Ro—3, R31, R3_50}
and {Ry_31, R3 12} to zeros. We can again use Proposition 3.1.1 to compute the
capacity region (Ry_2, R13, R1_23) of the 1-to-2 broadcast PEC with receiver coor-

dination:

> o<, (3.13)

Vie{1,2,3}

Ry + Riz 4+ Ris < s - pious, (3.14)

Ry + Riso3 + P12 Riy3 <5® pyyn+sWp (3.15)
P1-2v3

Ri3+ Ri03 + P1zs Ry <sWop 3452 -pys, (3.16)
DP1—2v3

where (3.13) follows from (3.1); (3.14) follows from (3.2); and (3.15) and (3.16) follow
from (3.3).

Compared to the existing work [43], our results have characterized the more gen-
eral Shannon capacity region instead of linear capacity region while also considering

the possibility of co-existing common-information rate R;_.»3.

3.6.3 Example 3: Two-way Relay PEC

Another example is the two-way relay PEC as described in Fig. 3.1(c). Namely,
nodes 1 and 3 want to communicate with each other with rates (R;_,3, R3_,1), respec-
tively. The communication must be achieved via a relaying node 2. Such a scenario is

a special case of the general problem by simply hardwiring { Ry >, Ro_,1, Ro_y3, R3 2}
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and {Ry_23, Ra—31, R3 12} to zeros. We can again use Proposition 3.1.1 to compute

the capacity region (R;_3, R3.,1):

dos<, (3.17)

Vie{1,2,3}
Ri3 < sWpi, Rs 1 < 5% ps o, (3.18)
Ri_3 < 5P pos, Rs 1 < 5% py iy, (3.19)

where (3.17) and (3.18) follow from (3.1) and (3.2), respectively, and (3.19) follows
from (3.3). One can easily verify that the capacity region described by (3.17) to (3.19)

matches the existing results in [23].

3.6.4 Example 4: Two-way Relay PEC with Opportunistic Routing

For the same setting as in Example 3 but allowing the direct communications
between node 1 and node 3, see Fig. 3.1(d), we can also use Proposition 3.1.1 to
compute the two-way relay PEC capacity region (Rj_3, R3_,1) with opportunistic

routing:

> osh<, (3.20)

vie{1,2,3}

Riss < sWpiiovs, Rt < s®pssive, (3.21)
Rz < sWpis + 5@ pass, (3.22)
Ry 1 < 5Wpoy +5¥ps . (3.23)

One can verify that the capacity region described by (3.20) to (3.23) matches the

existing results in [35].
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Fig. 3.2. Comparison of the capacity region with different achievable rates

3.6.5 Numerical Evaluation

Consider a 3-node network with marginal channel success probabilities p;_,», =
0.35, p1.3 = 0.8, pas1 = 0.6, pa3 = 0.5, p3y1 = 0.3, and p3_,» = 0.75, respectively,
and we assume that all the erasure events are independent. That is, p; vk = 1 —(1—
Pi—;)(1 — pisk). To illustrate the 9-dimensional capacity region, we further assume
that the following 3 flows are of the same rate Ry ., = Ry .3 = R;_,»3 = R, and the
other 6 flows are of rate Ro_y; = Roy3 = R351 = R3.50 = Ro_y31 = R3,10 = R.
We will use Proposition 3.1.1 to find the largest R, and R; value for this example
scenario.

Fig. 3.2 compares the Shannon capacity region of (R,, R;) with different achiev-
ability schemes. The smallest rate region is achieved by simply performing uncoded
direct transmission. The second achievability scheme combines the broadcast chan-
nel LNC in [47] with time-sharing among all three nodes. The third scheme performs
two-way relay channel (TWRC) coding in node 1 for those 3 — 2 and 2 — 3 flows
while allowing node 2 to relay the node 1’s packets destined for node 3 and vice versa.
The fourth scheme is derived from our achievability scheme in the proof of Proposi-
tion 3.2.2 except when we impose the restriction that the scheme can only use LNC

choices that were known previously. Namely, we allow all three nodes to perform
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the broadcast-based LNC and/or TWRC-based LNC operations (coding choices [c, 1]
and [c, 2] in Stage 2) but not the hybrid operations (coding choices [c, 3] and [c, 4])
proposed in this work. One can see that the result is strictly suboptimal. It shows
that the proposed hybrid operations are critical for achieving the Shannon capacity in
Propositions 3.1.1 and 3.2.2. The detailed rate region description of each sub-optimal
achievability scheme is described in Appendix E.

3.7 Chapter Summary

In this chapter, we discuss the capacity region of the 3-node network formulated
in Section 2.2. In Sections 3.1 and 3.2, we propose the Shannon capacity outer bound
and the simple LNC achievability scheme, respectively. In Section 3.3, we discuss the
fully-connected assumption for Scenario 1 and Scenario 2, and identify some possible
future work. In Section 3.4, we provide the proof sketch of the Shannon outer bound,
where the full detailed derivations is relegated to Appendix D. In Section 3.5, we
also provide the sketch of the correctness proof of our achievability scheme based on
the first-order analysis. The full detailed proof invoking the law of large numbers can
be found in Appendix B. In Section 3.6.5, we discuss the special examples of the 3-
node network and use the numerical results to demonstrate that the proposed simple
but capacity-achieving LNC scheme strictly outperforms existing results. The Space-
based Framework and the LNC capacity region descriptions of the 3-node packet

erasure network can also be found in Appendix A.
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4. APPROACHING THE LNC CAPACITY OF THE
SMART REPEATER PACKET ERASURE NETWORK

In Section 2.3, we formulated the problem of the wireless 2-flow smart repeater packet
erasure network with feedback, linear encoding/decoding, and scheduling between the
source s and the relay r. In this chapter, we investigate the LNC capacity region
(R1, Ry) of the smart repeater network. The outer bound is proposed by leveraging
upon the algebraic structure of the underlying LNC problem. For the achievability
scheme, we show that the classic butterfly-style is far from optimality and propose new
LNC operations that lead to close-to-optimal performance. By numerical simulations,
we demonstrate that the proposed outer/inner bounds are very close, thus effectively

bracketing the LNC capacity of the smart repeater problem.

4.1 LNC Capacity Outer Bound

Recall that, since the coding vector ¢; has n(R; + Ry) number of coordinates,
there are exponentially many ways of jointly designing the scheduling () and the
coding vector choices ¢; over time when sufficiently large n and F, are used. There-
fore, we will first simplify the aforementioned design choices by comparing c; to the
knowledge spaces Sp,(t — 1), h € {dy,ds,7}. Such a simplification allows us to derive
Proposition 4.1.1, which uses a linear programming (LP) solver to exhaustively search
over the entire coding and scheduling choices and thus computes an LNC capacity
outer bound. An LNC capacity inner bound will later be derived in Section 4.2 by

proposing an elegant LNC solution and analyze its performance.
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To that end, we use Sy as shorthand for Si(t — 1), the destination dj knowledge

space in the end of time t—1. We first define the following 7 linear subspaces of €.

At 2 S, Ay(t) £ Sy,
As(t) 2 8, @ Q, Ay(t) & Sy ® o,

As(1) £ 510 S B, Ar(t) £.5 @S B Dy,

where A® B £ span{v : v € AUB} is the sum space of any A, B C €. In addition to
those seven subspaces A;(t), 1 = 1,---,7, we also define the following eight additional

subspaces involving S,(t — 1):

Aig:() 2 A)® S, foralli=1,---,7, (4.5)
Aps(t) £ 5, (4.6)

where S, is a shorthand notation for S,(t — 1), the knowledge space of relay r in the
end of time t—1.

In total, there are 7+ 8 = 15 linear subspaces of {2. We then partition the overall
message space {2 into 2'° disjoint subsets by the Venn diagram generated by these 15
subspaces. That is, for any given coding vector c;, we can place it in exactly one of
the 215 disjoint subsets by testing whether it belongs to which A-subspaces. This is
always true regardless of the time index t, i.e., any coding vector c¢; transmitted by
either source or relay always lies in one of the 2'° disjoint subsets while the regions
of disjoint subsets may change over the course of time. In the following discussion,
we often drop the input argument “(¢)” when the time instant of interest is clear in

the context.
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We now use 15 bits to represent each disjoint subset of the overall message space

Q). For any 15-bit string b = b1bs - - - b5, we define “the coding type-b” by

TYPEY 2 ( N Al) \( U Al). (4.7)
I:b=1 1:b,=0

The superscript “(s)” indicates that source s can send c¢; from any of these 2'° types
since source s knows all W; and W, packets to begin with. Note that not all 2!
disjoint subsets are feasible. For example, any TYPEI()S ) with b; = 1 but byy = 0
is always empty because any coding vector that lies in A; = S; @ Sy @ €2y cannot
lie outside the larger Ajy = S1 @ So @ S, @ (s, see (4.4) and (4.5), respectively.
We say those always empty subsets are infeasible coding types and the rest is called
feasible coding types (FTs). By exhaustive computer search, we can prove that out of
215=132768 subsets, only 154 of them are feasible. Namely, the entire coding space Q
can be viewed as a union of 154 disjoint coding types. Source s can choose a coding
vector ¢; from one of these 154 types. See (2.12).

For coding vectors that relay r can choose, we can further reduce the number
of possible placements of c; in the following way. By (2.16), we know that when
o(t) = r, the ¢; sent by relay must belong to its knowledge space S,(t — 1). Hence,
such ¢; must always lie in S,.(t — 1), which is Ay5(t), see (4.6). As a result, any coding

vector c; sent by relay r must lie in those 154 subsets FTs that satisfy:
TYPE!) 2 {TYPEY” : b € FTs such that b5 = 1}. (4.8)

Again by computer search, there are 18 such coding types out of 154 subsets FTs. We
call those 18 subsets as relay’s feasible coding types (rFTs). Obviously, rFTs C FTs.
See Appendix G for the enumeration of those FTs and rFTs.

We can then derive the following upper bound.

Proposition 4.1.1. A rate vector (Ry, Rs) is in the LNC capacity region only if there

exists 154 non-negative variables :)3,(;) for all b € sFTs, 18 non-negative variables xﬁ“)
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for all b € rFTs, and 14 non-negative y-variables, y, to yi4, such that jointly they
satisfy the following three groups of linear conditions:

e Group 1, termed the time-sharing condition, has 1 inequality:

( > x§’> +< > x,(;”)) <1. (4.9)

VbesFTs VberFTs



e Group 2, termed the rank-conversion conditions, has 14 equalities:

Ys =

Ys =

Yr =

Ys =

Y10 =

Y11 =

Y12 =

Y13 =

Y14 =

be ps +

VbesFTs s.t. b1=0

Z S(Il()s)'ps(dg) +

VbesFTs s.t. bo=0

be -ps(d +

VbesFTs s.t. b3=0

Z:):b “ps(da) | +

VbesFTs s.t. by=0

Z xb ps dla d?) +

VbesFTs s.t. b5=0

Z xb ps dla d?) +

VbesFTs s.t. bg=0

Z IL”b -ps(dy, da) | +

VbesFTs s.t. by=0

Z xb " Ps dl,T>>,

VbesFTs s.t. bg=0

Z xb pr

Y ay)p(d)

VberFTs s.t. b1=0

VberFTs s.t. bo=0

Z mb pr

VberFTs s.t. b3=0

Z xb pr

VberFTs s.t. by=0

Z fg)'Pr(dl,d2)

VberFTs s.t. bs=0

Z xb *Pr dladQ)

VberFTs s.t. bg=

Z $b *Pr d1,d2)

VberFTs s.t. by=

< Z mb " Ps d27

VbesFTs s.t. bg=0

Z $1(j)'ps(d1,7")> + Ry,

VbesFTs s.t. b1p=0

Z 371(38) - ps(da, 7")) + Ry,

VbesFTs s.t. b11=0

Z xl(j)'ps(dlad%r)

VbesFTs s.t. bi2=0

Z x](:)'ps(dlad%r)

VbesFTs s.t. bi3=0

Z x](:)'ps(dlad%r)

VbesFTs s.t. b14=0

+R17

+R27

+ Ry,

+R27

+R17

+R27

)

o1

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)
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e Group 3, termed the decodability conditions, has 5 equalities:

Y =Ys, Y2 ="Y4, Ys=Y11, Y9 = Y11, (4-23)

Ys = Y6 = Y7 = Y12 = Y13 = Yuu = (R + Ra). (4.24)

The intuition is as follows. Consider any achievable (R, Ry) and the associated
LNC scheme. In the beginning of any time ¢, we can compute the knowledge spaces
Si(t—1), Se(t—1), and S,.(t—1) by (2.15) and use them to compute the A-subspaces
in (4.1)—(4.6). Then suppose that for time ¢, the given scheme chooses source s
to transmit a coding vector c;. By the previous discussions, we can classify which
TYPE,(OS ) this c; belongs to, by comparing it to those 15 A-subspaces. After run-
ning the given scheme from time 1 to n, we can thus compute the variable xf ) 2
%E [Z?:l 1 (e eTYPE{j)}] for each TYPEI()S ) as the frequency of scheduling source s with
the chosen c; happening to be in TYPEI()S ), Similarly for TYPEg ), we can compute the
variable xg) = %E [Z?zl 1 {cieTYPED)} for each TYPE,(DT) as the frequency of schedul-
ing relay r with the chosen c; happening to be in TYPE,(DT). Obviously, the computed
{xl(os ), :cl(:)} satisfy the time-sharing inequality (4.9). We then compute the y-variables
by

= %E [rank(4;(n))], VI € {1,2,---,14}, (4.25)

as normalized expected ranks of A-subspaces in the end of time n. We now claim
that these variables satisfy (4.10) to (4.24). This claim implies that for any LNC-
achievable (Ry, Ry), there exists xl()s ), :cl(:), and y-variables satisfying Proposition 4.1.1,
which means that Proposition 4.1.1 constitutes an outer bound on the LNC capacity.

To prove that (4.10) to (4.22) are true,! consider an A-subspace, say As(t) =
Si(t—1) @ = RSy, (t —1) ® Qy as defined in (4.2) and (2.15). In the beginning of

IFor rigorous proofs, we need to invoke the law of large numbers and take care of the e-error
probability. For ease of discussion, the corresponding technical details are omitted when discussing
the intuition of Proposition 4.1.1.
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time 1, destination d; has not received any packet yet, i.e., RSz (0) = {0}. Thus the
rank of A3(1) is rank(2y) = nR;.

The fact that Sy (t—1) contributes to As(t) implies that rank(A3(¢)) will increase by
one whenever destination d; receives a packet ¢, W T satisfying ¢, & A3(t). Whenever
source s sends a ¢; in TYPES ) with b3 = 0, such c; is not in As(t). Whenever
destination d; receives it, rank(As(t)) increases by 1. Moreover, whenever relay r
sends a c; in TYPEI()T) with b3 = 0 and destination d; receives it, rank(As(t)) also

increases by 1. Therefore, in the end of time n, we have

n

rank(A3 (n)) = Z l{sourco s sends CtGTYPE‘(j) with bg:O,}

t=1 and destination dj receives it
n
i3 . (4.26)
{relay r sends c;€TYPEy ’ with b3:0,}
t=1 and destination dj receives it

+ rank(A3(0)).

Taking the normalized expectation of (4.26), we have proven (4.12). By similar rank-
conversion arguments, (4.10) to (4.22) can be shown to be true.

In the end of time n, since both destination d; and dy can decode the desired
packets Wi and W, respectively, we thus have Si(n) O Q; and Sy(n) 2 s, or
equivalently Si(n) = Sk(n) @ Qy for all k& € {1,2}. This implies that the ranks of
Ai(n) and Az(n), and the ranks of As(n) and Ay4(n) are equal, respectively. Together
with (4.25), we thus have the first two equalities in (4.23). Similarly, one can prove
that the remaining equalities in (4.23) and (4.24) are satisfied as well. The claim is

thus proven.

4.2 LNC Capacity Inner Bound

In the smart repeater problem of our interest, if the r-PEC is weaker than the
s-PEC, then there is no need to do relaying since we can simply let s take over relay’s

operations. We thus assume
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Definition 4.2.1. The smart repeater network with two destinations {dy, ds} is strong-

relaying if

i.e., the given r-PEC is stronger than the given s-PEC for all non-empty subsets of

destinations.
We now describe our capacity-approaching achievability scheme.
Proposition 4.2.1. A rate vector (Ry, Ry) is LNC-achievable if there exist 2 non-

negative variables ts and t,., (6 X 2 + 8) non-negative s-variables:

ko ok k kb Lk
{s6c: sbuns Sbwias sher sbxo sox @ for allk € {1,2}},

{SCX;I (lzla T 8)}7
and (3 x 2+ 3) non-negative r-variables:

such that jointly they satisfy the following five groups of linear conditions:
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e Group 1, termed the time-sharing conditions, has 3 inequalities:

8
ts = Z(SBC+SII2M1+S]I3M2+S]I§C+S]BX+S(D]2> + Z Scxils (4.28)
ke{1,2} =1
tr = Z (TBC + 157 + TI@I’) +TRC + I'xT + Tex- (4.29)
ke{1,2}

e Group 2, termed the packets-originating condition, has 2 inequalities: Consider any
i,7 € {1,2} satisfying i # j. For each (i,7) pair (out of the two choices (1,2) and

(2,1)),
Ri > (36(: + Sf::Ml) : ps(dia djv T)a (E>

e Group 3, termed the packets-mizing condition, has 4 inequalities: For each (i, j)

pair,

(stc + sbwi) Pomsdidyr = (shuy + Shwa) * ps(diy di) + riyc - pr(di, dy), (A)

SIZ'DMl : ps—)d_ide > S:?C ’ ps(div dj? T>v (B>
and the following one inequality:

oy Ps(d1, dor) + Spy - Ds(da, dir) + Spyp-ps(dids) +

spwz-Ps(d1da) + (Ske+Ske) Posarazr = TRe-Pr(d, da). (M)
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e Group 4, termed the classic XOR condition by source only, has 4 inequalities: For

each (i, ) pair,

(Sbc + SiRc) Ps—diar = (SI]3M2 + Sli) “ps(di,T) +
(Scx;1 + SCX;1+i> ) ps(di7 7”) + Scx;a4i 'ps(di, 7’)7 (S)
She * Pasiiar = Sbx - Pa(din 1) + 1y - po(diy d) +

(Scxi14s + Scxia) = Ps(diy 7) + Scxi64i - Ps(diy 7). (T)

e Group 5, termed the XOR condition, has 3 inequalities:
4
Z SCXil * Psdrdyr = TxT * Pr(dy, da), (X0)

=1

and for each (i, j) pair,

4
Spmz Ps(didy, dir) + (56c+3iRc+3]Rc+ZSCX5l> Ps—did;r
=1

+ (SCX;4+i + Scx6+i T Sli + Sg() - ps(dir)
+ <7"6C + Trc + TI(DZ')I' + TXT) . pT’—>CTidj

> (SCX;7—i + Scx;g—z’) 'ps(di) + (Tcx‘i‘ 7’&) 'pr(di>- (X)

e Group 6, termed the decodability condition, has 2 inequalities: For each (i, j) pair,

8

(ste + sbua + D ke + D scxa + sbx + bk ) - oldi) +
ke{1,2} =1
(Tﬁc +TRC + I'x + Tex + TI(DQI' + TI[;]T> pr(di) > R, (D)

The intuition is as follows. The proposed LNC inner bound is derived based on the
ideas of describing the packet movements in a queueing network, where movements
are governed by LNC operations. Each variable (except t-variables for time-sharing)

in Proposition 4.2.1 is associated with a specific LNC operation. Note that s-variables
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are associated with LNC operations performed by the source s, while r-variables are
associated with LNC operations performed by the relay r. The inequalities (E) to (D)
then describe the queueing process for packet movements, where the LHS and the RHS
of each inequality implies the packet insertion and removal conditions, respectively, of
the corresponding queue by the related LNC operations. For notational convenience,

we define the following queue notations associated with these 14 inequalities (E) to

(D):

Table 4.1: Queue denominations for the inequalities (E) to (D)

(B1): QL | (BL): QUi | (SD: @y | (X0): Qi
(E2): Q% | (B2): Qg | (TL): Qi | (XD): Qi
(A1): Qfy | (M): Qui | (82): Q3 | (X2): QP
(A2): Q2 (T2): Qi | (PL): Qlec

(D2): Q.

where we use the index-after-reference to distinguish the session (i.e., flow) of focus
of an inequality. For example, (E1) and (E2) are to denote the inequality (E) when
(1,7) = (1,2) and (4,7) = (2, 1), respectively.

For example, suppose that Wy = (X1, -+, X,,g, ) packets and Wy = (Y7, -+ | Yyg,)
packets are initially stored in queues Qé and Qi, respectively, at source s. The super-
script k € {1, 2} indicates that the queue is for the packets intended to destination dy.
The subscript indicates that those packets have not been heard by any of {d;, ds, r}.
The LNC operation corresponding to the variable s{c (resp. s{c) is to send a session-
1 packet X; (resp. a session-2 packet Y;) uncodedly. Then the inequality (E1) (resp.
(E2)) implies that whenever it is received by at least one of {dy, ds, 7}, this packet is
removed from the queue of Q, (resp. Q7).

Depending on the reception status, the packet will be either remained in the same
queue or moved to another queue. For example, the use of s{c (sending X; € W,
uncodedly from source) will take X; from Q) and insert it into Q.. when the reception
status is ps(d;), i.e., when the intended destination d; correctly receives it. Similarly,

when the reception status is p, 7., this packet will be inserted to the queue Q{lr}
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according to the packet movement rule of (A1l); inserted to Q{ldz} when p,_ 7, - by
(S1); and inserted to Q{[Tlc]lg} when p,_ ;... by (X1). Obviously when p, 7, since
any node in {dy, dy, 7} has not received at all, the packet X; simply remains in Qé.
Fig. 4.1 illustrates the queueing network represented by Proposition 4.2.1. The
detailed descriptions of the proposed LNC operations and the corresponding packet
movement process following the inequalities in Proposition 4.2.1 are relegated to Ap-

pendix H.1.

4.2.1 The Properties of Queues and The Correctness Proof

Each queue in the queueing network, see Fig. 4.1, is carefully designed to store
packets in a specific format such that the queue itself can represent a certain case to
be beneficial. In this subsection, we highlight the properties of the queues, which will
be later used to prove the correctness of our achievability scheme of Proposition 4.2.1.

To that end, we first describe the properties of Qf, Qe Q{lr}, and Q{ldz} since
their purpose is clear in the sense that the queue collects pure session-1 packets
(indicated by the superscript), but heard only by the nodes (in the subscript {-}) or
correctly decoded by the desired destination d; (by the subscript dec). After that, we
describe the property of Qmix, and then explain Q{Zﬁ o Q{(dlz)ﬁ‘l{r}, and Q{[:C]lz} focusing
on the queues related to the session-1 packets. For example, Q{Z‘ﬁ ) implies the queue
related to a session-1 packet that is mixed with a session-2 packet, where such mixture
is known by ds but the session-2 packet is known by r as well. The properties of the

. . mi1 2)[2
queues related to the session-2 packets, i.e., Q3, Qi Q{i}, Q{2d1}> Qy d1‘}| e Q{(dl)}‘l oy and

Q{[fc]ll}’ will be symmetrically explained by simultaneously swapping (a) session-1 and
session-2 in the superscript; (b) X and Y; (¢) ¢ and j; and (d) d; and ds, if applicable.
The property of Qgcx will be followed at last.

To help aid the explanations, we also define for each node in {d, ds, r}, the recep-
tion list RLyq,1, RL{a,y, and RLy,, respectively, that records how the received packet is

constituted. The reception list is a binary matrix of its column size fixed to n(R;+ R»)



m|1
Qi

i

w

NG W w” T S N

Fig. 4.1. Hlustrations of The Queueing Network described by the inequalities (E) to
(D) in Proposition 4.2.1. The upper-side-open rectangle represents the queue, and
the circle represents LNC encoding operation, where the blue means the encoding
by the source s and the red means the encoding by the relay r. The black outgoing
arrows from a LNC operation (or from a set of LNC operations grouped by a curly
brace) represent the packet movements process depending on the reception status,
where the southwest and southeast dashed arrows are especially for into Q.. and
into Q3.., respectively.
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but its row size being the number of received packets and thus variable (increasing)
over the course of total time slots. For example, suppose that d; has received a pure
session-1 packet X7, a self-mixture [X; + X5|, and a cross-mixture [X3 + Y7]. Then

Rl—{dl} will be

nﬁl n—R2

1

O ==
oo

such that the first row vector represents the pure X; received, the second row vector
represents the mixture [X; + X5] received, and the third row vector represents the
mixture [ X3+ Y7] received, all in a binary format. Namely, whenever a node receives
a packet, whether such packet is pure or not, a new n(R; + Rs)-dimensional row
vector is inserted into the reception list by marking the corresponding entries of X;
or Y; as flagged (“1”) or not flagged (“0”) accordingly. From the previous example,
(X1 + Xy] in the reception list RL{q,} means that the list contains a n(R; + Rs)-
dimensional row vector of exactly {1,1,0,---,0}. We then say that a pure packet
is not flagged in the reception list, if the column of the corresponding entry contains
all zeros. From the previous example, the pure session-2 packet Y5 is not flagged in
RL{4,}, meaning that d; has neither received Y5 nor any mixture involving this Y5.

4

Note that “not flagged” is a stronger definition than “unknown”. From the previous
example, the pure session-1 packet X3 is unknown to d; but still flagged in RLyg4,; as
d; has received the mixture [X3+ Y;] involving this X3. Another example is the pure
X5 that is flagged in RLy4,y but d; knows this X as it can use the received X; and the
mixture [X; + X3 to extract X,. We sometimes abuse the reception list notation to
denote the collective reception list by RLy for some non-empty subset 7' C {dy, ds, 7}.
For example, RLyg4, 4,3 implies the vertical concatenation of all RLg4y, RLyg,), and
RLgy.
We now describe the properties of the queues.

° Qé): Every packet in this queue is of a pure session-1 and unknown to any of

{dy,dy, 7}, even not flagged in RLq, 4, ). Initially, this queue contains all the session-1

packets Wy, and will be empty in the end.
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e Q..: Every packet in this queue is of a pure session-1 and known to d;. Initially,
this queue is empty but will contain all the session-1 packets Wy in the end.

° Q{lr}: Every packet in this queue is of a pure session-1 and known by r but
unknown to any of {dy, dy}, even not flagged in RLyg, 4,3

° Q{ldz}: Every packet in this queue is of a pure session-1 and known by dy but
unknown to any of {d,r}, even not flagged in RLq, .

® Omix:  Every packet in this queue is of a linear sum [X; + Y;] from a session-1
packet X; and a session-2 packet Y; such that at least one of the following conditions

hold:

(a) [X;+ Y]] is in RlLgq,y; X, is unknown to di; and Yj is known by r but unknown
to dg.

(b) [X; 4+ Y]] is in RL{g,y; X; is known by r but unknown to dy; and Y; is unknown
to dg.

The detailed clarifications are as follows. For a NC designer, one important considera-
tion is to generate as many “all-happy” scenarios as possible in an efficient manner so
that single transmission benefits both destination simultaneously. One famous exam-
ple is the classic XOR operation that a sender transmits a linear sum [X; + Y;] when
a session-1 packet X; is not yet delivered to d; but overheard by ds and a session-2
packet Y; is not yet delivered to dy but overheard by d;. Namely, the source s can
perform such classic butterfly-style operation of sending the linear mixture [X; + Yj]
whenever such pair of X; and Y is available. Similarly, Qmix represents such an
“all-happy” scenario that the relay r can benefit both destinations simultaneously by
sending either X; or Y;. For example, suppose that the source s has transmitted a
packet mixture [X; + Y;] and it is received by ds only. And assume that r already
knows the individual X; and Y; but X, is unknown to dy, see Fig. 4.2(a). This example
scenario falls into the second condition of Q)n,ix above. Then sending X; from the relay
r simultaneously enables d; to receive the desired X; and ds to decode the desired Y

by subtracting the received X; from the known [X; +Y}]. Qmix collects such all-happy
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mixtures [X; + Y;] that has been received by either d; or dy or both. In the same
scenario, however, notice that r cannot benefit both destinations simultaneously, if r
sends Yj, instead of X;. As a result, we use the notation [X; + Y;]: W to denote the
specific packet W (known by r) that  can send to benefit both destinations. In this
second condition scenario of Fig. 4.2(a), Qmix is storing [X; + Yj]: X;.

° QEZ}Q‘ e Every packet in this queue is of a linear sum [X; + Y;] from a session-
1 packet X; and a session-2 packet Y; such that they jointly satisfy the following

conditions simultaneously.
(a) [X;+ Y]] is in RLg,.
(b) X; is unknown to any of {d,ds,}, even not flagged in RLq, .
(c) Yj is known by r but unknown to any of {di,ds}, even not flagged in RLyq,y.

The scenario is the same as in Fig. 4.2(a) when r not having X;. In this scenario,
we have observed that r cannot benefit both destinations by sending the known Y.
Q@ﬁ g collects such unpromising [X; + Y] mixtures.

° Q{(dlz)ﬁ‘l{r}: Every packet in this queue is of a pure session-2 packet Y; such that there
exists a pure session-1 packet X; that Y; is information equivalent to, and they jointly

satisfy the following conditions simultaneously.
(a) [X;+ Y] isin RLgg,.
(b) X; is known by r but unknown to any of {d;, ds}.

(c) Y;is known by dy (i.e. already in Q%) but unknown to any of {dy,r}, even not

flagged in RLy,}.

The concrete explanations are as follows. The main purpose of this queue is basically
the same as Q{ldﬂ, i.e., to store session-1 packet overheard by dsy, so as to be used
by the source s for the classic XOR operation with the session-2 counterparts (e.g.,
any packet in Q{le}). Notice that any X, € Q{ldz} is unknown to r and thus r cannot

generate the corresponding linear mixture with the counterpart. However, because
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X (X, +Yi]
Yi
1|1

(b) Scenario for Y; € Q{(dz}|{7’}
It must be }/z € Qgec

(d) Case 2: EGQELQ}

It must be Y; € Q3.
(Wi +W;] Wf

@w

(e) Case 3: [W;+Wj] GQ{[:C]@ (f) Scenario for [W;+ W] EQ{r}CX

Fig. 4.2. Tlustrations of Scenarios of the Queues.

X, is unknown to the relay, r cannot even naively deliver X; to the desired destination
di. On the other hand, the queue Qf;2)}|‘l{r} here not only allows s to perform the classic
XOR operation but also admits naive delivery from r. To that end, consider the
scenario in Fig. 4.2(b). Here, d; has received a linear sum [X; + Y;]. Whenever d;
receives Y; (session-2 packet), d; can use Y; and the known [X; + Y;] to decode the
desired X;. This Y; is also known by dy (i.e., already in Q3_.), meaning that Y; is no
more different than a session-1 packet overheard by ds but not yet delivered to d;.
Namely, such Y; can be treated as information equivalent to X;. That is, using this
session-2 packet Y; for the sake of session-1 does not incur any information duplicity
because Y; is already received by the desired destination dy.?2 For shorthand, we

denote such Y; as Y; = X;. As a result, the source s can use this Y; as for session-1

2This means that dy does not require Y; any more, and thus s or r can freely use this Y; in the
network to represent not-yet-decoded X; instead.
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when performing the classic XOR operation with a session-2 counterpart. Moreover,
r also knows the pure X; and thus relay can perform naive delivery for d; as well.
° Q}:ﬂl2}: Every packet in this queue is of either a pure or a mized packet W satisfying

the following conditions simultaneously.

(a) W is known by both r and dy but unknown to d;.

(b) d; can extract a desired session-1 packet when W is further received.

Specifically, there are three possible cases based on how the packet W € Q{[:C]lz} is

constituted:

Case 1: W is a pure session-1 packet X;. That is, X; is known by both r and d, but
unknown to d; as in Fig. 4.2(c). Obviously, d; acquires this new X; when it is

further delivered to d;.

Case 2: W is a pure session-2 packet Y; € Q%.. That is, Y; is already received by
ds and known by 7 as well but unknown to d;. For such Y;, as similar to the
discussions of Q{(dlz)ﬁ‘l{r}, there exists a session-1 packet X; still unknown to d;
where X; = Y;, and their mixture [X; + Y;] is in RLygy, see Fig. 4.2(d). One

can easily see that when d; further receives this Y;, d; can use the received Y;

and the known [X; 4+ Y;] to decode the desired X;.

Case 3: W is a mixed packet of the form [W; + W,] where W; and W; are pure but
generic that can be either a session-1 or a session-2 packet. That is, the linear
sum [W; + W;] is known by both 7 and dy but unknown to dy. In this case,
W; is still unknown to d; but W; is already received by d; so that whenever
[(W; + W] is delivered to dy, W; can further be decoded. See Fig. 4.2(e) for
details. Specifically, there are two possible subcases depending on whether W;

is of a pure session-1 or of a pure session-2:

— W; is a session-1 packet X;. As discussed above, X; is unknown to d;
and it is obvious that d; can decode the desired X; whenever [W; + W] is
delivered to d;.
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— W, is a session-2 packet Y; €Q3... In this subcase, there exists a session-1
packet X; (other than W; in the above Case 3 discussions) still unknown
to dy where X; =Y. Moreover, [X; 4+ Y] is already in RL{q,;. As a result,
d; can decode the desired X; whenever [W; + W;] is delivered to d;.

The concrete explanations are as follows. The main purpose of this queue is basically
the same as Q{(LJQ)# I but the queue Q{%Q} here allows not only the source s but also the
relay r to perform the classic XOR operation. As elaborated above, we have three
possible cases depending on the form of the packet W € Q{%Q}. Specifically, either a
pure session-1 packet X; QL. (Case 1) or a pure session-2 packet Y;€Q3 . (Case 2)
or a mixture [W; + W;] (Case 3) will be used when either s or r performs the classic
XOR operation with a session-2 counterpart. For example, suppose that we have a
packet X € Q[ﬂh} (Case 2) as a session-2 counterpart. Symmetrically following the
Case 2 scenario of Q{%Q} in Fig. 4.2(d), we know that X has been received by both
r and d;. There also exists a session-2 packet Y still unknown to dy where Y = X,

of which their mixture [X 4 Y] is already in RLg,}. For this session-2 counterpart

X, consider any packet W in Q[lglz}. Obviously, the relay r knows both W and X

r

by assumption. As a result, either s or r can send their linear sum [W + X] as per
the classic pairwise XOR operation. Since d; already knows X by assumption, such
mixture [W + X|], when received by d;, can be used to decode W and further decode
a desired session-1 packet as discussed above. Moreover, if dy receives [W + X], then
dy can use the known W to extract X and further decode the desired Y since [X + Y]
is already in RLg4,) by assumption.

° Q{ﬁcxz Every packet in this queue is of a linear sum [W; + W;| that satisfies the

following conditions simultaneously.
(a) [WZ + W]] is in RL{T}
(b) W; is known by dy but unknown to any of {dy,r}.

(c) W; is known by dy but unknown to any of {ds,r}.
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where W; and W; are pure but generic that can be either a session-1 or a session-2
packet. Specifically, there are four possible cases based on the types of W; and W;
packets:

Case 1: W; is a pure session-1 packet X; and W; is a pure session-2 packet Y.

Case 2: W, is a pure session-1 packet X; and W; is a pure session-1 packet X; € Q...
For the latter X; packet, as similar to the discussions of Q&)ﬁ Iee there also exists
a pure session-2 packet Y; still unknown to dy where Y; = X; and their mixture
[X; + Y]] is already in Rlyg,;. As a result, later when dy decodes this X;, d,
can use X; and the known [X; + Y}] to decode the desired Y;.

Case 3: W, is a pure session-2 packet Y; € Q3.. and W; is a pure session-2 packet
Y;. For the former Y; packet, there also exists a pure session-1 packet X; still
unknown to dy where X; =Y and [X; + Y]] is already in RLyg4,y. As a result,
later when d; decodes this Y;, d; can use Y; and the known [X; + Y;] to decode
the desired X;.

Case 3: W, is a pure session-2 packet Y; € Q3. and W, is a pure session-1 packet
X; € Qlec. For the former Y; and the latter X; packets, the discussions follow

the Case 3 and Case 2 above, respectively.

The concrete explanations are as follows. This queue represents the “all-happy”
scenario as similar to the butterfly-style operation by the relay r, i.e., sending a
linear mixture [W; + W;] using W; heard by dy and W heard by d;. Originally, r
must have known both individuals packets W; and W, to generate their linear sum.
However, the sender in fact does not need to know both individuals to perform this
classic XOR operation. The sender can still do the same operation even though it
knows the linear sum [W; +W;] only. This possibility only applies to the relay r as all
the messages including both individual packets are originated from the source s. As a
result, this queue represents such scenario that the relay r only knows the linear sum

instead of individuals, as in Fig. 4.2(f). More precisely, Cases 1 to 4 happen when
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Fig. 4.3. Comparison of LNC regions with different achievable rates

the source s performed one of four classic XOR operations scx;1 to scx;4, respectively,
and the corresponding linear sum is received only by r, see Appendix H.1 for details.

Based on the properties of queues, we now describe the correctness of Propo-
sition 4.2.1, our LNC inner bound. To that end, we first investigate all the LNC
operations involved in Proposition 4.2.1 and prove the “Queue Invariance”, i.e., the
queue properties explained above remains invariant regardless of an LNC operation
chosen. Such long and tedious investigations are relegated to Appendix H.1. Then,
the decodability condition (D), jointly with the Queue Invariance, imply that Q. and
Q3. will contain at least nR; and nRy number of pure session-1 and pure session-2
packets, respectively, in the end. This further means that, given a rate vector (Ry, Rs),
any t-, s-, and r-variables that satisfy the inequalities (E) to (D) in Proposition 4.2.1
will be achievable. The correctness proof of Proposition 4.2.1 is thus complete.

For readability, we also describe for each queue, the associated LNC operations

that moves packet into and takes packets out of, see the following Table 4.2.

4.3 Numerical Evaluation

Consider a smart repeater network with marginal channel success probabilities: (a)

s-PEC: py(dy) = 0.15, ps(ds) = 0.25, and ps(r) = 0.8; and (b) m-PEC: p,(dy) = 0.75
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and p,(dy) = 0.85. And we assume that all the erasure events are independent. We
will use the results in Propositions 4.1.1 and 4.2.1 to find the largest (R, Ry) value
for this example scenario.

Fig. 4.3 compares the LNC capacity outer bound (Proposition 4.1.1) and the LNC
inner bound (Proposition 4.2.1) with different achievability schemes. The smallest
rate region is achieved by simply performing uncoded direct transmission without
using the relay r. The second achievability scheme is the 2-receiver broadcast channel
LNC from the source s in [47] while still not exploiting r at all. The third and fourth
schemes always use r for any packet delivery. Namely, both schemes do not allow
2-hop delivery from s. Then r in the third scheme uses pure routing while r performs
the 2-user broadcast channel LNC in the fourth scheme. The fifth scheme performs
the time-shared transmission between s and r, while allowing only intra-flow network
coding. The sixth scheme is derived from using only the classic butterfly-style LNCs
corresponding to scxy (I=1,--+,8), reyx, and ry. That is, we do not allow s to
perform fancy operations such as sy, SEyos Sk, and rre. One can see that the
result is strictly suboptimal.

In sum, one can see that our proposed LNC inner bound closely approaches the
LNC capacity outer bound in all angles. This shows that the newly-identified LNC
operations other than the classic butterfly-style LNCs are critical in approaching the
LNC capacity. The detailed rate region description of each sub-optimal achievability
scheme can be found in Appendix I.

Fig. 4.4 examines the relative gaps between the outer and inner bounds by choos-
ing the channel parameters ps(-) and p,.(-) uniformly randomly while obeying the
strong-relaying condition in Definition 4.2.1. For any chosen parameter instance, we
use a linear programming solver to find the largest sum rate Ry of the LNC outer
and inner bounds of Propositions 4.1.1 and 4.2.1, which are denoted by Rsum.outer
and Rsym.inner, respectively. We then compute the relative gap per each experiment,
(Rsum.outer — Rsum.inner)/ Rsum.outer, and then repeat the experiment 10000 times, and

plot the cumulative distribution function (cdf) in unit of percentage. We can see that
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Fig. 4.4. The cumulative distribution of the relative gap between the outer and inner
bounds.

with more than 85% of the experiments, the relative gap between the outer and inner

bound is smaller than 0.08%.

4.4 Chapter Summary

In this chapter, we discuss the LNC capacity region of the smart repeater net-
work formulated in Section 2.3. In Sections 4.1 and 4.2, we propose the LNC outer
bound and the capacity-approaching LNC scheme with newly identified LNC op-
erations other than the previously well-known classic butterfly-style operations. In
Section 4.2.1, we provide the correctness proof of our LNC achievability scheme based
on the invariance property of the queueing network analysis. In Section 4.3, we use
the numerical results to describe the LNC capacity region, and demonstrate that the

proposed LNC achievability scheme is close-to-optimal.
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5. PRECODING-BASED FRAMEWORK FOR WIRELINE
DIRECTED ACYCLIC NETWORK

In this chapter, we present and define the Precoding-based Framework. As discussed
in Section 1.2, the LNC characterization problem in Wireline Networks is closely
related to an underlying network topology and its corresponding algebraic solution.
Thus we first start by defining some necessary graph-theoretic notations. The al-
gebraic formulation of the proposed Precoding-based framework and its comparison
to the classic LNC framework will follow in the subsequent sections. Based on our
new framework, we will explain the recent wireless applications, 2-unicast Linear
Deterministic Interference Channel (LDIC) [25,26] and 3-unicast Asymptotic Net-
work Alignment (ANA) [40,41]. The motivation and contributions of our work for
the second application, the 3-unicast ANA scheme, is further discussed. Finally, the
main results of this chapter, i.e., the fundamental properties of the Precoding-based

Framework, will follow in the subsequent section.

5.1 Graph-Theoretic Definitions

Consider a Directed Acyclic Integer-Capacity network (DAG) G=(V, E') where V/
is the set of nodes and F is the set of directed edges. Each edge e € F is represented
by e =wuv, where u=tail(e) and v =head(e) are the tail and head of e, respectively.
For any node v € V', we use In(v) C E to denote the collection of its incoming edges
wv € E. Similarly, Out(v) C E' contains all the outgoing edges vw € E.

A path P is a series of adjacent edges ejes -+ e where head(e;) = tail(e;1) Vi€
{1, ~, k—1}. We say that e; and e, are the starting and ending edges of P, respectively.
For any path P, we use e € P to indicate that an edge e is used by P. For a given

path P, zPy denotes the path segment of P from node x to node y. A path starting
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from node x and ending at node y is sometimes denoted by F,,. By slightly abusing
the notation, we sometimes substitute the nodes = and y by the edges e; and ey and
use e;Pey to denote the path segment from tail(e;) to head(es) along P. Similarly,
P.,., denotes a path from tail(e;) to head(ez). We say a node u is an upstream node
of a node v (or v is a downstream node of u) if u#v and there exists a path P, , and
we denote it as u < v. If neither u <v nor u > v, then we say that v and v are not
reachable from each other. Similarly, e; is an upstream edge of e, if head(e;) < tail(eg)
(where < means either head(e;)=< tail(ez) or head(e;)=tail(ez)), and we denote it by
e; < eo. Two distinct edges e; and ey are not reachable from each other, if neither
e1 < ey nor ey = eg. Given any edge set Ej, we say an edge e is one of the most
upstream edges in E; if (i) e € Ey; and (ii) e is not reachable from any other edge
¢’ € Ei\e. One can easily see that the most upstream edge may not be unique. The
collection of the most upstream edges of F; is denoted by upstr(E;). A k-edge cut
(sometimes just the “edge cut”) separating node sets U CV and W CV is a collection
of k edges such that any path from any v €U to any w €W must use at least one of
those k edges. The value of an edge cut is the number of edges in the cut. (A k-edge
cut has value k.) We denote the minimum value among all the edge cuts separating
U and W as EC(U;W). By definition, we have EC(U; W) =0 when U and W are
already disconnected. By convention, if U NW=(), we define EC(U; W) =00. We also
denote the collection of all distinct 1-edge cuts separating U and W as lcut(U; W).

5.2 Algebraic Formulation of The Precoding-based Framework

Given a network G=(V, F), consider the multiple-unicast problem in which there
are K coexisting source-destination pairs (sg,dy), k=1,---, K. Let [, denote the

number of information symbols that s, wants to transmit to dj. Each information

!Since an arbitrary multi-session communication requirement can be equivalently converted to the
corresponding multiple-unicast traffic demands, we formulate the Precoding-based Framework based
on multiple unicasts without loss of generality.
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symbol is chosen independently and uniformly from a finite field F, with some suffi-
ciently large q.

Following the widely-used instantaneous transmission model for DAGs [3], we
assume that each edge is capable of transmitting one symbol in F, in one time slot
without delay. We consider linear network coding over the entire network, i.e., a
symbol on an edge e € F is a linear combination of the symbols on its adjacent
incoming edges In(tail(e)). The coefficients (also known as the network variables)
used for such linear combinations are termed local encoding kernels. The collection
of all local kernels z.» €F, for all adjacent edge pairs (¢, €”) is denoted by x ={zcer
(¢/,e") € E? where head(e') =tail(¢”)}. See [3] for detailed discussion. Following this
notation, the channel gain me,..,(x) from an edge e; to an edge ey can be written as

a polynomial with respect to x. More rigorously, m.,..,(x) can be rewritten as

mel;ez(z) = Z H Tele?

VPeieq€Pe iy \ V€, €"E€P, ., where head(e’)=tail”)

where P, ., denotes the collection of all distinct paths from e; to e;.

By convention [3], we set m.,.,(x) =1 when e; = ey and set me,.,(x) =0 when
e1# ey and ey is not a downstream edge of e;. The channel gain from a node u to a
node v is defined by an [In(v)|x|Out(u)| polynomial matrix M,,.,(x), where its (7, j)-th
entry is the (edge-to-edge) channel gain from the j-th outgoing edge of u to the i-th
incoming edge of v. When considering source s; and destination d;, we use M, ;(x)
as shorthand for M, (x).

We allow the Precoding-based framework to code across 7 number of time slots,
which are termed the precoding frame and 7 is the frame size. The network variables
used in time slot ¢ is denoted as x®, and the corresponding channel gain from s; to
d; becomes M, (x?) forallt =1, 7.

I, x1

With these settings, let z, € ;""" be the set of to-be-sent information symbols

from s;. Then, for every time slot t=1,--- 7, we can define the precoding matrix
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Out(s;)|xI,
V F' (4 for each source s;. Given the precoding matrices, each d; receives an

lIn(d;)|-dimensional column vector yj() at time t:

K
yj(t) (x%) = M;,; (X(t))VJ@ Zj+ Z M, =) V2,

3 7

=1
i#]

where we use the input argument “(x®%)” to emphasize that M, ; and yj(t) are functions
of the network variables x®.

This system model can be equivalently expressed as

<|

(5.1)

&<
| |

K
z'a:éj

where V; is the overall precoding matrix for each source s; by vertically concatenating
{V-(t)}[_l, and y; is the vertical concatenation of {y© (x®)}7_,. The overall channel
matrix Mj,; is a block-diagonal polynomial matrix with {M, ;(x%)}7_, as its diagonal
blocks. Note that M, is a polynomial matrix with respect to the network variables
{xO},.

After receiving packets for 7 time slots, each destination d; applies the overall

L x(r-|In(d;)])

decoding matrix U; € F,’ Then, the decoded message vector z; can be

expressed as

<1|

= Uy, (5.2)

‘<!|

K
~UM,,V,7,+ 5 UM
=

The combined effects of precoding, channel, and decoding from s; to d; is EM, jV,-,
which is termed the network transfer matriz from s; to d;. We say that the Precoding-
based NC problem is feasible if there exists a pair of precoding and decoding matrices

{V;,Vi} and {U;,Vj} (which may be a function of {x®}7_,) such that when choos-
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ing each element of the collection of network variables {x®}7_, independently and

uniformly randomly from F,, with high probability,

Satisfying the Demands: U;M,,;V; =1 (the identity matrix) Vi = j,

i Vi
(5.3)
iVi

Interference-Free: UM, ;V, =0 Vi #j.

Remark 1: One can easily check by the cut-set bound that a necessary con-
dition for the feasibility of a Precoding-based NC problem is for the frame size
7 >maxg{l,/EC(sk; di)}.

Remark 2: Depending on the time relationship of V; and U; with respect to the
network variables {x®}7_, a Precoding-based NC solution can be classified as causal
vs. non-causal and time-varying vs. time-invariant schemes.

For convenience to the reader, we have summarized in Table 5.1 several key defi-

nitions used in the Precoding-based Framework.

5.2.1 Comparison to The Classic Algebraic Framework

The authors in [3] established the algebraic framework for linear network coding,
which admits similar encoding and decoding equations as in (5.1) and (5.2) and the
same algebraic feasibility equations as in (5.3). This original work focuses on a single
time slot 7=1 while the corresponding results can be easily generalized for 7>1 as
well. Note that 7> 1 provides a greater degree of freedom when designing the coding
matrices {V;,Vi} and {U;,V j}. Such time extension turns out to be especially critical
in a Precoding-based NC design as it is generally much harder (sometimes impossible)
to design {V;,Vi} and {U;,Vj} when 7=1. An example of this time extension will
be discussed in Section 5.2.3.

The main difference between the Precoding-based framework and the classic frame-
work is that the latter allows the NC designer to control the network variables x while
the former assumes that the entries of x are chosen independently and uniformly ran-

domly. One can thus view the Precoding-based NC as a distributed version of classic
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Table 5.1: Key definitions of the Precoding-based Framework

Notations for the Precoding-based Framework

K The number of coexisting unicast sessions
l The number of information symbols sent from s; to d;
X The network variables / local encoding kernels

The channel gain from an edge e; to an edge es, which is a poly-
nomial with respect to x

The channel gain matrix from a node u to a node v where its
M,,., (3) (i,7)-th entry is the channel gain from j-th outgoing edge of u to
i-th incoming edge of v

T The precoding frame size (number of time slot)
K(t) The network variables corresponding to time slot ¢
V-(t) The precoding matrix for s; at time slot ¢

The channel gain matrix from s; to d; at time slot ¢, shorthand

Mi;j (X(t)) for Msi;d (E(t))

J

Uj@ The decoding matrix for d; at time slot ¢
V. The overall precoding matrix for s; for the entire precoding frame
v t=1,---,T.
M. The overall channel gain matrix from s; to d; for the entire pre-
%I coding frame t =1,--- 7.
ﬁj The overall decoding matrix for d; for the entire precoding frame
t=1,---,T.

NC schemes that trades off the ultimate achievable performance for more practical
distributed implementation (not controlling the behavior in the interior of the net-
work).

One challenge when using algebraic feasibility equations (5.3) is that given a net-
work code, it is easy to verify whether or not (5.3) is satisfied, but it is difficult to
decide whether there exists a NC solution satisfying (5.3), see [3,38]. Only in some
special scenarios can we convert those algebraic feasibility equations into some graph-
theoretic conditions for which one can decide the existence of a feasible network code
in polynomial time. For example, if there exists only a single session (s1,d;) in the
network, then the existence of a NC solution satisfying (5.3) is equivalent to the time-
averaged rate [ /7 being no larger than EC(sy;d;). Moreover, if (I;/7) <EC(sy;d4),
then we can use random linear network coding [6] to construct the optimal network

code. Another example is when there are only two sessions (s1,d;) and (s2,d2) with
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ly =1y =7 =1. Then, the existence of a network code satisfying (5.3) is equiva-
lent to the conditions that the 1-edge cuts in the network are properly placed in
certain ways [24]. Except the scenarios taken as examples above, however, the alge-
braic conditions of many other scenarios are not interpreted as the graph-theoretic
arguments. Note that checking the algebraic conditions can be computationally in-
tractable. Motivated by the above observation, the main focus of this thesis is to
develop a fundamental graph-theoretic properties of the Precoding-based NC, which
can be utilized in characterizing the Precoding-based solutions. For the following sub-
sections, we will introduce two special instances of the Precoding-based framework
and present their corresponding algebraic conditions. We will demonstrate why such

fundamental connection from the algebraic to the graph-theoretic is in need.

5.2.2 A Special Scenario : The 2-unicast Linear Deterministic Interfer-

ence Channel (LDIC)

We now consider a special class of networks, called the 2-unicast LDIC network:
A network G is a 2-unicast LDIC network if (i) there are 2 source-destination pairs,
(siyd;),i=1,2, where all source/destination nodes are distinct; (ii) |In(s;)| =0 and
|Out(s;)| > 1 Vi; (iii) |In(d;)| > 1 and |[Out(d;)| =0 Vj; and (iv) d; can be reached
from s; for all (7, 7) pairs (including those with i=7j). We use the notation Gaorpic to
emphasize that we are focusing on this 2-unicast LDIC network.

The authors in [25] derived the capacity of the wireless two-user MIMO deter-
ministic Interference Channel and applied this result to the above 2-unicast LDIC
network. An independent work [26] has been done on the same 2-unicast LDIC net-
work using the similar precoding and decoding techniques used in [25]. We present
the result of [25] since it is a superset.

Let the rates (Rq, R») to be (2, 2) and set 7 = 1. Since 7 = 1, we do not consider
the time-extension of the Precoding-based framework and thus the overall channel

matrix M, from s; to d; simply reduces to M, ;(x), where x is the collection of
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variables in the given Goppic of interest. The authors in [25] proves the following

result.

Proposition 5.2.1 (page 7, [25]). For a sufficiently large finite field F,, the 2-unicast
LDIC scheme achieves the rate tuple (Ry, Ry) with close-to-one probability if the fol-

lowing conditions are satisfied:

ot
N

Ry < EC(sy;dy),

(

Rg S EC(SQ, dg)
(
(

~~ o~ o~
(@)
(@)

—_  — =

Ry + Ry < EC({s1, s2};d1) + EC(s2; {d1, d2}) — EC(s2; d1), 5.6
Ry + Ry < EC({s1,82};d2) + EC(s1;{d1,d2}) — EC(51;d3), 57
Ry + Ry <rank 11 (%) My(x) + rank 2.1(X) My,(x)

My () 0 0 M, ,(x) (5.8)

— EC(s1;d2) — EC(s9;d4),

2R1 + R2 S EC({Sl, 82}; dl) + EC(Sl, {dl, dg})
(M, (x) M, (x) (5.9)
rank [ Mo &) MaoG) N e e,

0 M1;2(K)_

Rl + 2R2 S EC({Sl, 82}; d2) + EC(SQ, {dl, dg})

-Mm(z) Mm(z)_ (5.10)
M

+ rank — EC(s1;d2) — EC(s2;dy),
2;1(3) 0

where rank(A) denote the rank of a given matriz A.

We are not going to explain the network code construction to achieve a spe-
cific rates satisfying the above conditions (5.4) to (5.10).2 But note that, given a
Gorpic, the characterization problem of the corresponding 2-unicast LDIC scheme
depends on some end-to-end edge-cut values and the ranks of two matrices of dimen-

sion (|In(s1)| + [In(s2)]) x (|Out(dy)| + |Out(dz)|), which appear in (5.8) to (5.10).

2The construction is based on the precoding and decoding at both ends using SVD technique, while
choosing the network variables x independently and uniformly randomly. See [25] for details.
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Since the network variables are chosen independently and uniformly randomly,
these ranks will have some fixed values with close-to-one probability given a network.
And such ranks needs to be of full-rank to be operated in the maximum possible
throughput. Since the edge-cut values (5.4) to (5.10) constitutes the capacity outer
bounds in a given network, knowing when these channel polynomial matrices become
full-rank or not will be of importance in revealing its relation to the currently-open
arbitrary 2-unicast LNC capacity and in achieving the largest throughput in this
2-unicast LDIC application. Therefore, knowing the close relationship of these alge-
braic conditions to some graph-theoretic conditions is critical in multi-session LNC

characterizations.

5.2.3 A Special Scenario : The 3-unicast Asymptotic Network Alignment
(ANA)

Before proceeding, we introduce some algebraic definitions. We say that a set of
polynomials h(x) = {h(x), ..., hy(x)} is linearly dependent if and only if Z]kvzlak
hi(x) = 0 for some coefficients {a}Y_; that are not all zeros. By treating h(x®)
as a polynomial row vector and vertically concatenating them together, we have an
MxN polynomial matrix [h(x®)]M . We call this polynomial matrix a row-invariant
matrix since each row is based on the same set of polynomials h(x) but with different
variables x® for each row k, respectively. We say that the row-invariant polynomial
matrix [h(x®)]M | is generated from h(x). For two polynomials g(x) and h(x), we
say g(x) and h(x) are equivalent, denoted by g(x)=h(x), if g(x)= ¢+ h(x) for some
non-zero ¢ € F,. If not, we say that g(x) and h(x) are not equivalent, denoted by
g(x)Z h(x). We use GCD( g(x),h(x)) to denote the greatest common factor of the
two polynomials.

We now consider a special class of networks, called the 3-unicast ANA network:

A network G is a 3-unicast ANA network if (i) there are 3 source-destination pairs,

(siyd;),i=1,2,3, where all source/destination nodes are distinct; (ii) |In(s;)| =0 and
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|Out(s;)|=1 Vi (We denote the only outgoing edge of s; as es,, termed the s;-source
edge.); (iii) |In(d;)| =1 and |Out(d;)| =0 Vj (We denote the only incoming edge of
d; as eq;, termed the dj-destination edge.); and (iv) d; can be reached from s; for all

3 We use the notation Gsana to emphasize

(1,7) pairs (including those with i = j).
that we are focusing on this 3-unicast ANA network. Note that by (ii) and (iii) the
matrix M, (x) becomes a scalar, which we denote by m;(x) instead.

The authors in [40,41] applied interference alignment to construct the precoding
matrices {V;,Vi} for the above 3-unicast ANA network. Namely, consider the fol-
lowing parameter values: 7=2n+1, [y =n + 1, [y =n, and I3 =n for some positive

integer n termed symbol extension parameter, and assume that all the network vari-

ables x¥ to x@ are chosen independently and uniformly randomly from [F,. The goal

n+1 n n

Il T 2—n+1) in a 3-unicast ANA network by applying

is to achieve the rate tuple (
the following {V;,Vi} construction method: Define L(x) = m3(x)msz(x)ma (x) and
R(x) = my2(x)mas(x)ms1(x), and consider the following 3 row vectors of dimensions
n+1, n, and n, respectively. (Each entry of these row vectors is a polynomial with

respect to x but we drop the input argument x for simplicity.)

v(x) = masmy [R", R"7'L, ---, RL"™', L"], (5.11)
vi'(x) = magms |[R", R*'L, ---, RL"'], (5.12)
vi'(x) = magmas [R"'L, -+, RL"™', L"], (5.13)

where the superscript “(n)” is to emphasize the value of the symbol extension param-
eter n used in the construction. The precoding matrix for each time slot ¢ is designed

to be VZ-@ :vi( )(x®). The overall precoding matrix (the vertical concatenation of Vi(l)

to V7) is thus V; = [v"(x )2,

3The above fully interfered setting is the worst case scenario. For the scenario in which there is
some d; who is not reachable from some s;, one can devise an achievable solution by modifying the
solution for the worst-case fully interfered 3-ANA networks [40].
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The authors in [40, 41] prove that the above construction achieves the desired

n+1 n n

3 3 30 ) if the overall precoding matrices {V;,Vi} satisfy the following

rates (

six constraints:*

dy: (M3, V) = (Mo, Vi) (5.14)
SV2[M,,,V, My, Vs ], and rank(S{”)=2n+1 (5.15)
dy: (M3V3) € (M V) (5.16)
SYL [M,, Vo MoV, ], and rank(SY)=2n+1 (5.17)
d3: (My3Vy) C (My3Vy) (5.18)
SY2 [MasVs M3V, |, and rank(S§))=2n+1 (5.19)

with close-to-one probability, where ( A ) and rank(A) denote the column vector space
and the rank, respectively, of a given matrix A. The overall channel matrix Mi;j is a
(2n+1) x (2n+1) diagonal matrix with the ¢-th diagonal element m;;(x?) due to the
assumption of |Out(s;)| = |In(d;)| =1. We also note that the construction in (5.15),
(5.17), and (5.19) ensures that the square matrices {SZ@,VZ} are row-invariant.

The intuition behind (5.14) to (5.19) is straightforward. Whenever (5.14) is sat-
isfied, the interference from sy and from s3 are aligned from the perspective of d;.
Further, by simple linear algebra we must have rank(Ma,; V) <n and rank(M,; V;) <
n+ 1. (5.15) thus guarantees that (i) the rank of [Mlﬁl M2;1V2] equals to
rank(M.; V;) + rank(M,,; Vo) and (i) rank(My.; Vi) =n+1. Jointly (i) and (ii) imply
that d; can successfully remove the aligned interference while recovering all [y =n+1
information symbols intended for d;. Similar arguments can be used to justify (5.16)

to (5.19) from the perspectives of dy and ds, respectively.

4Here the interference alignment is performed based on (s1,d;)-pair who achieves larger rate than
others. Basically, any transmission pair can be chosen as an alignment-basis achieving %, and
the corresponding precoding matrices and six constraints can be constructed accordingly.
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By noticing the special Vandermonde form of V;, it is shown in [40,41] that (5.14),
(5.16), and (5.18) always hold. The authors in [41] further prove that if

L(x)# R(x) (5.20)

and the following algebraic conditions are satisfied:

mllmggzai(L/R)i 7& mglmlgiﬁj (L/R)] (521)
i=0 Jj=0
n—1 ] n )

Mo2M13 Z (6] (L/R)Z §£ mM121M23 Z Bj (L/R)] (522)
i=0 Jj=0

ms33112 Z (073 (L/R)Z 7& mM1371M32 Z 5]' (L/R)] (523)
i=1 Jj=0

for all ay, B; €F, with at least one of ; and at least one of 3; being non-zero, then the
constraints (5.15), (5.17), and (5.19) hold with close-to-one probability (recalling that
the network variables x!) to x® are chosen independently and uniformly randomly).

In summary, [40,41] proves the following result.

Proposition 5.2.2 (page 3, [41]). For a sufficiently large finite field ¥, the 3-unicast
ANA scheme described in (5.11) to (5.13) achieves the rate tuple (;‘—nfrll, St ) With

close-to-one probability if (5.20), (5.21), (5.22), and (5.23) hold simultaneously.

Therefore, whether we can use the 3-unicast ANA scheme depends on whether
the given Gsana satisfies the algebraic conditions (5.20), (5.21), (5.22), and (5.23)
simultaneously.

However, it can be easily seen that directly verifying the above sufficient conditions
is computationally intractable. Moreover, they heavily depend on the given Gzana
of interest. Note that in the setting of wireless interference channels, the individual
channel gains are independently and continuously distributed, for which one can prove
that the feasibility conditions (5.20), (5.15), (5.17), and (5.19) hold with probability

one [39]. For a network setting here, the channel gain polynomials m;;(x) are no
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Fig. 5.1. Example G3ana structure satisfying L(x)=R(x) with x={z1,z9, ..., x12}.

Table 5.2: Key definitions of the 3-unicast ANA scheme

Notations for the 3-unicast ANA network
(x) The channel gain polynomial from s; to d;
X

m,-j
L(
R(x

The product of three channel gains: mq3(x)magz2(x)

) x
) The product of three channel gains: mq2(x)mas(x)

longer independently distributed for different (7, j) pairs and the correlation depends
on the underlying network topology. For example, one can verify that the 3-unicast
ANA network described in Fig. 5.1 always leads to L(x)= R(x) even when all network
variables x are chosen uniformly randomly from an arbitrarily large finite field F,.
For convenience to the reader, we have summarized in Table 5.2 several key defi-

nitions used in the 3-unicast ANA network.

5.2.4 A Critical Question

As discussed in the end of Sections 5.2.2 and 5.2.3, the channel relationship to
the given network topology is important in characterizing these applications. Since
the channel gains are finite field polynomials with respect to network variables, a
more important question would be “How the polynomials over the network variables

and graph theory are fundamentally related?” To answer these questions, we be-
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lieve that a deeper understanding of the proposed Precoding-based Framework will
play a key role. Along this investigation, we identify the several fundamental prop-
erties of the Precoding-based Framework which can bridge the gap between these
two separate worlds. Moreover using these fundamental properties, we characterize
graph-theoretically the algebraic feasibility conditions of one wireless application, the
3-unicast ANA scheme. More detailed discussions and contributions will follow in

Section 5.3.

5.3 Motivation of Studying the Precoding-based 3-unicast ANA network

and Detailed Summary of Contributions

As explained above, the classic algebraic framework [3] bridges between the satis-
fiability of a given network information flow and the solvability of the corresponding
algebraic feasibility equations (5.3), both of which depend on the given network of
interest. It is thus needless to say that the network structures and the existence of
a network code satisfying traffic demands are closely related. From the perspective
that the graph structures can be easily verifiable, the graph-theoretic characterization
plays an not only important but also practical pivot in broadening the understandings
of multi-session LNC problems.

The main challenge in the classic framework along this direction is that it is diffi-
cult to decide whether there exists a LNC solution satisfying the feasibility equations.
In the single-session (s, {d;}) where there are no interferences, we only need to solve
non-zero-equations and thus the existence of a LNC solution can be characterized by
each min-cut value EC(s; d;) being larger than equal to the rate. In the multi-session,
however, we also need to solve zero-equations to be interference-free. As a result, the
corresponding graph-theoretic characterization also needs to provide the properly lo-
cated special cuts that perform interference-removing along the network. This is the
reason why we have the complete graph-theoretic characterization only for the sim-

plest multi-session scenario of 2-unicast/multicast with single rates: by the existence
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of 1-edge cuts properly placed in certain ways [24,29,30]. The central control over
the local encoding kernels inside the network intricates graph-theoretic implications.

However, such graph-theoretic implications become critical in the Precoding-based
Framework that embraces the results of Wireless Interference Channels. Compared to
the classic framework, this framework exploits the pure random linear network coding
in the interior of the network while focusing on precoding and decoding designs for
the balanced performance as in Wireless Interference Channels. Hence, the channels
between sources and destinations determine the feasibility of such precoding-based
NC design. Moreover, they are now high-order polynomials over the network variables
and thus correlated to a given network. Therefore, knowing the relationship between
the channel polynomials and the underlying network structures becomes critical in
characterizing the feasibility of the precoding-based NC solutions over the network
of interest. Especially for the wireless applications such as the interference alignment
technique to 3-unicast, called the 3-unicast ANA scheme [40,41], such graph-theoretic
implications are practically crucial because its feasibility conditions are computation-
ally intractable to verify directly, see Proposition 5.2.2 for example. Considering the
fact that such feasibility conditions typically hold in the original wireless interference
channels with close-to-one probability (due to the continuously distributed wireless
random channel gains), studying the precoding-based 3-unicast ANA network, and
more fundamentally, the relationship between the network channel and the graph
structure is of importance in broadening the understandings of multi-session LNC
problems.

Our main contributions can be summarized as follows:

e The relationship between the network channel and the graph structures: We
develop the several fundamental properties of the Precoding-based Framework
which allows us to bridge the gap between the feasibility of the precoding-based

NC solutions and the given network.
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S;NS;=0 or D;ND;=0 V{i,j} C {1,2,3}

EC({s1,52}: {d1.d3})>2, EC({s1,53}: {d1,da}) >2.
- ofi 51,50} {do, d: 2, s, 83} {d1,do 2, G- supports
Gaana stisfies ECU st s2}i{da, ds}) 22, BC({s2, sa}: {dy, do}) 22 G3ANA SUPPO
EC(s2: d2) > 1 on Gaana\{upstr((31nD3)U(S51Dy))} | Bunicast ANA with =1

EC({s1.83}: {da.ds}) >2, EC({s9.83}:{d.d3}) >2,
EC(s3:d3) > 1 on Gsaxa\{upstr((S1ND2)U(SanDy))}

S;nS;=0 or D,ND;=0 V{i,j} c {1,2,3}
EC({s1,82}:{d1.ds})>2, EC({s1.83}: {d1.da})>2,
EC(s1:d1) =1 on Gaana\ {upstr((S2nDsz)U(SsnD2))}
Giaana SAtisfies EC({sy. sa}: {do.d3})>2. EC({sa, s3}: {dy,d2})>2. =
EC(52:do) > 1 on Gaana\ {upstr((S:nDs)U(S3nD1))}
EC({s1,$3}: {d2.d3}) =2, EC({s2,53}:{d1.ds})>2.
EC(s3:d3) > 1 on Giana\{upstr((S1nD»)U(S2nD1))}

G3aNa SUpports 3-unicast ANA
with arbitrary n > 2

Fig. 5.2. The complete graph-theoretic characterization for the feasibility of the 3-
unicast ANA scheme.

e The complete graph-theoretic characterization for the feasibility of the 3-unicast
ANA scheme: Using the properties, we characterize the feasibility conditions of
this interference alignment application by the existence of special edge-cuts or
the min-cut values as shown in Fig. 5.2, which can be checked in polynomial

time.

Note that our graph-theoretic characterization is bi-directions. Therefore, we can
answer that the following conjecture is not true:

Conjecture (Page 3, [41]): For any n value used in the 3-unicast ANA scheme
construction, if (5.20) and the following three conditions are satisfied simultaneously,

then (5.21) to (5.23) must hold.

EC({Sl,SQ};{dl,dg})ZQ and EC({Sl,Sg};{dl,dQ})Z2, (524)
EC({s1,52};{d2,ds})>2 and EC({s2,ss};{d1,d2})>2, (5.25)
EC({s1,s3};{d2,d3})>2 and EC({se,s3};{ds,d3})>2. (5.26)
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5.4 Fundamental Properties of The Precoding-based Framework
5.4.1 Properties of The Precoding-based Framework

In this section, we characterize a few fundamental relationships between the chan-
nel and the underlying DAG G, which bridge the gap between the algebraic feasibility
of the precoding-based NC problem and the underlying network structure. These
properties hold for any precoding-based schemes and can be of benefit to future de-
velopment of any precoding-based solution. These newly discovered results will later
be used to prove the graph-theoretic characterizations of the 3-unicast ANA scheme.
In the following subsections, we state Propositions 5.4.1 to 5.4.3, respectively. In

Section 5.4.2, we discuss how these results can be applied to the existing 3-unicast

ANA scheme.

From Non-Zero Determinant to Linear Independence

Proposition 5.4.1. Fixz an arbitrary value of N. Consider any set of N polynomials
h(x) = {h(x),...,hy(x)} and the polynomial matriz [h(x®))N_, generated from
h(x). Then, assuming sufficiently large finite field size q, det([h(x*)]N_,) is non-

zero polynomial if and only if h(x) is linearly independent.

The proof of Proposition 5.4.1 is relegated to Appendix J.1.
Remark: Suppose a sufficiently large finite field F, is used. If we choose the

Y to x™ independently and uniformly randomly from F_, by Schwartz-

variables x!
Zippel lemma, we have det([h(x*))]™_ ) # 0 with close-to-one probability if and only
if h(x) is linearly independent.

The implication of Proposition 5.4.1 is as follows. Similar to the seminal work [3],
most algebraic characterization of the precoding-based framework involves checking
whether or not a determinant is non-zero. For example, the first feasibility condi-

tion of (5.3) is equivalent to checking whether or not the determinant of the network

transfer matrix is non-zero. Also, (5.15), (5.17), and (5.19) are equivalent to checking
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whether or not the determinant of the row-invariant matrix SZ@ is non-zero. Propo-
sition 5.4.1 says that as long as we can formulate the corresponding matrix in a
row-invariant form, then checking whether the determinant is non-zero is equivalent
to checking whether the corresponding set of polynomials is linearly independent. As

will be shown shortly after, the latter task admits more tractable analysis.

The Subgraph Property of the Precoding-Based Framework

Consider a DAG G and recall the definition of the channel gain m.,..,(x) from e;
to eq, see Definition 5.2. For a subgraph G’ C G containing e; and ey, let me, ., (x')

denote the channel gain from e; to ey in G’.

Proposition 5.4.2 (Subgraph Property). Given a DAG G, consider an arbitrary,
but fized, finite collection of edge pairs, {(e;, e}) € E* : i € I} where I is a finite index
set, and consider two arbitrary polynomial functions f : IF‘qI‘ = F, and g : IF‘qI‘ >
F,. Then, f({meue(x) : Vi € I})= g({me,er(x) : Vi € I}) if and only if for all

x'):Viel})=

subgraphs G' C G containing all edges in {e;,e; : Vi € I}, f({mee(
g{Me;e (X') Vi€ T}).

The proof of Proposition 5.4.2 is relegated to Appendix J.1.

Remark: Proposition 5.4.2 has a similar flavor to the classic results [3] and [6].
More specifically, for the single multicast setting from a source s to the destinations
{d;}, the transfer matrix U; M, . (x)V, from s to d; is of full rank (i.e., the poly-

nomial det(U; M, . (x)V,) is non-zero in the original graph ) is equivalent to the

djis
existence of a subgraph G’ (usually being chosen as the subgraph induced by a set of
edge-disjoint paths from s to d;) satisfying the polynomial det(U, M, . (x')V,) being
NON-Zero.

Compared to Proposition 5.4.1, Proposition 5.4.2 further connects the linear de-

pendence of the polynomials to the subgraph properties of the underlying network.

For example, to prove that a set of polynomials over a given arbitrary network is
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linearly independent, we only need to construct a (much smaller) subgraph and prove

that the corresponding set of polynomials is linearly independent.

The Channel Gain Property

Both Propositions 5.4.1 and 5.4.2 have a similar flavor to the classic results of
the LNC framework [3]. The following channel gain property, on the other hand, is

unique to the precoding-based framework.

Proposition 5.4.3 (The Channel Gain Property). Consider a DAG G and two dis-
tinct edges es and eq. For notational simplicity, we denote head(es) by s and denote

tail(eq) by d. Then, the following statements must hold (we drop the variables x for
shorthand):

o IfEC(s;d) =0, then mc ., =0

o IfEC(s;d) = 1, then m,,., is reducible. Moreover, let N 2 |lcut(s; d)| denote
the number of 1-edge cuts separating s and d, and we sort the 1-edge cuts by
their topological order with e; being the most upstream and ey being the most

downstream. The channel gain me_.., can now be expressed as

€d

N-1
Megieq = Megser | | Megeirr | Menseqs

i=1

and all the polynomial factors Me,.e,, {Meerss big 'y and Mey.e, are irreducible,

and no two of them are equivalent.

o [fEC(s;d) > 2 (including c0), then me,.., is irreducible.

The proof of Proposition 5.4.3 is relegated to Appendix J.3.

Remark: Proposition 5.4.3 only considers a channel gain between two distinct
edges. If e; = eg4, then by convention [3], we have m,.., = 1.

Proposition 5.4.3 relates the factoring problem of the channel gain polynomial to

the graph-theoretic edge cut property. As will be shown afterwards, this observation
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enables us to tightly connect the algebraic and graph-theoretic conditions for the

precoding-based solutions.

5.4.2 Related Work: The 3-unicast ANA Scheme

In this section, we discuss how the properties of the precoding-based framework,
Propositions 5.4.1 to 5.4.3, can benefit our understanding of the 3-unicast ANA

scheme.

Application of The Properties of The Precoding-based Framework to The
3-unicast ANA Scheme

Proposition 5.4.1 enables us to simplify the feasibility characterization of the 3-
unicast ANA scheme in the following way. From the construction in Section 5.2.3,
the square matrix S can be written as a row-invariant matrix S”= [h" (x®)]*™
for some set of polynomials h;(x). For example, by (5.11), (5.12), and (5.15) we have

SI" = I (x)2 where

® _ n n—1
hl (K) = {m11m23m32R y m11m23m32R L,
n n
©, mima3maa L, moymyzmsa R”, (5-27)

n—1 n—1
Ma1Mizmsa L, -, moymizmsaRL }

Proposition 5.4.1 implies that (5.15) being true is equivalent to the set of polyno-
mials h§”) (x) is linearly independent. Assuming the Gsana of interest satisfies (5.20),
h§"> (x) being linearly independent is equivalent to (5.21) being true. As aresult, (5.21)
is not only sufficient but also necessary for (5.15) to hold with close-to-one probabil-
ity. By similar arguments (5.22) (resp. (5.23)) is both necessary and sufficient for
(5.17) (resp. (5.19)) to hold with high probability.

Proposition 5.4.2 enables us to find the graph-theoretic equivalent counterparts of

(5.21)—(5.23) of the Conjecture (p. 3, [41]).
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Corollary 5.4.1 (First stated in [41]). Consider a Ggana and four indices iy, iz, ji,
and jo satisfying iy #is and j1 # jo. We have EC({s;,, si, };{d},, d;, }) =1 if and only

Zf MMy 51 M jo = Mgy M4y s -

The main intuition behind Corollary 5.4.1 can be stated as follows. When we
have EC({s;,, si, }; {d;,,dj,}) =1, one can show that we must have m;, ;, (x)m,;,(x) =
My, (X)Mi, 5, (x) by analyzing the underlying graph structure. On the other hand,
when we have EC({s;,,si,};{d;,,d;,}) # 1, we can construct a subgraph G’ satis-
tying my, j, (X)), (X') Z My, (X )My, (X'). Proposition 5.4.2 thus implies m;, ;, (x)
Mgy (X) Z Miyjy (X)M4y 5, (x). A detailed proof of Corollary 5.4.1 is relegated to Ap-
pendix J.2.

Proposition 5.4.3 can be used to derive the following corollary, which studies the

relationship of the channel polynomials m;;.

Corollary 5.4.2. Given a Gsana, consider a source s; to destination d; channel gain
mij. Then, GCD(my, j,, Miyj,) =My, if and only if (i1, j1) = (i, j2). Intuitively, any
channel gain m; j, from source s; to destination d;, cannot contain another source-

destination channel gain m,,;, as its factor.

The intuition behind Corollary 5.4.2 is as follows. For example, suppose we ac-
tually have GCD(myy, mi2) =mi2 and assume that EC(head(ey, ); tail(eq,)) >2. Then
we must have the do-destination edge ey, being an edge cut separating s; and d;.
The reason is that (i) Proposition 5.4.3 implies that any irreducible factor of the
channel gain my; corresponds to the channel gain between two consecutive 1-edge
cuts separating s; and d;; and (ii) The assumption EC(head(es, ); tail(eg,)) > 2 implies
that mys is irreducible. Thus (i), (ii), and GCD(my1, m12) = mqs together imply that
eq, € leut(sy;dy). This, however, contradicts the assumption of |Out(ds)|=0 for any
3-unicast ANA network Gsana. The detailed proof of Corollary 5.4.2, which studies
more general case in which EC(head(es, ); tail(eq,)) =1, is relegated to Appendix J.2.
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5.5 Chapter Summary

In this chapter, we define and discuss the proposed Precoding-based Framework.
In Section 5.1, the related graph-theoretic notations are firstly defined. We then alge-
braically formulate the Precoding-based framework in Section 5.2. For the subsequent
subsections, the comparison to the classic LNC framework is discussed, with the in-
troductions of the recent wireless applications proposed by [25,26,40,41]. The need
for the deeper understandings between the network channel gain and the underlying
graph structure is further motivated and our contributions are summarized in Sec-
tion 5.3. The corresponding fundamental properties of the proposed Precoding-based
Framework are provided in Section 5.4 including how they can benefit to understand

the 3-unicast ANA problem.
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6. GRAPH-THEORETIC CHARACTERIZATION OF THE
3-UNICAST ANA SCHEME

In Section 5.4, we investigated the basic relationships between the network channel
gain polynomials and the underlying DAG G for arbitrary precoding-based solutions.
In this chapter, we turn our attention to a specific precoding-based solution, the

3-unicast ANA scheme, and characterize graph-theoretically its feasibility conditions.

6.1 New Graph-Theoretic Notations and The Corresponding Properties

We begin by defining some new notations. Consider three indices 7, 7, and k in
{1,2, 3} satisfying j# k but i may or may not be equal to j (resp. k). Given a Gzana,
define:

gi;{j,k} =S ].CUt(SZ‘; dj) N 1CUt($Z’; dk)\{esb}
Ei;{j,k} =S Leut(s;;d;) N Leut(sy; d;i)\{eq,}
as the l-edge cuts separating s; and {d;,d;} minus the s;,-source edge e,, and the
l-edge cuts separating {s;, s;} and d; minus the d;-destination edge e4,. When the
values of indices are all distinct, we use S; (resp. 5,-) as shorthand for gi;{jvk} (resp.

D;.(jry)- The following lemmas prove some topological relationships between the edge

sets S; and ﬁj and the corresponding proofs are relegated to Appendix K.

Lemma 6.1.1. For alli#j, ¢’ €S;, and ¢" € D;, one of the following three statements
is true: € <e”, e =", ore =¢€".

Lemma 6.1.2. For any distinct i, j, and k in {1,2,3}, we have (D; N D;) C S.

Lemma 6.1.3. For all i#j, ¢ €S\D;, and " € D;, we have ¢' <e¢".
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Lemma 6.1.4. For any distinct i, j, and k in {1,2,3}, D; N Dx#£ 0 if and only if

Lemma 6.1.5. For all i # j and ¢" € D; N D;, if S; N S;# 0, then there exists

eesS; N §j such that e’ <e".

Lemma 6.1.6. Consider four indices i, ji, j2, and js taking values in {1,2,3} for
which the values of j1, jo and j3 must be distinct and i is equal to one of j1, jo and
Js- If Sipi g # 0 and Sigj, ;17 0, then the following three statements are true: (i)
Sitivgar N SitinintZ0; (1) Sicg)yiny#0; and (iii) SF#0.

Remark: All the above lemmas are purely graph-theoretic. If we swap the roles
of sources and destinations, then we can also derive the (s, d)-symmetric version of
these lemmas. For example, the (s,d)-symmetric version of Lemma 6.1.2 becomes
(S;N'S;) C Dy. The (s,d)-symmetric version of Lemma 6.1.5 is: For all i # j and
e"€S; NS, if D;N D;#0, then there exists ¢’ € D; N D; such that ¢’ =e¢”.

Lemmas 6.1.1 to 6.1.6 discuss the topological relationship between the edge sets
S; and D;. The following lemma establishes the relationship between S; (resp. D)

and the channel gains.

Lemma 6.1.7. Given a Gsaya, consider the corresponding channel gains as defined
in Section II-D. Consider three indices i, j1, and jo taking values in {1,2,3} for
which the values of j; and jo must be distinct. Then, GCD(my;,, my;,) =1 if and only
if Sitirjr=0. Symmetrically, GCD(myj,;, mj,:) =1 if and only if D;j, j1="0.

The proof of Lemma 6.1.7 is relegated to Appendix K.

6.2 The Graph-Theoretic Characterization of L(x)# R(x)

A critical condition of the 3-unicast ANA scheme [40,41] is the assumption that
L(x) # R(x), which is the fundamental reason why the Vandermonde precoding
matrix V; is of full (column) rank. However, for some networks we may have L(x)=

R(x), for which the 3-unicast ANA scheme does not work (see Fig. 5.1). Next, we
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R(x).

Proposition 6.2.1. For a given Gsana, we have L(x) = R(x) if and only if there
exists a pair of distinct indices i, j €{1,2,3} satisfying both S;NS;#0 and D;ND;#.

Proof of the “«<” direction of Proposition 6.2.1: Without loss of generality, sup-
pose S; N So#0 and Dy N Dy#( (ie., i=1 and j=2). By Lemma 6.1.5, we can find
two edges ¢ €51 NS, and ¢’ € Dy N D, such that €/ <e”. Also note that Lemma 6.1.2
and its (s, d)-symmetric version imply that e’ € D3 and €” € S3. Then by Proposi-
tion 5.4.3, the channel gains m;;(x) for all i # j can be expressed by (we omit the

variables x for simplicity):

M3 ="Me, ;e Me'seq, M2 =Mey, e Melie Me'sea,
Mag = /)71653 el ’)’)’Leu;e(i2 Mo3 = mesz e’ me/;ed3

mao1 :m652;e’ Mt me”;edl mas1 :mesg;e” me”;edl

where the expressions of mis and mg; are derived based on the facts that ¢ <¢”
and {e’, "} Clcut(sy;da) N leut(se; dy). By plugging in the above 6 equalities to the
definitions of L = mi3msgams; and R = myamegmg;, we can easily verify that L=R.

The proof of this direction is complete. |

Remark: In the example of Fig. 5.1, one can easily see that ¢ € S; NS, and
¢” € Dy N Dy. Hence, the above proof shows that the example network in Fig. 5.1
satisfies L(x)= R(x) without actually computing the polynomials L(x) and R(x).

We will now focus on proving the necessity. Before proceeding, we state and prove

the following lemma.

Lemma 6.2.1. If the Gsana of interest satisfies L(x)=R(x), then Si#0) and D#0

for all v and j, respectively.

Proof of Lemma 6.2.1: We prove this by contradiction. Suppose S;= (). Denote

the most upstream 1-edge cut separating head(es,) and dy by €15 (we have at least
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the dy-destination edge eg4,). Also denote the most upstream 1l-edge cut separating
head(e,,) and d3 by e13 (we have at least the ds-destination edge e4,). Since S1=) and
by the definition of the 3-unicast ANA network, it is obvious that e;5 # e;3. Moreover,
both of the two polynomials m, .., (a factor of miz) and m., ..,; (a factor of my3) are
irreducible and non-equivalent to each other. Therefore, these two polynomials are
coprime. If we plug in the two polynomials into L(x)= R(x), then it means that one
of the following three cases must be true: (i) me,ye,, contains me, ., as a factor; (i)
msge contains Mey, er, S A factor; or (iii) mg; contains Mey eq, S A factor. However,
(i), (ii), and (iii) cannot be true as |In(s1)|=0 and by Proposition 5.4.3. The proof is
thus complete by applying symmetry. U

Proof of the “=" direction of Proposition 6.2.1: Suppose the G3ana of inter-
est satisfies L(x)= R(x). By Lemma 6.2.1, we know that S;# () and D;# () for all i
and j. Then it is obvious that EC(head(e,); tail(eq,)) =1 for all i # j because if (for
example) EC(head(e,, ); tail(eq,)) >2 then both S, and D, will be empty by definition.
Thus by Proposition 5.4.3, we can express each channel gain m;; (i # j) as a prod-
uct of irreducibles, each corresponding to the channel gain between two consecutive
l-edge cuts (including ey, and ey, ) separating s; and d;. We now consider two cases.

Case 1: S; N D;=( for some i # j. Assume without loss of generality that
SoN D=0 (ie., i=2and j=1). Let e} denote the most downstream edge in S, and
let e} denote the most upstream edge in D;. Since SN D=0, the edge e5 must not
be in D;. By Lemma 6.1.3, we have e <e}.

For the following, we will prove {e},ej} C lcut(sy;ds). We first notice that by
definition, e} € Sy C lcut(sy;d;) and e} € Dy C leut(sq; dq). Hence by Proposition 5.4.3,
We Can express Moy 8s Mar = Me,yesMesie;Mesiey, - Note that by our construction
ez <ej we have mey..« Z 1.

We now claim GCD( Mes et Magmay)=1, i.e., mao3mg; cannot contain any factor of
Meyer- We will prove this claim by contradiction. Suppose GCD(meyex, ma3)#1, ie.,
mag contains an irreducible factor of me;..:. Since that factor is also a factor of ma,

by Proposition 5.4.3, there must exist at least one edge e satisfying (i) e5 <e <ej;
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and (ii) e € lcut(sg;dy) N leut(sy;ds). These jointly implies that we have an Sy
edge in the downstream of e;. This, however, contradicts the assumption that e}
is the most downstream edge of Sy. By a symmetric argument, we can also show
that mg; must not contain any irreducible factor of Meyer- The proof of the claim
GCD(mey;er, mazmar) =1 is complete. Since the assumption L(x)= R(x) implies that
GCD(meyer, R) = Megier, we must have GCD(mgy;ex, Mi2) = Meger. This implies by
Proposition 5.4.3 that {e}, e1} C lcut(sy; da).

For the following, we will prove that e} € lcut(s;;d3). To that end, we consider the
factor me;.. 45 of the channel gain ms3. This is possible by Proposition 5.4.3 because
ey € Sy C leut(sg; ds). Then similarly following the above discussion, we must have
GCD(ma1, Meyie dS) =1 otherwise there will be an S, edge in the downstream of €.
Since the assumption L(x)=R(x) means that GCD( L, megie,, ) =Mes;e,, » this further
implies that GCD( my3mss, me;;ed3) = Megiey, -

Now consider the most upstream lcut(ss;ds) edge that is in the downstream of
e, and denote it as e, (we have at least the ds-destination edge eg4,). Obviously,
€5 < €y = eg; and Mgz, is an irreducible factor of me;.. 43" Then we must have
GCD(mga, meg;eu)zl and the reason is as follows. If not, then by Mes.e, being irre-
ducible we have e} € lcut(ss;d2). Then every path from s3 to tail(e}) must use e3,
otherwise s3 can reach ej without using e and finally arrive at ds since e] can reach
dy (we showed in the above discussion that e} € lcut(s;; ds)). This contradicts the pre-
viously constructed e} € lcut(ss;ds). Therefore, we must have e} € lcut(ss; tail(e})).
Since e} € Dy C lcut(ss;dy), this in turn implies that e} is also an 1-edge cut sep-
arating s3 and d;. However, note by the assumption that e € Sy C lcut(sg; dy).
Thus, e; will belong to D;, which contradicts the assumption that e} is the most
upstream D; edge. We thus have proven GCD(msy, Mesie,) = 1. Since we showed
that GCD( m3mss, Mese d3) =Megiey, » this further implies that the irreducible factor
Mesie, OF Mese 4, Tust be contained by m.3 as a factor. Therefore, we have proven
that el € lcut(sy;ds). Symmetrically applying the above argument using the factor

Me,,.er Of the channel gain m3;, we can also prove that ej € Leut(ss; da).
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Thus far, we have proven that e} € lcut(si;ds) and e} € lcut(sy;ds). However,
€5 =eg, is not possible since e}, by our construction, is a downstream edge of e, but
es, s not (since [In(s;)|=0). As a result, we have proven e €S5;. Recall that e} was
chosen as one edge in Sy. Therefore, S; N Sy# 0. Similarly, we can also prove that
el €D, N Dy and thus Dy N 327&(7). The proof of Case 1 is complete.

Case 2: S;ND;#0 for all i# j. By Lemma 6.1.4 and its (s, d )-symmetric version,
we must have S;NS;#0 and D;ND;#0) Vi # j. The proof of Case 2 is complete. B

6.3 The Graph-Theoretic Conditions of the Feasibility of the 3-unicast
ANA Scheme

Proposition 6.2.1 provides the graph-theoretic condition that characterizes whether
or not the Gsana of interest satisfies the algebraic condition of (5.20), which implies
that (5.14), (5.16), and (5.18) hold simultaneously with close-to-one probability. How-
ever, to further ensure the feasibility of the 3-unicast ANA scheme, det(SZ@) must be
non-zero polynomial (see (5.15), (5.17), and (5.19)) for all i€ {1, 2,3}. As a result, we
need to prove the graph-theoretic characterization for the inequalities det(SZ@) #0.
Note by Proposition 5.4.1 that the condition det(SZ@) # 0 is equivalent to for all
i €{1,2,3} the set of polynomials hl@ (x) is linearly independent, where h®”(x) is
defined in (5.27) and hé") (x) and h:())" ) (x) are defined as follows:

®) _ n n—1
h2 (K) = {m22m13m32R y m22m13m32R L,
n—1 n
©yMagMmizmze RL"™, migmagmsa R”, (6-1)

n—1 n
MiaMozmzo R L, -+, mygmaogmszy L },

®) _ n—1
h3 (K) = {m33m12m23R L,--,
n—1 n
M3zMiamao3z L , Mi3zMiaMaozL”,
(6.2)
n n—1
Mi3MazmsaR", MismaozmsaR" L,

n
-, Mi3MagMaaL }
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Thus in this subsection, we prove a graph-theoretic condition that characterizes
the linear independence of hl@ (x) forallie{1,2,3} when n=1 and n>2, respectively.

Consider the following graph-theoretic conditions:

SiNS;=0or D;ND;=0 Vi, je{1,2,3},i#j] (6.3)
EC({s1, s2}; {d1, ds}) 22, EC({s1, s3}; {d1, da}) > (6.4)
EC(s1;d1) >1 on Gsana\ {upstr((S2NDs3)U (Egmﬁg))}, (6.5)
EC({s1, 52} {d2, ds}) 22, EC({s2, s3}; {d1, d2}) =2, (6.6)
EC(s2;d) >1 on Gaana\{upstr((S1ND3)U(S3N D))}, (6.7)
EC({s1,s3}; {da, ds})>2, EC({s9, s3}; {d1,ds3}) >2, (6.8)
EC(s3;d3) > 1 on Gzana\{upstr((S1ND2)U(S2NDy))} (6.9)

Note that (i) (6.3) is equivalent to L(x)# R(x) by Proposition 6.2.1; (ii) (6.4),
(6.6), and (6.8) are equivalent to (5.24) to (5.26) by Corollary 5.4.1; and (iii) (6.5),
(6.7), and (6.9) are the new conditions that help characterize (5.21) to (5.23).

To further simplify the analysis, we consider the following set of polynomials:

kgn) (x) = { mumaogma L", mllngmgan_lR,
, miymazma LR™ ™', mgymygma L™, (6.10)

n—1 n
Ma1myzms; L R, -, maymizma R }>

where k( (x) is obtained by swapping the roles of s; and s, (resp. s3), and the roles of
dy and ds (resp. d3) to the expression of h ( )in (6.1) (resp. h("( ) in (6.2)). Note
that R = mqamo3ms; becomes L = my3msomo; and vice versa by such swap operation.
Once we characterize the graph-theoretic conditions for the linear independence of
k§”) (x), then the characterization for hgb) (x) and th ) (x) being linearly independent

will be followed symmetrically.®

Proposition 6.3.1. For a given Ggana, when n=1, we have

n Section 5.2.3, (s1,d;)-pair was chosen to achieve larger rate than other pairs when aligning
the interference. Thus the feasibility characterization for the other transmission pairs, (s2,ds2) and
(s3,ds) who achieve the same rate, becomes symmetric.
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(H1) hgl)(g) is linearly independent if and only if Gsana satisfies (6.3) and (6.4).

(K1) kgl) (x) s linearly independent if and only if Ggana satisfies (6.3), (6.4), and
(6.5).

Moreover when n>2, we have

(H2) hgn)(g) is linearly independent if and only if Ggana satisfies (6.3), (6.4), and
(6.5).

(K2) kgn)(g) is linearly independent if and only if Gsana satisfies (6.3), (6.4), and
(6.5).

Remark: Proposition 6.3.1 proves that the conjecture in [41] holds only for the
linearly independent hgl) (x). In general, it is no longer true for the case of n>2 and
even for n=1. This coincides with the recent results [62], which show that for the

case of n>2, the conjecture in [41] no longer holds.

Proof of Proposition 6.3.1: Similar to most graph-theoretic proofs, the proofs of
(H1), (K1), (H2), and (K2) involve detailed discussion of several subcases. To struc-
ture our proof, we first define the following logic statements. Each statement could
be true or false. We will later use these statements to complete the proof.

e H1: hgn) (x) is linearly independent for n=1.

e K1: kgn) (x) is linearly independent for n=1.
e H2: h§"’ (x) is linearly independent for some n>2.
o K2: kg") (x) is linearly independent for some n > 2.

e LNR: L(x)# R(x).
o G1: myimogZ marmz and my1mga Z MM,
e G2: EC(s1;dy) > 1 on Gsana\ {upstr((S2ND3)U(S5ND,)) }.

One can clearly see that proving Statement (H1) is equivalent to proving “LNR A
G1 < H1” where “A” is the AND operator. Similarly, proving Statements (K1), (H2),
and (K2) is equivalent to proving “LNRAG1AG2 < K17, “LNRAG1IAG2 &
H2” and “LNR AG1 A G2 < K27, respectively.
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The reason why we use the notation of “logic statements” (e.g., H1, LNR, etc.)
is that it enables us to break down the overall proof into proving several smaller
“logic relationships” (e.g, “LINR A G1 < H1”, etc.) and later assemble all the logic
relationships to derive the final results. The interested readers can thus separate the
verification of the proof of each individual logic relationship from the examination
of the overall structure of the proof of the main results. The proof of each logic
relationship is kept no longer than one page and is independent from the proof of any
other logic relationship. This allows the readers to set their own pace when going
through the proofs.

To give an insight how the proof works, here we provide the proof of “LNR A G1
< H1” at the bottom. All the other proofs are relegated to the appendices. Specif-
ically, we provide the general structured proofs for the necessity direction “<” in
Appendix M. Applying this result, the proofs of “LNR A G1A G2 < H2, K1, K2”
are provided in Appendix M.3. Similarly, the general structured proofs for the suffi-
ciency direction “=" is provided in Appendix N. The proofs of “LNR A G1 = H1”
and “LNRAG1AG2 = K1, H2, K2” are provided in Appendix N.4.

The proof of ‘LNRAG1 < H1”: We prove the following statement instead:
(-LNR) V (- G1) = (-H1) where — is the NOT logic operator and “V” is the OR
operator. From the expression of h@ (x) in (5.27), consider hgl) (x) which contains 3

polynomials:
hﬁl) (K) = {m11m23m32R, mi1Mazmsa L, m21m13m323}. (6.11)

Suppose Gzana satisfies (W LNR)V (= G1), which means Gzana satisfies either
L(x) = R(x) or mjymao3z= maoimyz or myimss = mgmie. If L(x) = R(x), then we
notice that mjimasmss R= mjimasmss L and hgl) (x), defined in (6.11), is thus linearly
dependent. If mi3me3= msgimi3, then we notice that miimozmss R = moymizmss R.
Similarly if mq1mszs=ms31mq2, then we have mq1mo3mss L= moymizmss R. The proof

is thus complete. [ |
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6.4 Chapter Summary

In this chapter, we characterize the graph-theoretic conditions for the feasibility
of the 3-unicast ANA scheme. In Section 6.1, we first define the new graph-theoretic
notations that are useful for the characterization. In Section 6.2, we then char-
acterize the first algebraic feasibility condition of the 3-unicast ANA scheme in a
graph-theoretic sense. The full graph-theoretic characterization of all the remain-
ing algebraic feasibility conditions are fully described in Section 6.3, where the main

proofs can be found in Appendices L to N.
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7. CONCLUSION AND FUTURE WORK

In this thesis, we first studied the 3-node wireless packet erasure network that incor-
porates feedback, NC encoding/decoding descriptions, and scheduling decisions all
together. In this model, we considered the most general traffic setting: six private-
information flows and three common-information flows in total, and characterized the
corresponding 9-dimensional Shannon capacity region within a gap that is inversely
proportional to the packet size. The gap can be attributed to exchanging reception
status (ACK/NACK) between three nodes. When the causal feedback can be com-
municated for free, we further proved that the proposed simple LNC inner bound
achieves the capacity. In the second part, we studied the smart repeater packet era-
sure network and effectively bracketed the LNC capacity region by proposing the outer
and inner bounds. The outer bound was developed based following the principles of
the proposed Space-based Framework, which can jointly optimize the LNC operations
and scheduling decisions simultaneously for the best possible LNC throughput. For
an inner bound, we have identified a new way of encoding packet mixtures that is
critical to approach the LNC capacity in a close-to-optimal sense. In the third part,
we studied the general class of precoding-based LNC schemes in wireline directed
acyclic integer-capacity networks. The Precoding-based Framework focuses on de-
signing the precoding and decoding mappings at the sources and destinations while
using randomly generated local encoding kernels within the network. One example
of the precoding-based structure is the 3-unicast ANA scheme, originally proposed
in [40,41]. In this thesis, we have identified new graph-theoretic relationships for the
precoding-based NC solutions, and based on the findings on the general precoding-
based NC, we have further characterized the graph-theoretic feasibility conditions of

the 3-unicast ANA scheme.
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In the 3-node wireless network setting, when the casual ACK/NACK feedback ex-
changes must be through the forward erasure channel (Scenario 2), we have observed
in Section 3.3 that the fully-connected assumption is critical to operate the capacity-
achieving LNC scheme. In other words, when the network is not fully-connected,
the proposed LNC strategy might not be in a right play. Therefore, it would be an
interesting extension to study how the actual capacity region is going to be when the
network admits such asymmetric feedback scenario. For the smart repeater network
setting, we have described the corresponding LNC capacity region. However, the true
capacity outer bound based on information-theoretic arguments is still open to be de-
scribed. Considering the fact that “Linearity” was shown not sufficient to achieve the
multi-session capacity in general [36], it would be an interesting future work to see
whether the regions described by LNC operations and by the information-theoretic

arguments can be matched or not.
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A. LNC CAPACITY REGION OF THE 3-NODE PACKET
ERASURE NETWORK

In this appendix, we describe the LNC capacity region of the 3-node PEN. To that
end, we first re-formulate the problem definition in Section 2.2 into the linear NC
version. Namely, the encoding/decoding descriptions and the capacity definition in
Section 2.2 will be re-formulated to the LNC equivalents as in the smart repeater
problem formulation of Section 2.3. Then the LNC outer bound will be constructed
based on the proposed Space-based Framework. To highlight the central idea of the
Space-based Framework, here we only consider the 6-dimensional private information
rates (Ry_2, R13, Ros1, Ro3, R3—y1, R32) and ignore the 3-dimensional common in-
formation rates (Ri_03, Ro—31, R312). The total 9-dimensional LNC capacity outer
bound construction can be followed similarly. Moreover, here we focus only on Sce-
nario 1 such that the casual ACK/NACK can be communicated for free. As similar
to Proposition 3.2.3, we further show that the constructed LNC outer bound matches
with the simple LNC achievability scheme of Proposition 3.2.2 for all possible channel

parameters.

A.1 The Space-based Formulation of Linear NC

Let W be an nRy-dimensional row vector defined by

\%\% é <W1—>27 W1—>37 W2—>17 W2—>37 W3—>17 W3—>2)- (Al)
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That is, W is the collection of all the information packets for the 6-dimensional traffic
R. Define Q £ (IFQ)"RE as the overall message/coding space. Then, a network code is

called linear if (2.3) can be rewritten as
If o(t) =4, then X;(t) = ¢,W ' for some ¢, € Q, (A.2)

where c¢; is a row coding vector in 2. We assume that c; is known causally to the
entire network. !

We now define two important concepts: The individual message subspace and the
reception subspace. To that end, we first define e; as an nRyx-dimensional elementary
row vector with its [-th coordinate being one and all the other coordinates being zero.
Recall that the nRy, coordinates of a vector in 2 can be divided into 6 consecutive
“intervals”, each of them corresponds to the information packets W,_,; for the uni-
cast flow from node i to node h # i. For example, from (A.1), the third interval
corresponds to the packets W5_,;. We then define the individual message subspace
Q5

Qiy; £ span{e; : | € “interval” associated to Wi}, (A.3)

That is, €;_,; is a linear subspace corresponding to any linear combination of W,_,;
packets. By (A.3), each €2;_,; is a linear subspace of Q and rank(£2,_,;) = nR;_,;.

For each node i € {1,2,3}, the reception subspace in the end of time ¢ is defined
by

RS;(t) £ span{c,: VT <t st. o7 #i, Zpryi(T)=1,
(t) { (1) (Ad)
and Y, _;(7) =X, (7)=c,W '}

LCoding vector c; can either be appended in the header or be computed by the network-wide causal
CSI feedback Z(t).
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That is, RS;(t) is the linear subspace spanned by the coding vectors ¢, corresponding
to the packets that are sent by node o7 # i and have successfully arrived at node ¢

by the end of time ¢. We now define the knowledge space S;(t) by
SZ(T,) é Qi_>j @ Qi_>k @ RSZ(T,), (A5)

where A B £ span{v : v € AUB} is the sum space of any A, B C ). Basically, S;(t)
represents the “overall knowledge” available at node ¢, which contains those that are
originated from node 1, i.e., ,_,; @ €, and those overheard by node ¢ until time
t, i.e., RS;(t). By the above definitions, we quickly have that node i can decode the
desired packets Wh_,i, h # i, as long as S;(n) 2 ;. That is, when the knowledge
space in the end of time n contains the desired message space.

Note that each node can only send a linear mixture of the packets that it cur-
rently “knows.” Therefore, we can further strengthen the encoding part (A.2) by the

following statement:
If o(t) =1, then X;(t)=c,; W' for some c,€ S;(t — 1). (A.6)

We can now define the LNC capacity region.

Definition A.1.1. Fiz the distribution of Z(t) and finite field F,. A 6-dimensional
rate vector R is achievable by LNC if for any € > 0 there exists a joint scheduling
and LNC' scheme with sufficiently large n such that Prob(VAVi_m # W) < € for all
i €41,2,3} and h #i. The LNC capacity region is the closure of all LNC-achievable
R.

A.2 The LNC Capacity outer bound

Since the coding vector ¢; has n Ry number of coordinates, there are exponentially
many ways of jointly designing the scheduling o(t) and the coding vector choices

¢; over time when sufficiently large n and F, are used. We will first simplify the
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aforementioned design choices by comparing c¢; to the knowledge spaces S;(t — 1)
described previously. Such a simplification allows us to derive Proposition A.2.1,
which uses a linear programming (LP) solver to exhaustively search over the entire
coding and scheduling choices and thus computes an LNC capacity outer bound.
Recall that (i, 7, k) €{(1,2,3),(2,3,1),(3,1,2)}, the cyclically shifted node indices.
For example, if i = 2, then j = 3 and k = 1. We also use S; as shorthand for S;(t—1),
the node-i knowledge space in the end of time ¢ — 1. For all ¢ € {1,2,3}, define the

following seven linear subspaces of 2

AP () £ g, AP (1) £ 8,8 QL (A.7)
AP 2 S & Vs, AV () £ 5,6 Qi @ Vs, (A.8)
At 2 S @S, ASD(t) 2 8 @ S; @ Yoy (A.9)
ASD () 2 8@ S; @ Q. (A.10)

Since the knowledge spaces S; evolves over time, see (A.5), the above “A-subspaces”
also evolves over time.

There are in total 7 x 3 = 21 linear subspaces of {2. We often drop the input
argument “(¢)” when the time instant of interest is clear in the context. We then
partition the overall message space Q into 22! disjoint subsets by the Venn diagram
generated by these 21 subspaces. That is, for any given coding vector c;, we can place
it in exactly one of the 22! disjoint subsets by testing whether it belongs to which
A-subspaces.

We can further reduce the possible placement of c; in the following way. By (A.6),
we know that when o(t) = 4, node i selects c; from its knowledge space S;(t — 1).
Hence, such c¢; must always lie in any A-subspace that S; appears in the definition.

There are 10 such A-subspaces: Agi) to Aff); Agi’j) to Ag’j); and Agk’i) to Aék’i). As
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a result, for any coding vector c¢; sent by node i, we only needs to check whether c;
belongs to which of the following 11 remaining A-subspaces:
KOS DA 2 Y ,

AD 2 A0 AW 2 40)

RO AY AL AD AP 2 AP AD L AW
A £APY, AT EAPY AR £ AP, (A11)

In (A.11), we rename those 11 remaining A-subspace by Agl) to Agll) for easier future
reference. For example when ¢ = 3, such 11 subspaces Af’) to Aﬁ) are A§” to Afll);
A§2) to Af); and A§1’2) to A§1’2), respectively. For any 11-bitstring b = bibsy - - - b1, we

define “the coding type-b of node i’ by

TYPEY 2 5,0 < N Al(")) \ ( U A}“) . (A.12)
lib=1 1:b;=0

Namely, the S;(t — 1) that node ¢ can choose c; from at time ¢ is now further divided
into 211 = 2048 disjoint subsets, depending on whether c; belongs to Al(l) or not for
=1 to 11. For example, TYPE%)9 (i.e., type-00010101001 of node 1) contains the
c; in S; that is in the intersection of {Ail),Aél), Agl),Aﬁ)} but not in the union of

{Agl), Aél), Aél),Aél),Agl), Aél), A%)} By (A.11) and (A.12), we can write

TYPE(, £ 510 (4P 0 AP 0 AP 0 A7)

2 2 2 3 3 23 2.3
\(Ag)uAg)uAg)uAg)uAg’uAg U A§ ’).

In sum, any c; chosen by node ¢ must fall into one of the 2! = 2048 subsets TYPES)
defined by (A.11) and (A.12).

We can further strengthen the above observation by proving that 1996 (out of
2048) subsets are empty. For example, TYPE&Z'O)24 (i.e., type-10000000000) is always
empty since there is no such vector that can be inside Agl) = Agj ) but not in Agl) = Agj )

because we clearly have Ag )5 Agj ) by definition (A.7). By eliminating all the empty
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subsets, ¢; chosen by node i can only be in one of 52 (out of 2048) subsets. We call

those 52 subsets the Feasible Coding Types (FTs) and they are enumerated as follows.

FTs 2{0,1,2,3,7,9,11, 15,31, 41, 43, 47, 63,127, 130, 131, 135, 139, 143, 159, 171, 175,
191,255, 386, 387, 391, 395, 399, 415, 427, 431, 447, 511, 647, 655, 671, 687, 703,
767,903,911, 927,943, 959, 1023, 1927, 1935, 1951, 1967, 1983,2047}.  (A.13)

Since the coding choices are finite (52 per node and totally 3 nodes), we can derive
the following upper bound using those 52 x 3=156 feasible types that fully cover (2

at any time t.

Proposition A.2.1. A 6-dimensional rate vector R is in the LNC capacity region
only if there exists 52 X 3 non-negative variables :)3,(;) for allb € FTs and i € {1,2,3}
and 7 x 3 non-negative y-variables, yf) to yf), ygi’j) to yéi’j) for alli € {1,2,3}, such
that jointly they satisfy the following three groups of linear conditions:

e Group 1, termed the time-sharing condition, has 1 inequality:

( > xﬁj)> + ( > x&?) + ( > x,(j’) <1. (A.14)

VbeFTs VbeFTs VbeFTs
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o Group 2, termed the rank-conversion conditions, has 21 equalities: For all i €

{1,2,3}, and distinct indices j and k in {1,2,3}\i by circular-shifted way,

ygi) = ( Z x](oj)> “Pji T ( Z xl()k)> * Pk—i T Ri—>j + Risk,

VbeFTs w. b5=0

O] RN (D o

VbeFTs w. bg=0 VbeFTs w. ba=0

VbeFTs w. b1=0

VbeFTs w. b7=0 VbeFTs w. b3=0

Z x'(oj)> “Pji T ( Z ) | - Phoi

VbeFTs w. bg=0 VbeFTs w. bs=0

+ Ri—>j + Ri—)k + Rj—>z’ + Rk—m

W= X xﬁk)> Phosivy + Ricj + Ris + Rivsi o+ R,
VbeFTs w. bo=0

ys? = Z 951(:)> Prosivi + Rinj + Riok + Rysi + Ryt + R,
VbeFTs w. b1g=0

i) = Z 951(:)> “Phivy T Rig + Risge + Bji + Ry + s
VbeFTs w. b11=0

e Group 3, termed the decodability conditions, has 6 equalities:

vie{1,2,3}, oy =y =yl =y,

vie (1,23} o' =y =y = Ry,

vy = ( )
yéi) - ( Z Ig)) “Dj—i t+ < Z l,gﬂ) “ Prk—i + Ri—>j + R, + Ry,
- ( )

(A.15)

Pr—i T Rinj + Risi + Ry,

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

(A.21)

(A.22)
(A.23)

The intuition is as follows. Consider any achievable R and the associated LNC

scheme. For any time ¢, suppose the given scheme chooses node 7 to transmit a

coding vector c;. By the previous discussions, we can examine this c; to see which

TYPES) it belongs to by looking at the corresponding A-subspaces in the end of ¢ — 1.

Then after running the given scheme from time 1 to n, we can compute the variable
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(3 a

Ty = %E [Z?:l 1{C cTYPE!)) for each TYPE,(;) as the frequency of scheduling node
t b

¢ with the chosen c; happening to be in TYPE,(OZ). Since each c¢; belongs to exactly

one of the 52 x 3=156 feasible coding types, the time-sharing condition (A.14) holds

naturally. We then compute the y-variables by

Y 2 %E [rank (AP (n)] | V1 € {1,2,3,4), (A.24)

yl(ivj) A %E [rank(Az(i’j)(”))] , VEe{1,2,3},

as normalized expected ranks of A-subspaces in the end of time n. We now claim
that these variables satisfy (A.15) to (A.23). This claim implies that for any LNC-
achievable R, there exists :)3,(;) and y-variables satisfying Proposition A.2.1, which
means that Proposition A.2.1 constitutes an outer bound on the LNC capacity.

To prove that (A.15)—(A.21) are true,> consider an A-subspace, say Aél) (t) =
S1(t—=1) B Q31 = RS1(t— 1) B Qo ® Q143 D Q3,1 as defined in (A.8) and (A.5)
when (7, j, k) = (1,2, 3). In the beginning of time 1, node 1 has not received any packet
yet, i.e., RS1(0) = {0}. Thus the rank of Aél)(l) is rank(Q10 @ Q3 @ Q351) =
nRi_» +nRi_3+nR3_1.

The fact that S;(t—1) contributes to Aél) (t) implies that rank(Agl) (t)) will increase
by one whenever node 1 receives a packet ¢;W ' satisfying c; ¢ Agl) (t). Since Agl) (t)
is labeled as A?), see (A.11) with (4,7,k) = (2,3,1), whenever node 2 sends a c;
in TYPES) with b; = 0, such ¢; is not in Aél)(t). Whenever node 1 receives it,
rank(Aél) (t)) increases by 1. On the other hand, Aél) (t) is also labeled as A§3), see
(A.11) with (4,4, k) = (3,1,2). Hence, whenever node 3 sends a c¢; in TYPES) with

2For rigorous proofs, we need to invoke the law of large numbers and take care of the e-error
probability. For ease of discussion, the corresponding technical details are omitted when discussing
the intuition of Proposition A.2.1.



118

b3 =0 and node 1 receives it, rank(Aél)(t)) also increases by 1. Therefore, in the end

of time n, we have

n

(1) _
rank(A4; " (n)) = Z 1{nodo 2 sends ¢ € TYPEY with b7:0,}

t=1 and node 1 receives it
n

A.
+ Z 1{node 3 sends ctETYPES) with b3:0,} ( 25)

t=1 and node 1 receives it

+ rank(A57(0)).

Taking the normalized expectation of (A.25), we have proven (A.17) for i = 1. By
similar rank-conversion arguments, (A.15)—(A.21) are true for all ¢ € {1,2, 3}.

In the end of time n, since every node i € {1,2,3} can decode the desired packets
W,_,; and Wy_,;, we thus have S;(n) O Q,_; and S;(n) O Q4_;, or equivalently
Si(n) = Si(n) & Qj_; & Q_;. This implies that the ranks of Agi) (n) to Afli) (n) in
(A.7) and (A.8) are all equal. Together with (A.24), we thus have (A.22). Similarly,

one can prove that (A.23) is satisfied as well. The claim is thus proven.

A.3 The Match Proof

We now prove that both the constructed LNC outer bound of Proposition A.2.1
and the simple LNC achievability scheme of Proposition 3.2.2 in Scenario 1 meets

regardless of channel parameters.

Proposition A.3.1. The outer and inner bounds in Propositions A.2.1 and 3.2.2
match for all channel parameters and they thus describe the 6-dimensional LNC' ca-

pacity region.

Remark: One important implication is that for the 3-node 6-flow setting, we do
not need to resort to any “exotic” LNC operation. Instead, 4 simple coding choices
described in Section 3.5 are sufficient to achieve the optimal LNC capacity under any

channel parameters.
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A.3.1 Proof of Proposition A.3.1

For the readability, we rewrite the original 52 Feasible Types (FTs) defined in
(A.13) that each node i € {1,2,3} can transmit:

FTs £{000,001,002,003,007,011,013,017, 037, 051
053,057,077, 0F7, 102,103, 107, 113,117, 137,
153,157,177, 1F7, 302, 303, 307, 313, 317, 337,
353, 357, 377, 3F7, 507, 517, 537, 557, 577, 5F7,
707,717,737,757,777, 7F7,F07,F17, F37, F57,

F77,FF7), (A.26)

where each 3-digit index bybybs represent a 11-bitstring b of which by is a hexadec-
imal of first four bits, by is a hexadecimal of the next four bits, and bg is octal of
the last three bits. It should be clear from the context whether we are representing b
as a decimal index, e.g., TYPE%)97 or as a 3-digit index based on hexadecimal/octal,
e.g., TYPEW.

For the notational convenience, we often use FTs(-,-,-) to denote some collec-
tion of coding types in FTs. For example, FTs(F,-,-) = {b € FTs with b, = F},
corresponding to the collection of coding types in FTs with by = by = b3 = by = 1.

Without loss of generality, we also assume that p;,; > 0 and p,—,;, > 0 for all
(i,7,k) € {(1,2,3),(2,3,1), (3,1, 2)} since the case that any one of them is zero can be
viewed as a limiting scenario and the polytope of the LP problem in Proposition A.2.1
is continuous with respect to the channel success probability parameters.

We now introduce the following three lemmas.
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Lemma A.3.1. Given any rate vector R and the associated {x,(tf)}-varmbles satisfy-

ing Proposition A.2.1, the following equalities, (A.27) to (A.36), always hold for all

(1,7, k) € {(1,2,3),(2,3,1),(3,1,2)}.
Rk—)i + Rk—)j =
Rk—)j =

Rk—)i =

be

VbeFTs(-,-,0)

_ €)
R+ Ry = g T

VbeFTs w. bs=0,bs=1
_ €)

Rji= >y
VbeFTs w. bs=0,b6=1
_ § : ()

Ry = Ty,

VbeFTs w. bs=0,b7=1

Zx

beFTs(-,7,-

Zx

beFTs(7,,

'pj—n'"‘

beFTs(-

be

(k) ) . .

Ty Pk—ivi,
VbeFTs w. bg=0

NOR I

b Pk—ivy,
VbeFTs w. b1p=0

NOR I

b pk—)z\/]7

VbeFTs w. b11=0

[ W

VbeFTs(:,-,3)

(k)

“Pj—i T+ 5 Ty |t Pe—is
VbeFTs w. by=0,by=1
(k)

"Djsi T 5 Ty, | - Pk—is
VbeFTs w. by=0,by=1
(k)

“Pj—i T+ 5 Ty | Pe—is
VbeFTs w. by=0,bs=1

* Pk—i

“Pjoi T be

1,) beFTs(1,,-)

* Pe—i-

(A.27)

(A.28)

(A.29)

(A.30)

(A.31)

(A.32)

(A.33)

(A.34)
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( Z xl(ok)> Prk—ivy = < Z xi,’“)) ‘Dk—j + < Z a:?) ‘Di—js

VbeFTs w. b1p=0 VbeFTs w. bs=0,bg=1 VbeFTs w. b1=0,bo=1

(A.35)

( Z l’l()k)) ‘Pk—ivy = ( Z Ig)> ‘Dji+ ( Z :L’l()k)> Di—si-

VbeFTs w. b11=0 VbeFTs w. bs=0,b7=1 VbeFTs w. b;=0,b3=1

(A.36)

The proof is relegated to Appendix A.3.2.
The following Lemma A.3.2 implies that we can impose special structure on the

{xg) }-variables satisfying Proposition A.2.1. For that, let us denote
FTs 2 {051,302, 337, 357, 3F7, 537, 557, 5F7, F37, F57}, (A.37)

of which contains only 10 types out of 52 feasible coding types of the original FTs.

Lemma A.3.2. Given any R and the associated 156 non-negative values {:)3,(;)} sat-
1sfying Proposition A.2.1, we can always find another set of 156 non-negative values

{ig)} such that R and {xl(j)} jointly also satisfy Proposition A.2.1 and

il(oi) =0 for all b € FTs\FTs. (A.38)

That is, without loss of generality, we can assume only those {x,(;)} with b € FTs

may have non-zero values. The proof of this lemma is relegated to Appendix A.3.3.

Lemma A.3.3. Given any R and the associated 156 non-negative values {x,(ol)} that
satisfy Proposition A.2.1 and (A.38), we can always find 15 non-negative values t?;)/
and {t}gl/}?zl for all i € {1,2,3} such that jointly satisfy three groups of linear con-

ditions in Proposition 3.2.2 (when replacing all strict inequality < by <).

The proof of this lemma is relegated to Appendix A.3.4.
One can clearly see that Lemmas A.3.2 and A.3.3 jointly imply that the outer
bound in Proposition A.2.1 matches the closure of the inner bound in Proposi-

tion 3.2.2. The proof of Proposition A.3.1 is thus complete.
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A.3.2 Proof of Lemma A.3.1
We prove the equalities (A.27) to (A.30) as follows.

Proof. These equalities can be derived by using (A.19)—(A.21) and (A.23) in Propo-
sition A.2.1. Since ygi’j) = yéi’j) = ygf’j) = Ry by (A.23), substituting Ry to the
left-hand side of (A.19)—(A.21), respectively, we have

Ryi + R = Z fék)) " Pk—ivy

VbeFTs w. bg=0

Ry = Z :L',(Dk)> * Pl—ivjs

VbeFTs w. b1p=0

Ry = Z :L’l()k)> " Pk—ivy)

VbeFTs w. b11=0

which are equivalent to (A.27), (A.28), and (A.29), respectively.
We now prove the relationship (A.30). Substituting (A.28) and (A.29) to the
left-hand side of (A.27), we then have

PSR RS o) P i ot ) e
VbeFTs w. b1p=0 VbeFTs w. b11=0 VbeFTs w. bg=0

Note that for any type-b, whenever bjg = 0 (resp. b;; = 0), by is also zero.
This is because Ag) C AYO) (resp. Ag) C Agll) ) regardless of node index i, see (A.11).
Therefore, (A.39) can be further reduced to

( Z :cl(,k)> *Dh—sivj = ( Z xl(ok)> Privi- (A.40)

VbeFTs w. bg=0,b10=0,b11=0 VbeFTs w. bg=0,b10=1,b11=1

Dividing py—v; on both sides of (A.40), we finally have (A.30). The proof is thus
complete. [ |

We prove the equalities (A.31) to (A.34) as follows.
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Proof. These equalities can be derived by using the decodability equality (A.22) in
Proposition A.2.1, i.e., yli) = yéi) = yéi) = yy). First from yli) = yff) and by (A.15)

and (A.18), one can easily see that we have

Rji+ Ry = ( > x@) Dy + ( > x,(f))  Dhosis
VbeFTs w. bs=0,bs=1 VbeFTs w. b1=0,bs=1
which is equivalent to (A.31). This is because for any type-b, if by = 0 (resp. by = 0),
then bs (resp. b;) must be zero as well due to the fact that Ag) C A;“ (resp. Agl) C
Aff)) regardless of node index, see (A.11). Similarly from the facts that Ag) C Ag),
Ay) C AS), and by (A.15) and (A.16), yy) = yg) implies

Rj—)i = ( Z 5171()])> *Dj—i + ( Z LUIE)k)) * Pk—is
VbeFTs w. bs=0,bs=1 VbeFTs w. b1=0,by=1
which is equivalent to (A.32).
Moreover, from the facts that Ag) C A?), Agl) C Ag)), and by (A.15) and (A.17),

yf) = y:(f) implies

Rk—)i - ( Z ZL'I()])> *Pi—i + ( Z I’I(Ok)> * Pk—sis (A41)
VbeFTs w. b5=0,b7=1 VbeFTs w. b1=0,b3=1

which is equivalent to (A.33).
We now prove the relationship (A.34). Substituting (A.32) and (A.33) to the
left-hand side of (A.31), we thus have

(s @y )

VbeFTs w. b5=0,bg=1 VbeFTs w. bs=0,b7=1
§ : (k) § : (k)
VbeFTs w. b1=0,bo=1 VbeFTs w. b1=0,b3=1

= < Z Ig)> " Dj—i + < Z x}(:)) * Pk—i-

VbeFTs w. b5=0,bg=1 VbeFTs w. b1=0,b4=1
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Note that for any type-b, whenever bg = 1 (resp. by = 1), bs must be one due to
the fact that Aé“ C Ag) (resp. Agl) C Ag)). The same argument holds such that for
any type-b, whenever by = 1 (resp. b3 = 1), we have by = 1. Then the above equality

further reduces to

j k
SO ) Eoee D S
VbeFTs w. bs=0,bg=1,b7=1,bg=1 VbeFTs w. b1 =0,ba=1,b3=1,ba=1
j k

VbeFTs w. b5=0,b=0,b7=0,bg=1 VbeFTs w. b1=0,b2=0,b3=0,b4=1

which is equivalent to (A.34). The proof is thus compelte. [
We prove the equalities (A.35) and (A.36) as follows.

Proof. By cyclic symmetry, we can rewrite (A.32) as follows.

Ry = < Z !L"](Dk)> “Pk—j T < Z x?) “ Disj- (A.42)

VbeFTs w. bs=0,bg=1 VbeFTs w. by=0,by=1

Then, (A.35) is a direct result of (A.28) and (A.42). Similarly, (A.36) is a direct
result of (A.29) and (A.33). The proof is thus complete. |

A.3.3 Proof of Lemma A.3.2
Before proving this lemma, we introduce the following “weight-movement” oper-
ator.

1. For any 2 non-negative values a and b, the operator a — b implies that we keep
decreasing a and increasing b by the same amount until @ = 0. Namely, after

the operator, the new a and b values are

Gnew = 07 brew = b+ a.
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. For any 3 non-negative values a, b, and ¢, the operator {a,b} — ¢ implies that
we keep decreasing a and b simultaneously and keep increasing ¢ by the same
amount until at least one of a and b being 0. Namely, after the operator, the

new a, b, and c values are

Upew = @ —min{a, b}, bpew = b — min{a, b},

Cnew = € + min{a, b}.

. For any 4 non-negative values a, b, ¢, and d, the operator {a,b} — {c,d} implies
that we keep decreasing a and b simultaneously and keep increasing ¢ and d
simultaneously by the same amount until at least one of a and b being 0. Namely,

after the operator, we have

Upew = @ —min{a, b}, bpew = b — min{a, b},

Chew = €+ min{a, b}, dpew = d+ min{a,b}.

. We can also concatenate the operators. For example, for any three non-negative

values a, b, and ¢, the operator a— b—> ¢ implies that
pew = 0, bpew =0,  Cpew = c+ (a+ D).

. Sometimes, we do not want to “move the weight to the largest possible degree”

as was defined previously. To that end, we define the operator a3
Apew = a4 — A, bnew = b+ A.

where A (< a) is the amount of weight being moved from a to b.

. A
. Finally, a— () means anew = 0 and a — () means ayey = a — A.
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We now prove Lemma A.3.2. Given R and {x,(tf)}—values satisfying Proposi-
tion A.2.1, let us denote the corresponding values of y-variables in the rank-conversion
conditions (A.15)—(A.21) as {y}.

Recall that each coding type TYPES) of node i corresponds to a specific subset
of its knowledge space S;, governed by 11 A-subspaces Agl) to Aﬁ’, see (A.11). As a
result, by the rank conversion equalities (A.15)-(A.21), the bitstring b of each TYPES)

will determine the contribution from the value zg) to the associated 11 y-values: y%j )

to yij); ygk) to yik); and ygj’k) to yéj’k). For example, any vector c; of TYPE§?7 (i.e.,
type-01111111111 of node i), does not belong to Agl) By (A.11) and (A.7)-(A.10),
we know that A = AP (1) = S;(t —1). As a result, whenever a TYPEY, coding
vector, sent by node i at time ¢, is succesfully received by node j, the rank of S;(t—1)

will increase by 1. Therefore, the value x%,’? (the frequency of using type-7F7 of node

i) contributes to ygj) (the normalized expected rank of Agj)(n) in the end of time
n) by x&% - Di—j. Any change of the value x&% will thus change the corresponding
value ygj ) accordingly as described in the rank conversion equalities (A.15)-(A.21) in
Proposition A.2.1.

The above intuition/explanation turns out to be very helpful when discussing the
LP problem. Also, since all {y}-values can always be calculated from the given {x,(;) }-
values by (A.15)—(A.21), all our discussion can be focused on the given {x,(oi)}—values,
and all {y }-values can be automatically computed. The proof of Lemma A.3.2 is done
by proving the following intermediate claims.

Intermediate Claim 1: For any R and the corresponding 156 non-negative values

{x,(oi)} satisfying Proposition A.2.1, we can always find another set of 156 non-negative

values {x,{j)} such that R and {x,{j)} jointly satisfy Proposition A.2.1 and
# =0, Vie{1,2,3} and Vb € {FF7,F07,0F7,007} . (A.43)

Proof of Intermediate Claim 1: The proof is done by explicit construction. We se-

quentially perform the following weight movement operations for all i € {1,2, 3}:
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2 0; 20— 0: 2 —0; and 25, — 0. After the weight movement, (A.43) is obvi-
ously true for the new values of {:cb }. What remains to prove that the time-sharing
condition (A.14) and the decodability conditions (A.22)—(A.23) still hold (when com-
puting the new {y}-values using the new {x,(;)}—values) after the weight movement.
To that end, we prove that (A.14), (A.22), and (A.23) hold after each of the weight
movement operations. We first observe that xffF)7 — () does not change any y-value
because the coding type-11111111111 does not participate in the rank conversion
process. As a result, after 55%)7 — (), the decodability conditions (A.22)—(A.23) still
hold. Since xffp)7 — () reduces the value of xé?% the time sharing condition (A.14) still

holds.

We now consider 23, — (). Since FO7 = 11110000111 in 11-bitstring, it means
that xéio)7 contributes to the ranks of A(i) to Ag). By (A.11), x§27 contributes® to the
values of y§ to y , the ranks of A ) to Aik) in the end of time n, respectively By

(A.15)—(A.18), the operation :Eéw — () will decrease each of y§ to y4 by the same

amount (xéio)7 - pimsk). Therefore, after xff& — (), the new values of yl ) to y ) still

satisfy the decodability equality (A.22). Note that x§27 does not contribute to any of

y(] ") o y(] " and therefore (A.23) still holds after :)séig7—>®.

(@)

By similar arguments, the operation xy, — () will decrease y(] )

to y4 by the

(4:k

same amount (x(()F)7 - pi—»j) while keeping all yl ) to y4 ) and y(]’ to y3” unchanged.

Therefore the decodability condition (A.22) still holds. By similar arguments, the

operation x(()ig7 — () will decrease y%j) to y4 by the same amount of (:)3037 pi_>j)

and decrease yg ) to y by the same amount (:c(()o)7 - pi—yk) while keeping all yl J)

y?(,]’ unchanged. Therefore the decodability conditions (A.22) and (A.23) still hold.

to

Intermediate Claim 1 is thus proven. |

Intermediate Claim 2: For any R vector and the 156 corresponding non-negative

{xg) }-values satisfying Proposition A.2.1 and (A.43), we can always find another set of

3This argument can also be made by directly examining equalities (A.15)—-(A.21). In (A.15)—(A.21),

we can see that only in (A.15)—(A.18) we use the bs to bg values to determine the contribution of

{x(z) :vg),:vb )} Since y§ ) to yi) are contributed by xl(TO)77 we thus know that only yg ) to y( )

contributed by :10120)7.
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156 non-negative values {:)3,(;)} such that R and {xﬁf)} jointly satisfy Proposition A.2.1
and (A.43), plus

0 000, 003, 013, 053, 103,
iV =0, Vie{1,2,3}andVbe . (A.44)
113,153,303, 313, 353

Proof of Intermediate Claim 2: Consider any {xﬁf) }-values satisfying Proposition A.2.1
and (A.43). Since Proposition A.2.1 holds, Lemma A.3.1 implies that (A.30) holds
as well. When we count the non-zero coding types in (A.30) (those not in (A.43)),

we immediately have
fc(;) 1'(()23 + zc(>21)3 + fc(;gs + zgzo)a + 1'§Z1)3 + xgzs)s + zgo)a + fg?s + fgga (A.45)
Then, we sequentially perform the following operations:

{xoosa xooo} — {37001a 1'(()22

{%137 xooo} - {x0027 x(()z1)1 )

{%saa xooo} - { 0027 x(()25)1

{xmaa xooo} - {37001, 1’?(32 )

{:L'113, xooo} - {37011a 1'&22

{551537 xooo} - {xosu xglgz )

{553037 xooo} - { 0017 x:(;(32

{:L'313, xooo} - {37011, 1':(522 )

{:L'353, xooo} - {37051a 1'8(22 .
By (A.45), one can easily verify that after the above operations, we have (A.44).
Thus it is left to show that after these operations the linear conditions of Proposi-

tion A.2.1 are still satisfied.
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First notice that the time-sharing condition (A.14) is still satisfied since weight-
moving operation decreases weights of two entries and increases the weights of another
two entries by the same amount. We now argue that after each of the totally 9
weight-moving operations, the associated y-values remain unchanged. Take the last
weight-moving operation {x§23, :zéio)o} — {xé@i, xé@z} for example. The corresponding

coding types are

TYPEY, in 11-bitstring = 00110101 011,
TYPEY), in 11-bitstring = 0000 0000 000,
TYPEY, in 11-bitstring = 00000101 001,
TYPEY, in 11-bitstring = 0011 0000 010.

Let b;(353) denote the [-th bit of the 11-bitstring 353 = 00110101011, and similarly
b;(000), b;(051), and b;(302) denote the I-th bit of 11-bitstrings 000, 051, and 302,
respectively. One can see that for any [, the set {b,(353),5,(000)} is identical, as
a set, to the set {b;(051),5,(302)} for all | = 1 to 11. Namely, when performing
{xé@s,xgigo} — {xé@l,xgng}, for all { = 1 to 11, the impact on the rank of Al(l) by
decreasing simultaneously the two entries {:5233, xé?o} is offset completely by increas-
ing simultaneously the two entries {zé@l,xgigz}. For example, bit b; (when [ = 1)
corresponds to Agl) = Agj) and we have 0,(353) = 0 and b,(000) = 0. Therefore,
if we separate the weight-moving operation {xgige,,x((fgo} — {xé@l,xg%} into the de-
creasing half and the increasing half, then during the decreasing half, the y%j )_value
will decrease by min{xgiga, x(()io)o} - pi—s; due to the decrease of nggs and then decrease
by another min{xé@s,xgigo} - pisj due to the decrease of :c(()igo. On the other hand,
during the increasing half, the y%j ) value will increase by min{:zggg,,:zéigo} - Diy; due
to the increase of :)3(()21 and then increase by another min{:zggg,, xé?o} - pi—; due to the
increase of :c:(ng. The amounts of increase and decrease perfectly offset each other

since {b(353), b;(000)} = {0,0} = {b;(051), b, (302)}.
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In sum, by similar reasoning, all the y-values will remain the same after each of

the above 9 weight-moving operations. The proof is thus complete. |

Intermediate Claim 3: For any R vector and the 156 corresponding non-negative
{x,(oi) }-values satisfying Proposition A.2.1 and (A.43) to (A.44), we can always find
another set of 156 non-negative values {:)sl(j)} such that R and {x,ﬂj)} jointly satisfy
Proposition A.2.1 and (A.43) to (A.44), plus for all i € {1,2,3},

I G o D e

beFTs(,7,-) beFTs(-,1,7)

TG B

beFTs(7,,) beFTs(1,,)

(A.46)

Proof of Intermediate Claim 3: Since the node indices are cyclically decided, we will

prove the following equivalent forms:

Z :)sg) = Z xS’ , (A.47)

beFTs(-,7,) beFTs(-,1,)

Z x,(ok) = Z x,(ok) : (A.48)

beFTs(7,-,) beFTs(1,-,)
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based on the equality (A.34) of Lemma A.3.1. For shorthand, define the following 4

non-negative terms of (A.34) as follows:

term1é Z :c,ﬂ.” * Pj—is
beFTs(-,7,")

k
term2é Z xé) * Pk—is
beFTs(7,,)
termz = Z xi,’) P
beFTs(-,1,")

k
termy = Z l’é . Pl—i-
beFTs(1,,)

Using the above 4 terms, (A.34) can be rewritten by
term; + termy = terms + termy. (A.49)

Recall that we assume both p;_,; > 0 and pj_,; > 0. Consider the following three
cases depending on the values of term; and terms.

Case 1: term; = termz. By (A.49), we also have termy = termy. By the definitions
of term; to termy, both (A.47) and (A.48) hold automatically.

Case 2: term; < terms. Since each term is strictly non-negative, we thus have
termz > 0. Also by (A.49), we must also have termy > term, and thus term, > 0.
In the following, we will describe a set of weight-moving operations such that after
moving the weights among {:L’l()j), m,(ok)}, the new {:cl()j), :L’l()k)} satisfy Proposition A.2.1,
(A.43), and (A.44); and the gap termz — term; computed using the new {xg)} is
strictly smaller than the gap computed by the old {xg )} while terms > term;. We

can thus iteratively perform the weight movements until term; = terms. The final

{x,(oj), xl()k)} then satisfy (A.46) now.
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The desired weight-moving operations are described as follows. Since termz > 0,
we can find an 11-bitstring b*™s € FTs(-, 1, -) such that x,(Djt)ermg > (. Similarly, since

termy > 0, we can find a b*™2 € FTs(7, -, -) such that ngz,m > 0. We then define
A - mln{ xl(:)‘y;chmg : p]—>27 x](ﬁzrmg : pk—)i7 term3 - terml} .

Obviously, we have A > 0 since we assume p;_,; > 0 and pj_,; > 0 for all (i, j, k).
We then compute A*™ = A/p,_,; and A*™ = A/p,_,;. By the definition of A, we
have 0 < Aterms < x,(Djt)ermg and 0 < Aterm2 < x,ﬁ,’izm.

Then, we perform the following weight-moving operations:

. Aterm3 -
x](jt)ermg — x](jt)ermg)aaoéloy (OP]_)
k) Ateer k)
x](:)tzer EE— x](:)tgrm2®4ooy (OPQ)
where @ is bit-wise exclusive or. For example, if b*™3 = 117 which belongs to

FTs(-,1,-), then b*™3®040 = 157 which now belongs to FTs(-, 5, -) instead. Similarly,

if b**™2 = 737, then b*™2 @ 400 = 337, which now belongs to FTs(3, -, -).

We now argue that after moving the weights among {xg ), x,(ok)}, the new {:cl()] ), :L’l()k)}

satisfy Proposition A.2.1, (A.43), and (A.44); and the gap termz — term; computed
using the new {xg )} is strictly smaller than the gap computed by the old {:c,(D] )} while
terms > term;. To that end, we first argue that after the above weight movements,

both (A.43) and (A.44) still hold. The reason is that since b*™2 & 400 € FTs(3,-, )

and b*™s $ 040 € FTs(+,5, ), we never move any weight to the frequencies {:)3,(0] ), x,(Dk)}

satisfying (A.43). As a result, (A.43) still holds after the above weight movements.

Since b*™2 @ 400 € FTs(3,-, ), it may look possible that we can increase the weight

of xg’éé, xg%, and xé’% in (A.44) by the weight-moving operation (OP2). However,

to increase the weight of xé’éé, xé’%, and :L’gl;)a, it means that we must have b*™? €

{703,713,753} to begin with. However, they are not in the feasible coding types FTs,
see (A.26). As aresult, after (OP2) movement, (A.44) still holds. Since x,(Djt)ermS @ 040 €

FTs(-, 5, ), it may look possible that we can increase the weight of zé@s, 93&]5)3, and xg];a
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in (A.44) by the weight-moving operation (OP1). However, to increase the weight
of zé?a, xﬁ@’a, and xg%, it means that we must have b*™s € {013,113,313} to begin
with. However, since we choose b*™# such that :L’l()jt)e,mg > 0, and the original {:c,(D] Y-
values satisfy (A.44), it is impossible to have b*™ € {013,113,313}. As a result,
after (OP1) movement, (A.44) still holds.

We now consider the conditions in Proposition A.2.1. We first notice that it is
clear that after moving the weights, the time-sharing condition of Proposition A.2.1
still holds because at every iteration we only “move” the weights on the frequencies
{xﬁf ), x,(Dk)} without changing the overall sum. We now examine whether other condi-
tions of Proposition A.2.1 are still satisfied after the above modification process. For
that, we argue that the above process keeps all the y-values unchanged. To see that,
suppose (4,7, k) = (1,2,3) without loss of generality. Since the 11-bitstring 040 has
only 6-th bit being 1 and all the other bits being 0, the (OP1) operation will change
only the rank of Aéj), ie., Aéz) when (7,7, k) = (1,2,3). By (A.11), Aéz) = Agl) and
thus only yél) will be affected by this operation. Since we are moving the weight of
A'™s from x,(ftz,mg (the 6-th bit of b*™3 is 0 since b*™3 € FTs(-,1,-)) to x,(thZ,mS@MO
(the 6-th bit of b*™3 & 040 is 1), yél) will be decreased by (A™™3 - p,_,q), which is
equal to A. On the other hand since the 11-bitstring 400 has only the 2nd bit being
1 and all the other bits being 0, the (OP2) operation will change only the rank of
Aék), ie., Ag) when (7,7, k) = (1,2,3). By (A.11), A?) = Aél) and thus again only
yél) will be affected by this operation. Since we are moving the weight of A™™2 from
xSZ,mQ (the 2nd bit of b*™2 is 1 since b*™2 € FTs(7,-,)) to x,(jzrmz@%o (the 2nd bit
of b*™2 @& 400 is 0), yél) will be increased by (A®™™2.p; 1), which is equal to A.
The impacts of the two weight-moving operations (OP1) and (OP2) on yél) perfectly
offset each other. As a result, any of y-values are unchanged.

In the following, we will prove that (OP1) will decrease the value of terms by
A while keeping the values of term;, termy, and term, unchanged; and (OP2) will

decrease the value of terms by A while keeping the values of term, terms, and termy

unchanged. Thus after performing (OP1) and (OP2), the gap terms—term; computed
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by the new {:)sg)}—values decreases by A and we still have termsz > term; by the
definition of A while satisfying (A.49). We first observe that (OP1) manipulates only
{z,(oj )}, thus term, and term, will not be affected since both are based on {xl()k)} of
another node index. Also notice that b*™s € FTs(-, 1,-) if and only if b*™3 ¢ 040 €
FTs(-,5,-). Therefore, the weight movement (OP1) does not change the value of
term; since term; involves only those frequencies with b € FTs(-,7,-). Finally, since
bt™s ¢ FTs(-,1,-) and b*™s ¢ 040 € FTs(-, 5, -), the (OP1) movement will decrease
the value of term; and the decrease amount will be A*™3 . p, ., = A. The statement
that (OP2) decreases the value of termy by A while keeping the values of termy, terms,
and termy unchanged can be proved similarly. The proof of Case 2 is thus complete.

Case 3: term; > terms. Since each term is strictly non-negative, we thus have
term; > 0 and by (A.49), we must also have termy > 0. Again, we will describe a set
of weight-moving operations such that after moving the weights among {x,(oj ),x,(ok)},
the new {zg), x,(Dk)} satisfy Proposition A.2.1, (A.43), and (A.44); and the gap term; —
terms computed using the new {:c,(D] )} is strictly smaller than the gap computed by the
old {x,(oj )} while satisfying (A.49) and term; > terms. We can thus iteratively perform
the weight movements until term; = terms. The final {xg), [L’](Ok)} thus satisfy (A.46).

The desired weight-moving operations are described as follows. Since term; > 0,
we can find an 11-bitstring b*™* € FTs(+,7,-) such that :L’l()jt)e,ml > (. Similarly, since

termy > 0, we can find a b*™ € FTs(1, -, ) such that xé@m > 0. We then define
A= min{ xif;irml “Djsi xi,’iim * Pk—i, termyp — termg} .

We then compute A*™ = A/p;_,; and A*™ = A/p,_,;. Then, we perform the

following weight-moving operations:

G) AL () (k) A (k)
xbterml B zbterml @ 040° zbterm4 xbterm4® 400"

By almost identical reasonings as in the discussion of Case 2, we can prove that

after the above modification process, we have that the new {xg ), :L’,(Dk)} satisfy Propo-
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sition A.2.1, (A.43), and (A.44); and the gap term; — terms computed using the new
{zg )} is strictly smaller than the gap computed by the old {xﬁf )} while satisfying
(A.49) and term; > terms. The proof of Case 3 is thus complete. |

Intermediate Claim 4: For any R vector and the 156 corresponding non-negative
{x,(;) }-values satisfying Proposition A.2.1 and (A.43) to (A.46), we can always find
another set of 156 non-negative values {:)3,(;)} such that F and {{ES)} jointly satisfy
Proposition A.2.1 and (A.43) to (A.46), plus

p

)
011,017,037,057, 077, 102, 107,

0 117,137,157, 177, 1F7, 307, 317,
i =0, Vie{1,2,3} and Vb € . (A50)
377,507,517,577,707, 717,737,

757,777, TF7,F17,F77

\ J

Proof of Intermediate Claim 4: We simultaneously perform the weight-moving oper-
ations in the first column of Table A.1 for all nodes i € {1,2,3}. For each operation,
we also present how the associated y-values are affected after each operation. As de-
scribed in the proof of Intermediate Claim 1, one can verify the variations of y-values

by each operation in Table A.1. For example, the first operation [E(()ii)l — :B(()Ql moves

all the weight from x(()il)i to zggl. Since

TYPE{", in 11-bitstring = 00000001 001,

TYPE', in 11-bitstring = 00000101 001,

one can easily see that only the rank of Ag) will be affected since the only different

bit between 011 and 051 is the 6-th bit. By (A.11), Ag) = Aék) and thus only yék)
will be affected by mgil)l — :c(()?l operation. We observe that TYPEE)?1 participates in
the increase of ygk) (the 6-th bit of 011 being 0) but TYPE(, (the 6-th bit of 051
being 1) does not. Thus after the weight movement, yék) will be decreased by the

amount of (méil)l - pik) as indicated in Table A.1. The rest of Table A.1 is populated
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by examining all 10 weight-moving operations (the 10 rows) and their corresponding
impact on the y-values.

One can easily see from Table A.1 that after completing all 10 weight-moving
operations, for each node 4, 26 coding types (enumerated in (A.50)) of the new values

{:17,(;)} will be set to zeros.

Table A.1: The weight-moving operations and the corresponding variations of the
associated y-values for Intermediate Claim 4.

The underlying y-values are associated to 11-bitstring of node i’s coding type-b.
See (A.11) for conversion. For shorthand, we define p £ Di—; and ¢ £ ik

yt vy v vy ut! ys) us? vy
I<(>1)1_>$((>5)1 _Il()l)i q
x(lo)z _>1'go)2 _xggz P
O 0 @ 6 ~iy P a4
Tys7 > Tigg — Tg7r — Tazy @ NG
—Li77 P La77 - 4
0 0 0 0 —aldr —2ilr g
T117 = Tis7 — Ta17 > Tzs7 (@) @)
—ZLyg7 P —L317 4
(@) (i) (i) (@) —LL‘Y& p _x(110)7 q _"L'(10)7 q _"L'(110)7 g —;L'(120)7 :
Z107 > T307 7 T1r7 7 TaF7 ; @) @) @) @)
—ZLyp7 P —x3zo7 4 —Tzo7 " q —Tzor *q —Tze7 " {
O 0 ), () i P ke g
Tg77 > T737 > T777 —7 T37 0 )
L7 - P L777 - 4
O 0 @) ) oy p 5y 4
Tsi7 = U717 — L5y — Tsgy N0 @)
L7g7 * D —ZL717 4
() (@) (@) (i) +x§1(27 P _xélo)7 q _-'L'go)7 q _"L'Ef>10)7 q _5155520)7 q
Tgor —* T707 —* T787 > TFT @) (@) @ @ @
+T7p7 0 D —Z707 4 —x707 "4 —T7o7°q —T707 4
(@) (@) (@) (i) 7'77(()27 P 7'(()27 P 7-75(()27 P 7T((),27 P +'TE>7)7 -q
Zoa7 > Tor7 —> Trr7 —7 Trar W O @) G
Lor7 *P —Zor7 P —Lorr P —Lor7 " P +Tp77 - 4
(0) () 0 (0) *T(<)Z1>7 p 713(()1)7 P *37(()11)7 P *T(<)21>7 P *Tt()1)7 -q
Lot7 — Tosy — Tri7 — Trgy NG, G N R O o
Tog7 * D —Xos7 P —Tog7 ' P —Los7 " P Tri7 - 4

We now argue that after completing all 10 operations, the linear conditions of
Proposition A.2.1 plus (A.43) to (A.46) are still satisfied. To that end, we first notice
that only those {z{} with b € {051,302, 337,357, 3F7, 537, 557, 5F7, F37, F57} will
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increase after the weight movements. Since those coding types do not participate in
any of the terms in (A.43) to (A.46), the conditions (A.43) to (A.46) still hold after
the weight movements.

We now observe that the time-sharing conditions (A.14) are still satisfied since we

only “move” the weights. We now argue that after completing all 10 operations, all y%j )
to yij ) will decrease by the same amount (:)3827 —I—I((>i7)7 —I—Ié% +xéi5)7) -pij. The fact that

ygj ), yéj ) and yflj ) all decrease by the same amount (:c(()is)7 il + 28+ 2D ) - Pisj can

be easily verified by summing up the “impact” of the 10 weight movement operations
over each column of Table A.1, for columns 1, 2, and 4, respectively. To prove that

yéj ) also decreases by the same amount, we need to prove that

<$$3)7 + xg% + x%)? + x$25)7 + x%? + x%) ) * Di—j
(A.51)

= (xgzgz + x§’3)7 + xg?-, + xﬁ)? + xgzs)'/ + xgzg'/ + xng) ) *Disj-

We can prove that (A.51) holds by noticing that (A.51) is equivalent to the second

equality in (A.46) when removing the zero terms specified in (A.43) and (A.44).

We now argue that after completing all 10 operations, all y%k) to yflk) will decrease

by the same amount (58%)7 + x§27 + :L"go)7 + :E%) ) - ik The fact that y%k), yék) and

yik) all increase by the same amount (:c§27 + 2 + 2l + 2% ) - Piyk can be easily

verified by summing up the “impact” of the 10 weight movement operations over each
column, for columns 5, 7, and 8, respectively. To prove that yék) also increases by the
same amount, we need to prove that
(1'&27)7 + 5827)7 + fé?? + $E{’7)7 + 1'((327)7 + 1'1(;7) ) *Disk
(@) (@) (@) (4) (4) (@) (@) (A.52)
= <x0211 + T34y + Tai7 + Teir + Trir + Togr + xFZﬂ) * Disk-

We can prove that (A.52) holds by noticing that (A.52) is equivalent to the first
equality in (A.46) when removing the zero terms specified in (A.43) and (A.44).

One can also prove that yy’k) to yéj’k) remain unchanged since the 10 weight
movement operations have no impact on these three y-values. Since y%j ) to yflj ) all
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decrease by the same amount; ygk) to yik) all decrease by the same amount; and ygj k)

to yéj *) all remain the same, then the decodability conditions (A.22) and (A.23) must
hold after the 10 weight movement operations. The proof of Intermediate Case 4 is

thus complete. [ |

Intermediate Claim 5: For any R vector and the 156 corresponding non-negative
{x,(oi) }-values satisfying Proposition A.2.1 and (A.43) to (A.50), we can always find
another set of 156 non-negative values {:)3,(;)} such that F and {ZES)} jointly satisfy
Proposition A.2.1 and (A.43) to (A.50), plus for all 7 € {1,2,3},

#' =0, Vb € {001,002} . (A.53)

Proof of Intermediate Claim 5: We now provide an explicit weight movement such
that after the weight-moving process, Proposition A.2.1 and (A.43) to (A.50) hold,
and additionally (A.53) holds for the case when i = 1, i.e., (4,4, k) = (1,2,3). Then
by applying the cyclically symmetric weight-moving process to the cases of (i, j, k) =
(2,3,1) and (4,4, k) = (3,1,2), we can construct the new values {x,(;)} that satisfy
Proposition A.2.1, (A.43) to (A.50), and (A.53) for all i.

The weight movements for the case of (i,7,k) = (1,2,3) consist of two steps:

Firstly, we make :)3(()?1 = 0, and then secondly, we make 93(()?2 = 0. For the first step,
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we assume :58))1 > (. Otherwise, we can skip to the second step directly. We now

perform the following six operations:

{xg:(lna x357} - { Zos1; xg?? (OP3)
{xg:(lna x557} - {xosu xg?? ) (OP4)
{Ié]é)la $F57} _>$05)1a (OP5)
B 20 ) a2 o
(OP6)
where A = min{x()%J1 “ P13, xézg)7 - P23ty
)20 0 o S o)
where A = min{xé:(l))1 s, 1) “Passt, (OPT)
A 200 0 o 2
where A = min{:z:ozbJ1 prss, 1 Pz} (OP8)

We now argue that after these operations, (i) Proposition A.2.1 and (A.43) to
(A.50) still hold; and (ii) the new value of 2y, is zero. To prove (i), we note that after
the above weight movements, the time-sharing condition (A.14) of Proposition A.2.1
still holds because except for the operations (OP5) and (OP8), we only “move” the
weight between different frequencies while keeping the overall sum. And both (OP5)
and (OP8) decrease the total sum. As a result, the time-sharing condition still holds.
Moreover, since none of the coding types involved in (OP3) to (OP8) participate in
any of the terms in (A.43) to (A.50), the conditions (A.43) to (A.50) still hold after
these operations.

In the following, we prove that the decodability conditions (A.22) and (A.23) of

Proposition A.2.1 still hold after performing any one of the above 6 weight-moving
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operations. For example, we claim that the decodability conditions still hold after

(OP3). For that, we first notice that

TYPE(), in 11-bitstring = 00000000001,
TYPESY, in 11-bitstring = 00110101 111,
TYPELY, in 11-bitstring = 00000101 001,

TYPEY) in 11-bitstring = 00111111 111,

where each bit is associated to one y-value and the associated 11 y-values are y§2)

to yf), yf) to yf‘), and y§2’3) to y§2’3) in the order of 11-bitstring, see (A.11). For

shorthand, we denote the collection of these y-values corresponding to the first four
bits, the second four bits, and the last three bits as 1]1(3)4, gjl(i)4, and gjfi’?, respectively.

Then by the same arguments as used in the proof of Intermediate Claim 2, one can

easily prove that the 7 different y-values: (2)4 and jfi’g), remain unchanged after

(OP3). If we apply the same arguments as used in the proof of Intermediate Claim 2,

we can also prove that all y-values in the collection 1]1(3)4 (the second four) decrease

by the same amount of (min{x&)l, xgls)7} . p1_>3). Since other y-values were intact, the
decodability equalities (A.22) and (A.23) are still satisfied after (OP3).

For the weight movement (OP4), we can prove by similar arguments that af-
ter (OP4), all jfi and gjﬁ;) remain the same and all gj’l@l decrease by the same
amount of (min{x&)l,:cgg} . pl_,3>. Similarly, after the weight movement (OP5),

)

all gjl(z and y]l(ig remain the same and all 1]1(3)4 decrease by the same amount of

<min{a:g:(l))1, 551(715)7} : p1_>3>. Since other y-values were intact, the decodability equalities
(A.22) and (A.23) still hold after these operations.

We now prove that after (OP6), the decodability conditions in Proposition A.2.1

still hold. Since (OP6) involves the frequencies of different node indices {:)3(()%))1,:5(()?1,

xé?% xl(@}, we first provide the following table that summarizes the contributions of

these frequencies to the y-values:
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Table A.2: The contributions of x(()t)l, xé?% x(()15)1, and xé@ to the y-values.

iy | oy | a2 | a5 s [ 9y
2 0000 | 0000 001
22 [ o011 0101 111
z 0000 | 0101 001
22 | 0011 1111 111

For example, since 5637 = 01010011111 in 11-bitstring and xé@ contributes to

{ﬁfi, 371(1)4,% 3 } we can thus list the contribution of x537 to all the y-values as in

the second row of Table A.2. The first, third, and fourth rows of Table A.2 can be

populated similarly. If we compare the first and the third rows of Table A.2, we
can see that the operation of xé%))l B, o 051 in (OP6) will decrease both y2 ) and

3 by the same amount A while all the other 19 y-values remain the same. If we
compare the second and the fourth rows of Table A.2, we can see that the operation

of 5?57 il icaiN xé@ will decrease both yf) and y§3) by the same amount A while all

the other 19 y-values remain the same. Since (OP6) performs both 245, Blnos, (()?1

and x5237 % x§3)7 simultaneously, in the end we will have all four values of ¥ yl 4
decrease by the same amount of A while the rest 17 y-values remain the same. As
a result, the decodability equalities (A.22) and (A.23) of Proposition A.2.1 are still
satisfied after (OP6). Similar arguments can be used to prove that after (OP7) and
(OP8), the decodability equalities of Proposition A.2.1 still hold.

To prove (ii), we notice that after the above 6 weight movements (OP3) to (OP8),
the final {xg) }-values satisfy Proposition A.2.1. Then Lemma A.3.1 implies that

(A.27) to (A.36) must hold. Since (A.43), (A.44), and (A.50) are true, if we only
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count the coding types that may have non-zero value, then (A.35) can be written as

follows.

(Ic(;o)1 + a:(()’g ) “Pisjvk = (93821 + :):gg? + ffé27 + xé’g ) Pissk

. . . (A.54)
+ (a8 + 2+ - pioos
Eq. (A.54) further implies the following inequality:
20y piogur < (8 + ally + 2l ) - pi
| | | (A.55)
+ (a8 + 2 +2D) - pio
because we always have zé@l “Disjvk = :)3(()?1 CDisk-
Then notice that after performing (OP3) to (OP8), we will have either z{g;, =

or the total sum x&% + xég + xg% + xé@ + xé@ + xffF)? = 0. Note that whenever the

latter sum is zero, by (A.55) when (i, j, k) = (1,2,3), we also have 2 = 0. As a
result, we must have 35&)1 = 0 after the above 6 weight movements.
We now present the second step, which makes :L’(()?Q = 0. To that end, we perform

the following six operations:

1 1 1 1
{37((>o)2> fgs)'/} - {xgo)za I}(:‘3)7}a (OP9)
{60n, Ter } — {wles, her }, (OP10)
1 1 1
{xgo)zv x:(SF)7} —>SL’;(30)2, (OP11)

(1) A/pis2 (1) (3) A/pss2 (3)
Too2 > Taop and  Tay > T3p7

1 ) (OP12)
where A = mi“{xéo)z " P12, Ig3)7 - P32},
o, 200 0 g off, 2 o)
1 3 (OP13)
where A = min{:c(()o)2 P12, xé3)7 P32ty
N N
A a2
(OP14)

. 1 3
where A = mln{:c(()o)2 P12, x§3)7 P32t
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Again, we will prove that after these 6 weight movements, (i) Proposition A.2.1
and (A.43) to (A.50) hold; and (ii) the new value of 2L, is zero. The proof of (i) is
almost identical to that of the first step and we thus omit the detailed derivations. To
prove (ii), we notice that after these weight-moving operations, the final {:cl()i) }-values
still satisfy Proposition A.2.1. Then Lemma A.3.1 implies that (A.27) to (A.36) must
hold. Since (A.43), (A.44), and (A.50) are true, if we only count the coding types
that may have non-zero value, then (A.36) can be written as follows.

(x(()232 + xg2(32) *Pisjvk = (xz(alo)z + xz(ala)7 + xi(i25)7 + xg??) * Pisj

k k k
+ (xg3)7 + xé3)7 + x1(73)7> * Pk—j>
which in turn implies when (i, j,k) = (1,2, 3),

fc%)z “P1osava < <$,%)7 + 55%)7 + xélF)7> “ P12
(A.56)

3 3 3
+ (xg3)7 + xé3)7 + x1(73)7> s P32.

We then observe that after the above 6 operations (OP9) to (OP14), we will have
either :):(()%))2 =0or :)sg?7 + :)sg15)7 + xg}% + :ES% + xSJ? + :ES% = 0. The by (A.56), we must

have :L’(()?Q = 0 after the above 6 weight-moving process.

Thus far, we have proven (A.53) for the case of i = 1 while satisfying the lin-
ear conditions of Proposition A.2.1 and (A.43) to (A.50). Note that in our weight
movements (OP3)—(OP8) and (OP9)—-(OP14), we never increase x(()%)l, xé%)g, xé%)l, and
xé%)g. Therefore, we can simply apply the above 2-step procedure to the cases of
(1,7,k) = (2,3,1) and (4,7, k) = (3,1,2), sequentially. In the end, the final {:)3,(;)}-
values satisfy Proposition A.2.1 and the conditions (A.43) to (A.53). The proof is

thus complete. [ |
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A.3.4 Proof of Lemma A.3.3

Given B and the reception probabilities, consider 156 non-negative values {x,ﬂj)}
such that jointly they satisfy Proposition A.2.1 and (A.38). Since by (A.38) all the
{ig) }-values with b € FTs\FTs are zeros, we only consider the 30 non-negative values
{ig)} with b € FTs for the ongoing discussions.

For the proof of Lemma A.3.3, we first prove the following claim.

Claim: The above 30 non-negative values {:)3,(;)} for all b € FTs jointly satisfy the
following equalities: for all (7, j, k) € {(1,2,3),(2,3,1),(3,1,2)},

Risj+ Risk (x(()25)1 + 37:(32(32) Di—jvks (A.57)

Piik i k k k
Ri; — (xge?'/ + xgs)? + xgg‘/) “Pisj T (xgs)'/ + xgs)'/ + xéa&) " Pk—j, (A-58)

Pi—jvk

pi ik 7 7
Ri—>kp ! . ( :(55)7 + xgg? + x1(75)7) “PDisk T (xgjs)7 + xg@? + xéF)7) " Dj—k- (A-59)
11—V

Proof of Claim. Since node indices are cyclically decided, we prove (A.57)—(A.59)
only for the case when (7, j, k) = (1,2,3). That is,

Rio+ Riy3 = (515(()?1 + xé&) * P152v3, (A.60)
P15 . . . . . .
Ry 122 = <ZB,%)7 + zg}% + xg}%) ‘P12t <ZB§,33)7 + fr(333)7 + fg)7> P32, (A.61)
P1-2v3
Ruvs 22 = (i 4y 0 ) - puos + (#0 +38 +58)) pas (A62)
1-52v3

We now make the following observations. Since the above {:i“,(;) : Vie {1,2,3}
and b € FTs} satisfy Proposition A.2.1, Lemma A.3.1 implies that they satisfies
(A.27) as well. We then note that (A.60) is a direct result of the equality (A.27) of
Lemma A.3.1 when (i,7,k) = (2,3,1).
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We now use the equalities (A.28) and (A.29) when (7,7, k) = (2,3,1). Since type-
051 (resp. type-302) is the only coding type in FTs with by = 0 (resp. by; = 0), we

thus have, respectively,

Ri3 = 52’(()15)1 * P1-2v3, (A'63>

Ry = l"g%))z - P1—2v3- (A.64)

Then, (A.61) can be derived as follows. From the equality (A.35) when (i, 7, k) =
(2,3,1), we have

(1 3 3 1 1
x:(io)2 " P1s2v3 = (xz(aa)7 + xg;? + xl(TS)Y) “ P32+ (xz(ao)z =+ x:(is)7 + 55:(55)7 + ng)7) - P12.

By simple probability manipulation, the above equality is equivalent to
(1 .. (1 . (1 . (1 ..(3 ..(3 ..(3
x:(ao)2 "DP1-23 = (xz(aa)7 + ng)7 + xgp)7> "P1s2 + (xz(aa)7 + xé3)7 + xl(rs)7> * P3—2. (A.65)

Then (A.61) is derived by substituting i = Ry /P1-2v3 (see (A.64) again) on
the LHS of (A.65).

Similarly, one can derive (A.62) by using (A.63) and the equality (A.36) when
(1,7, k) = (2,3,1). The claim is thus proven.. |

Using the above claim, we will prove Lemma A.3.3 by explicitly constructing tfi)]

and t to tf ) 4 values as follows.

t) = &gy + 505, (A.66)
tf:;)l] 37:(325)7 + :(31?)77 (A.67)
t) ) = diigy + gy, (A.68)
ty) = 59y + oy, (A.69)
HY ) = Elgr + it (A.70)
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In the following, we prove that the above {¢;}-values satisfy the linear conditions
of Proposition 3.2.2 (when < being replaced by <).

Since the {x,(; ) }-values satisfy the time-sharing condition (A.14) of Proposition A.2.1,
the {t;}-values in the above construction also satisfy the time-sharing condition (3.4).

By (A.57) and (A.66), we have
Ri—)j + Ri—)k = tﬁ% " Pi—jvi,

which implies (3.6).
We now show that our construction also satisfies (3.7) and (3.8). By our construc-

tion (A.67)—(A.70), the followings are always true: for all i € {1,2, 3},

- (4)
x337 + x357 + Zzp7

(1)

1’357 557 + Tpgy

(% )
<x337 il 4 §§7) <
(34 )

(6 + s + ighh) <

Since we have already shown that (A.58) and (A.59) are true, one can easily
verify by direct substitutions that (3.7) and (3.8) are satisfied as well. The proof of

Lemma A.3.3 is thus complete.
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B. DETAILED CONSTRUCTION FOR THE 3-NODE
ACHIEVABILITY SCHEME IN SCENARIO 2

We provide the first-order analysis for the achievability scheme in Proposition 3.2.1.

Suppose that all the network nodes share the same parameters before initiating,
see the discussion in Section 3.5. Also assume that a common random seed is available
to all nodes in advance.

We similarly follow the 2-stage scheme used in the proof of Proposition 3.2.2. The
difference is that we need to revise the scheme in Scenario 1 to take into account the
assumption of Scenario 2 that any feedback information needs to be sent over the
regular channels as well. Our scheme closely mimics the scheme in Section 3.5 but
now uses some form of random linear network coding (RLNC), which allows us to
circumvent the need of instant causal feedback (after each transmission) and can thus
use “batch feedback” that reports the reception status with delay. With a common
random seed available to all three nodes, the RLNC operations of one node can be
“simulated” in the other nodes as well. This allows the same kind of “bookkeeping”
as used in the proof of Proposition 3.2.2. Since bookkeeping may be computationally
expensive, in practice, network code designers can place the coding vectors used by
the RLNC in the header of the packets, which circumvents the need of bookkeeping.
However, putting the coding vectors in the header reduces the data rate. As a result,
to minimize the loss of capacity, we opt to use bookkeeping instead of the traditional
practice of putting the coding vectors in the header of the packet.

We now explain the main RLNC process for each stage. In each stage, we assume

that nodes will sequentially transmit following the order of the node indices {1, 2, 3}.
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We now define the following three constants for each node ¢ € {1,2,3} that can

facilitate our discussion:

() & Risj B1
h Riyi+ Rk + Rinsji’ (B-1)
(%) 'y Ri B.2
12 Rij+ R+ Ri—>jk7 (B2)

i R,
) 2 —ik (B.3)

Rij+ R+ Risji

Obviously, ngi) + néi) + 773“ = 1 for any i € {1,2,3}. Totally, there are 9 such
constants. Note that each of the network node can compute all 9 constants since R

is available to all nodes. Without loss of generality, we can also assume

tfu% (np + 13 )> “Pisje < (tfc?l] + tfc 3}) “Pimj T (tfc,)ﬂ + tfc,)iﬂ) " Ph—is (B4)

o (87 +87) - picse < (0 +000) ponct (0 +600) e (B

The reason is that we can always set tf;)] to be arbitrarily close to Bimpjt Ricsint Ry i

Pi—jvEk

but still larger than 2= Jf_ifi:RHj’“ without violating any of the inequalities (3.4)
i—jVk

and (3.6). As a result, tfi)]ny) can be made arbitrarily close to % and tﬁngi)
A
Rijk

arbitrarily close to ~==2%. By (3.7), we thus have (B.4). Similarly, since tfi)]néi) and

JjVk
t&)]néi) can be made arbitrarily close to 2=t and RH_”“, respectively, (3.8) implies

Pi—jvk Pi—jvk
(B.5).

Description of Stage 1: Each node i performs the following RLNC operations

(@) )

exactly for nt[fﬂ number of time slots. Specifically, consider the first ny portion

of the allotted ntg times. In each of those nt&ngi) time slots, node ¢ chooses a

1 x (nR;_;) random encoding row vector ¢, € IFZRHj independently and uniformly

randomly and transmits X;(t) by X;(t) = ¢, W], ;. We now consider the the second

néi) portion of the nt&)] time slots. In each of those ntﬁ)]ng) time slots, node 7 chooses

a 1 x (nR;_) random coding vector c; independently and uniformly randomly and

transmits X;(t) = ¢;W, ,,. Finally, consider the last néi) portion of the ntg time
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gné” time slots, node ¢ chooses a 1 X (nR;_ ;) vector c;

slots. In each of those nt
independently and uniformly randomly and transmits X;(t) = ctWiT_)j - Namely for
the allotted ntﬁ time slots, node 7 sequentially transmits some random mixture of the
packets W,_,;, W,_,;, and W,_,;;, over the fixed fractions ny), ng), and néi) of times,
respectively, and does not care whether the transmitted packet is correctly received
or not. Stage 1 can be finished in exactly n(}_, tfg) slots.

Note that when node i computes the coding vectors c;, the other nodes j and k
can also “simulate” the computation and thus know the c¢; vector used by node i. As
a result, if node j receives a coded packet X;(t) = ctWiT_U-k during the third fraction
of node i’s transmission, node j knows the c; vector used for encoding.

New Packet Regrouping After Stage 1: After Stage 1, we put some of those
{c:W,._,;} packets that were sent during the first fraction of Stage 1, totally there
are ntfi)]ny) such packets, into two disjoint groups. Specifically, we use {CtWi—m'}jk
to denote those packets {c,W,_,;} that are heard only by node k£ and not by node j;
and we use {¢,;W,_,;}; to denote those packets that are heard by node j (may or may

not be heard by node k). In average, there are nt&ny)pi 7% number of {c;W,_,;}3

)pi_n- number of {¢,;W,_,;}, packets.

Symmetrically, we put some of those ntﬁ)]néi) packets sent during the second frac-

packets and nt g nf

tion of Stage 1 into two disjoint groups. That is, {c,;W;_x} iz and {c/W . }x denote
those packets that are heard by node j only, and by node k (may or may not be

heard by node j), respectively. The size of each group, in average, is ntgng)pi iR

and ntfanéi)pi_,k, respectively.

Finally, among the ntfanéi) number of the packets {c;W,_,;,} sent in the third
fraction néi), we place them into 4 different groups but this time the groups are
not necessarily disjoint. Specifically, we use {c; Wi}, and {¢;W,_,;;}; to denote,
respectively, the packets that are received by node & only (not by node j) and by node
J (regardless whether node k receives them). We use {¢,W,_,j;} 7 and {ceWisjkte
to denote, respectively, those packets that are heard by node j only (not by node k)

and by node k (regardless whether node j receives them). The first two groups of
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packets are disjoint and the last two groups of packets are disjoint. But there may

be overlap between {c;W,_, ;}; and {c;W,_, i }x. In average, the sizes of these four

groups are ntgnéi)pi k> nt&néi)pi_)j, ntfanéi)pi k> and ntgnéi)pi_}k, respectively.
For ease of description, we further put some of the groups of the packets into super

groups. Specifically, for all (7,7, k) € {(1,2,3), (2,3,1),(3,1,2)},

VNVZ(EZJ = {e:Wisjta U{eeWisjn b5, (B.6)
WY, 2 {eWid g Ul Wiz (B.7)

In total, there are 6 such W—groups by definition and their sizes, in average, are

% (k i i i
(W[ = ntf; (?75’) + né’)) P (B.9)

Description of The Feedback Stage: Thus far, the above re-grouping of the
packets can be made only when one has the full knowledge of the reception status.
However, right after Stage 1, no node has received any feedback yet and it is thus im-
possible to perform the packet regrouping as described previously. After Stage 1, we
thus perform the following feedback stage so that after the feedback stage, all nodes
can share a synchronized view about which packets are in which groups. Again,
we emphasize that the goal of the feedback stage is to convey the reception sta-
tus ACK/NACK. We never send any actual coded/uncoded messages (the payload)
during the feedback stage.

Specifically, during Stage 1, each node ¢ has been on the listening side for a total
duration of n (t&) + tfff) number of time slots. As a result, each node ¢ can record
whether it received a packet or not during those time slots and generate a single file
of n (t&) + tfﬁf) bits. Then node ¢ would like to deliver this file to both nodes j and
k. It can be achieved by the following two-step approach. Step 1: Node ¢ converts
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1))
the file into [%—‘ number of packets. Then it uses an MDS code or a rate-less

code to broadcast those packets for totally

) 4 (k)
n (t[u] + t[u]>

Ing(Q) : nzmin{ij, pi—>k}

(B.10)

number of time slots. As a result, if min(p,_;, pisk) > 0, then nzmin{p;—;, pix} =
min(p;_,;, pisk) and both nodes j and k can recover the file. The feedback transmis-
sion for node 7 is thus complete.

However, it is possible that p;_,; = 0 (or p;—x = 0). In this case, nzmin{p;_;, pi—i} =
pi—skr and only node k£ can recover the file of node 7. In this case, we let node k help

relay the file to node j, which will take additionally

() | 4(k)
n <t[u] + t[u]>

B.11
10%2((1) *Pk—j ( )

number® of time slots. The feedback stage of node 7 finishes after node k helps relay
the file of node 7. Note that the number of time slots used for node i during the

feedback stage can be upper bounded by

n n n
- + - + - ,
IOgQ(Q)'nzm'n{PHpPi—m} 10g2(Q)'nzmm{pj—>kapj—>i} 10%2(@)'n2m'n{Pk—>i>Pk—>j}

where the first term z upper bounds (B.10) since t) + ¢*) < 1:

logs (q)-nzmin{p; s ;,pi 1k} [u] [u]

3 n n
and the summation logy (q)-nzmin{p; . k,pj—i} T 1085 (@) nzmin{prsipn g} PPET bounds (B.11)

regardless whether p;_,; = 0 or p;; = 0.
Since the feedback stage has to be executed for all three nodes, the total number
of time slots of the feedback stage is upper bounded by ntgg, as defined in (3.5).
After the feedback stage, every node will know the reception status of all other

nodes during Stage 1. All three nodes can thus share a synchronized view of the

f p;—,; = 0, then by our fully-connectedness assumption, pg_,; > 0.
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packet reception status and the packet regrouping, as discussed in (B.6) and (B.7).

In particular, each node ¢ exactly knows

e The contents and size of the RLNC packet groups (W(k) wY)

i—j) i—k

). The content
of the packets in each group is known since those are the messages originated

from node 1.

e The contents and size of the RLNC packet groups (W(l w

ik W2 5). The content

of the packets in each group is known since those are the packets overheard by

node 3.

| and [WY

k—1

e The sizes of |W |, which are obtained by the feedback it has

]—)Z

received from nodes j and k.

e The content of all packets in ({c;W i i, {¢eWjskiti, {eeWisiti, {6Wisij i)
are known by node 7 since it has received those packets during Stage 1. Note that
these are the packets that have already been delivered to their target destination,

which is node 7. In comparison, the (W] AR W(Z ) in the second bullet are those

packets destined for either node j or k but is overheard by i.

e The random coding vectors {c;} for all RLNC packets sent during Stage 1. This
is due to that all three nodes compute the coding vectors based on a common

random seed.

Description of Stage 2: We describe the LNC operations of node ¢ only and
the operations for other nodes follow symmetrically. Similar to Stage 2 of Propo-

sition 3.2.2, each node i will perform 4 different types of LNC operations and each

operation will last for ntfci)u to ntfci) 4 respectively. For each time slot of the first
coding operations (out of totally ntfi)l] time slots), we let node i choose two coding
vectors c;.; and ¢, independently and unlformly randomly, where c;,; is a 1 |W2_2]|

random row vector and cg is a 1 X |W | random row vector. Then we let node 4

i—k

send a linear combination

e, 1] Xi(t) = WHel + WY . (B.12)

i—7] t]
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For the next time slot, another pair of c;; and ¢ coding vectors are randomly
chosen and used to encode X;(t) according to (B.12). Repeat the above operations
until the time-budget ntfci)l] is used up. Then we move on and encode the next coding

type [c,l],l = 2,3,4

.2 Xi(t) = W el + WP el (B.13)
[e,3]: Xi(t) = W el + W, el (B.14)
e, 4]: Xi(t) = W el + Wile (B.15)

Each coding type [c,!] will last for ntfz) I time slots and the coding vectors c;;
and c;;, are chosen independently and uniformly randomly with the properly selected
dimension. For example of the coding choice [c, 3], the randomly chosen c;; is a
1 x |WZ _>]| row vector and the randomly chosen ¢ is a 1 X |W _>k| row vector.

Stage 2 is completed after all three nodes have finished sending their corresponding
4 coding types. The description of the proposed scheme is complete. (There is no
need to have the second feedback stage.)

Analysis of the scheme: The total amount of time to finish the transmission is

upper bounded by

n<(ztg; ) ttrn (3 80,4 #0, - 10, + tg;'34])>.
vie{1,2,3} Vie{1,2,3}

By (3.4), we can thus finish all the transmissions within the total time budget of
n time slots.

We now argue that after finishing transmission, all nodes can decode their desired
packets. To that end, we focus only on node 1. The discussions of nodes 2 and 3 can
be made by symmetry.

During Stage 2, consider the transmission of node 3. Node 3 has 4 possible coding
choices. In each coding choices, it randomly mixes from two groups of packets. For

example, in coding choice [c, 1], node 3 mixes W3 ~, and W3 “5, see (B.12) when
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i,7,k) = (3,1,2). Since the content of any packets in W is known to node 1, see
', j, k) = (3,1,2). Since the content of kets in Wi is k to node 1

the discussion in the end of the feedback stage, node 1, upon the reception of any
[c, 1] packet transmitted by node 3, can subtract the term V~V§1_)>2c22 from the received

packet. Therefore, it is as if node 1 has received a packet of the form

W ieh (B.16)
without the corruption term Wélzct . Similarly, when node 3 performs coding choice
c, 3], again, node 1 will receive coded packets of the form (B.16) after subtracting
those VV&EX_{QCZQ packets of its own, see (B.14) when (7,7, k) = (3,1,2). Also, during
node 2 performing coding choices [c,2] and [c, 3], node 1 can again receive coded
packets of the form (B.16) after subtracting those known packets (either of the form
W( ~,3¢/5 or of the form Wz_,3ct3) see (B.13) and (B.14) when (7,7, k) = (2,3,1).

Since ngl participates in coding choices [c, 1] and [c, 3] of node 3 and cod-

ing choices [c,2] and [c, 3] of node 2, node 1 will receive n (t(3)1] + 1 ) "3t

[c [c, 3]
2 (2)
n <t[ 3] + t[c 3

of W3_>1 packets, in average, has been computed in (B.8). By (B.4), the number of

linear combinations (B.16) received by node 1 is larger than the number of V~V§2_)>1

) - pa_s1 number of packets of the form (B.16). Note that the number

packets to be begin with. As a result, node 1 is guaranteed to decode Wgﬂl correctly

with close-to-one probability when the finite-field size ¢ is sufficiently large enough.
Recall that by definition (B.6), V~V§2_)>1 = {c;W31 1, U{c:W3,12}7,. We now ob-

serve that node 1 has also received all the RLNC packets of ({c;W3_1}1, {c:W312}1)

during Stage 1. As a result, in the end of Stage 2, node 1 has correctly received

nt&) 7]§3)p3_>1\/2 number of packets of the form {c,;W3_,;} and nt&) U§3)p3—>1v2 number

of packets of the form {c;W3_1,}. Note that we only have nR3;_,; of W3_,; pack-

ets and nR3 1o of W3_,15 packets to begin with. Since by definition tﬁ]) is strictly

larger than R3ﬁ1+£3:1in“12, and also by definitions (B.1) and (B.3), the number of

linear combinations received by node 1 is larger than the number of uncoded message

symbols W3_,; and W3_,1>. As a result, node 1 is guaranteed to decode W3_,; and
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W3, 15 correctly with close-to-one probability when the finite field size q is sufficiently
large enough.

By symmetric arguments, with close-to-one probability node 1 can also decode
Wgﬂl in the end of Stage 2 and later combines VNVQ,1 with the packets ({c;Wa_1}1,
{ctW3_,31}1) it has received in Stage 1 to decode message symbols Wj_,; and Wj_,3;.
Symmetric arguments can be used to shown that nodes 2 and 3 can also decode their
desired messages. The proof of Proposition 3.2.1 is thus complete.

Remark: The arguments of letting the finite field size approach infinity is to ensure
that the simple RLNC construction leads to legitimate MDS codes. When the finite
field size is fixed to, say ¢ = 2, we can use the fact that for any fixed F, we can always
construct an (n, k) code that is nearly MDS in the sense that as long as we receive
k 4+ O(vVk) number of encoded packets we can reconstruct the original file. Since we
focus only on the normalized throughput, such a near-MDS code is sufficient for our

achievability construction.
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C. THE MATCH PROOF OF PROPOSITION 3.2.3.

Without loss of generality, we assume that p;,—,; > 0 and p,;, > 0 for all (4,5, k) €
{(1,2,3),(2,3,1), (3,1, 2)} since the case that any one of them is zero can be viewed as
a limiting scenario and the polytope of the capacity outer bound in Proposition 3.1.1
is continuous with respect to the channel success probability parameters.

We first introduce the following Lemma.

Lemma C.0.4. Given any R and the associated 3 non-negative values {s"} that
satisfy Proposition 3.1.1, we can always find 15 non-negative values tﬁ)j and {t?? 1/}?:1
for all 1 € {1,2,3} such that jointly they satisfy the groups of linear conditions in

Proposition 3.2.2 (when replacing all strict inequality < by <).

One can clearly see that Lemma C.0.4 imply that the capacity outer bound in
Proposition 3.1.1 matches the closure of the inner bound in Proposition 3.2.2. The

proof of Proposition 3.2.3 is thus complete.

The proof of Lemma C.0.4: Given R and the reception probabilities, consider 3

non-negative values {5V} that jointly satisfy the linear conditions of Proposition 3.1.1.

We first choose tfl?] 2 Fing +§if’c:RHj’° which is non-negative by definition. Then
i—jV

define 50 & s — tﬁ for all ¢ € {1,2,3}. By (3.2) in Proposition 3.1.1, the newly

constructed values {5®} must be non-negative. Then, we can rewrite (3.3) in Propo-

sition 3.1.1 as follows: For all (4,7, k) € {(1,2,3),(2,3,1),(3,1,2)}, we have

Djki DPr—ij ~(j ~
(Rj—n' + Rj—>ki) 22 4 (Rk—n‘ + Rk—)ij) =L <59 pii 4+ 59 ps.
Pj—kvi Pr—ivj



For each tuple (i, j, k), define a constant a;jj as follows:

(Rj—n' + Rj—>ki) Pinvid

Pj—kvi

Qi =
<Rj—>i + Rj—>ki>

P17

Pj—kvi

+ <Rk—>i + Rk—)ij)

Prij

Pk—ivj
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For each tuple (i, , k), we will use a;jx, 5¥) and 3% to define/compute 4 more

variables.

St = -39,
§,(fl)g+ Qi 50
$h = (1—ag) -39,

By the above construction, we quickly have

s s =50, (C.1)
~(k ~(k ~
SZ('jll,—l- + Sgﬂi,_ = S(k)a (C.2)
and
Piki ~(j ~
Pj—kvi
Pr_i; (5 N
(Rk—>z' + Rk—>z’j) B < Sz(jl)c— "Dj—i T Sffzi_ " Pk—is (C.4)
Pk—ivj

for every cyclically shifted (i, 7, k) tuple. Totally, we have 3 variables of the form

NG RN (ORI ()

5@ and 12 variables of the forms 57, ., 87 _, &) ., ijh_ Since each 5% may

participate in more than one “splitting operations (C.1) and (C.2)”, we thus have
that for all (7,7, k) € {(1,2,3),(2,3,1),(3,1,2)},

(@) <& _ () (1) _ <G
Siki4 T Siki— = Skij+ Tt Skij— = 59,
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@ 20)

Siki,—r Skij 4o

The following claim allows us to convert the 5t ] ,ﬂ o and 5,(;)]_ values

to the targeted t | to tf 2 " values.

Claim C.0.1. For any cyclically shifted (i, 7, k) tuple, given the above four values

of {s]k“r, ~§21_,§,22Z)]+,§k2)j } and the value of 37, we can always find another four
non-negative values t?c) " t}? o) t}i 3y andt 4 such that

() @) _ <)

t[c, o) T t/c 4) = Sjki+4 (C.6)

() @) _ <)

Loyt ti s = Siki— (C.7)

(4) (4) ~(4)

be,1) T e,a) = Skige (C.8)

() @ _ 50

t[c, 2] + t/c 3) = Skij,—» (C.9)
and 1)+t 4t =30 (C.10)

[e,1] T e,2] T Ve, 3] T Ve, 4) . )

Proof of Claim C.0.1: Since the given values {s],ﬂ I Nyk)z 5,(;)] o 5,(;)] } satisfy

(C.5), consider the following two cases depending on the order of the two values 5

Jki,—
and §kij 4
Case 1: syk)l > s,(;” .- We then construct four values tfz? i tfé)z], tf; 5 and tfé 4

in the following way:

oy = 3

oy = 554 4

t&??ﬂ - gl(fzz)J - gglk)z +7
toy =0

The above construction clearly gives non-negative tf) to tf) values. One can

1] 4]
easily verify that the above construction satisfies all the equalities (C.6) to (C.10).

For example, by our construction tf 9 ot tfc) g = §0 450 50 s,(;)] which

]kz + kij,— jki,+
satisfies (C.9).
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. =) (@)
Case 2: 3 Kijt

ki < S We then construct four non-negative values tfci) it tg)z},

tfz) 3> and tfz) g 0 the following way:

tf(?l} = §§'ik)z',—7

tfci?z} = 51(52‘)]‘,—7

tiely =0,

o) = S5kis — Sk

Again, the above construction leads to non-negative tfé)” to tfé) n values that satisfy
(C.6) to (C.10). Since the above two cases cover all possible scenarios, the claim is

thus proven. 0

Using the above claim, we now prove that the constructed values {tf?l], tf? o tfé)g},

tg) gt for all i € {1,2,3} together with the previously chosen tﬁ 2 Bt Rioit B

Pi—jvEk

satisfy the linear conditions of Proposition 3.2.2 (when < being replaced by <).
To that end, we first notice that

() Rij+ Risp + Rijn

(%) (%) (%) (%) — 3@

Pi—jvk
O
where the first equality follows from the definition of tfi)] and (C.10); and the second
equality follows from the definition of §%. Since the given values s for all i €
{1,2,3} satisfy the time-sharing condition (3.1) of Proposition 3.1.1, the time-sharing
condition (3.4) of Proposition 3.2.2 must hold as well.

Moreover, the second condition (3.6) of Proposition 3.2.2 obviously holds by the
definition of tﬁ In the following, we prove (3.7) and (3.8) for the case when (i, 7, k) =
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(1,2,3) and other cases can be proven symmetrically. In other words, we will prove

the following equalities:

Dis
(31—>2 + R1—>23> 122 < (tfcl)l] + tf?g}) "Pre2t+ (tS)ﬂ + tf?s}) ‘P32, (C1)
P1-2v3 ’ ’ ’ ’

<R1—>3 + R1—>23> P13 < (tfcl)l] + tf?q) "P1e3t+ (tff)z} + tf?q) " P2—3- (C-12)
P1-2v3 ’ ’ ’ ’

By (C.7) and (C.9), we have

(1) (1) 3) ®3)
(t[c, T t[c,3]) P12t (t[c,2] + t[c,?)]) " P32

(1 (3
= 553)1,— "P1s2 + 853)1,— - P3—2.

As a result, by (C.4) with the (7, j, k) substituted by (2,3,1), we have proven
(C.11). Similarly, by (C.8) and (C.6), we have

(tfcl,)l} + tfi,)ﬁq) "P1-3 T+ (tﬁ)ﬂ + tﬁ)‘q) Pas3

~(1 ~(2
= Sgl)2,+ "D1-3 + Sgl)2,+ " P2-3-

As a result, by (C.3) with (i, j, k) substituted by (3,1, 2), we have proven (C.12).

In sum, from the given values {s®} for all i € {1,2, 3} satisfying the linear condi-
tions of Proposition 3.1.1, we have constructed 15 non-negative values {tf;)], tg) 1 tfé)ﬂ,

t(i)g}, tfz) 4}} for all 7+ € {1,2,3} such that they jointly satisfy the linear inequalities of

[C7

Proposition 3.2.2. The proof of Lemma C.0.4 is thus complete. |
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D. DETAILED PROOFS OF THE SHANNON OUTER
BOUND

We provide the proofs of (3.2A) and (3.2B) for the broadcasting cut-set condition
(3.2) in Proposition 3.1.1.
Firstly, (3.2A) can be derived as follows:

T(Wis s [Yag, Yar|7 | Wijinye, [Z]7)

= ](sz* ) W{j,k}*a [Y*ja Y., Z]?) (Dl)
H2(2€)
logy q

where (D.1) follows from the definition of mutual information and the fact that W;,,
Wy k1, and [Z]7 are independent of each other. To derive (D.2), we observe that the
messages W, can be decoded from [Y,;, Y., Z]T and Wy; . =S W, U W, see (2.8)
for nodes j and k, with error probability being at most 2¢ by the union bound. As a

result, by Fano’s inequality, we have (D.2).



162

Secondly, (3.2B) can be derived as follows:

—[(WZ* y [Y*ju Y ] | W{jvk}*’ [ZHL>

< H([Y.j, Yor]! | Wy, [2]7) (D.3)

= ZH (1), Y () [ [Yag, Yer 17 Wiy, [2]1) (D-4)

= ZH () Y (8) | [ Y1 Wi, [Z]1, X (2), Xa(1)) (D.5)

—ZH i3 (8, Yinsk(8) | [Yag Yar 1™ Wi, (201, X5 (), Xa(1)) (D.6)

< ZE{l{a@):i} ° Lz (H=1 or ZHk(w:l}} (D.7)
t=1

= il E{l{om:i} }E{l{zma):l or ZHka):l}} (D.8)
=

= pi—)j\/kE {Z 1{U(t):i}} = ns(i)ijvk, (D-9)

t=1

where (D.3) follows from the definition of mutual information; (D.4) follows from the
chain rule and from the fact that the future channel outputs [Z]}, ; are independent
of Y.;(t), Y. (t); (D.5) follows from the fact that the transmitted symbol X (¢) (resp.
Xj(t)) is a function of the past received symbols [Y,,;]4™" (resp. [Yaui]i™'), the informa-
tion messages Wj, (resp. Wy.), and the past channel outputs [Z]{™", see (2.7); (D.6)
follows from the fact that the received symbol Y_,;(t) in Y,;(t) (resp. Yj_x(t) in
Y.x(t)) can be uniquely computed from the values of the current input Xy(t) (resp.
X;(t)), the current channel output Z(t), and the current scheduling decision o(t),
which depends only on the past channel outputs [Z]i™, see (2.9); (D.7) follows from
that only when o(t) = ¢ with Z;,;(t) = 1 or Z,,;(t) = 1, we will have a non-zero
value of the entropy and it is upper bounded by 1 since the base of the logarithm is
q; (D.8) follows from the fact that since the scheduling decision o(t) depends only

on the past channel outputs [Z]:™", see (2.9), the random variables o(t) and Z(t) are

independent; and (D.9) follows from the definition (3.9).
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We provide the proofs of (3.3A) and (3.3B) for the 3-way multiple-access cut-set
condition (3.3) in Proposition 3.1.1.
The inequality (3.3B) can be derived in a similar way as (3.2B). Specifically, we

have

LWy [Yailt' | Wa, [Z1T) < H([Y]) | W, [Z17) (D.10)
= Z H(Y}—H(t)a Yisi(t) | [Y*i]§_1> Wi, [Z]ﬁ)’ (D.11)

< n(s(j)pj_m- + s(k)pk_m-), (D.12)

where (D.10) follows from the definition of mutual information; (D.11) follows from
the chain rule and the fact that the future channel outputs [Z]?,, are independent of
Y;i(t), Yisi(t); and (D.12) follows from similar arguments as used in (D.7) to (D.9).

We now prove (3.3A). For the ease of exposition, we only prove for the case when

the node indices are fixed to (4,7, k) = (1,2,3). Then (3.3A) becomes

I(Wizpe; [Yali' | Wi, [2]7)

DP2—1 DP3—1

3Hs(e
>n <Rz—>1 + R31 + Royz1 + Ra1o + Ry 3+ Rz 5 — 6Ge — 2(€) )

P2—3v1 P3—1v2 nlog, q

The cases of other node indices (7,7,k) € {(2,3,1), (3,1,2)} can be proven by
symmetry.
Consider the following lemmas and claims, of which their proofs are relegated to

Appendix F.

Lemma D.0.5. Consider Scenario 1 and any fivred t € {1,--- ,n}. Then, knowing
all the messages Wiy 23y, and the past channel outputs [Z]1™" can uniquely decide
(X1, Xo, X3]t and [Yi., Yo, Ya.Ji 7t Namely, [X1, Xo, X3} and [Yi., Yo, Ya. )" are

functions of the random variables {Wy1 231«, [Z]57'} for any time t € {1,--- ,n}.

Lemma D.0.6. Consider Scenario 1 and any fized time slot t € {1,--- ,n}. Then,

knowing the messages Wiy 3y, the received symbols [Yo.]i™", and the past channel
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outputs [Z)\™' can uniquely decide [X1, X3]t. Namely, [X1, X3]} is a function of the

random variables {Wi1 sy, [You 7, [Z)7'} for any time t € {1,--- ,n}.

Claim D.0.2. The following is true:

I(Wiaays ;s [Yall | W, [Z]7)

n 1 (D.13)
= Z [(W{273}* ) Y*l(t) | [Y*la ZH_ >W1*a Z(t))
t=1
Claim D.0.3. Define
Wm £ W{173}* U W2—>1 U W2—>317 <D14)

That is, W53 is the collection of all the 9-flow information messages except Wo_,3.

This is why we use the overline in the subscript. Symmetrically, define
W5 £ Wiop U Ws UWso. (D.15)
Then, the following is true: Yte{l,--- ,n},
I(Wiaap; Yaa(t) | [Yar, Z]771, Whe, Z(1))

> I(Waas Ya () | [Ya, 27, Wi, Z(1))
(D.16)

+ P22 [(Wys; Yau(t) | [Yau, 25, Wisg, Z(1))
P2—3v1

+ oL (W Yau(t) | [Yan, 215, Wisg, Z(1)).

P3—1v2
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Claim D.0.4. The followings are true:

ZI(W*l s Yo () | [Yar, 2071, W, Z(1) = I(Waa ;s Wi, [Yar, Z]7), (D7)

t=1

> I(Wass; Yau(t) | [Yau, Z), Worig, (1)) > I(Wass; Wi, [Yas, Z]7),  (D.18)

t=1

Z I(Ws2; Yau(t) | [Yau, 27, Wiss, Z(t) > TI(Wisp; Wa, [Yao, ZJ1). (D.19)

t=1

By the above Claims D.0.2 to D.0.4 we have

I(Wiaays; [Yall | W, [Z]7)
> I(W.1; Wh, [Ya, Z]7)

+ 22 (W Wi, [Yis, Z17) + 22 [(Wao; W, [Yeo, ZI7),  (D.20)
D2—3v1 D3—1v2
Hs(e
> n(Roys1 + R + Rosn + Rasn) (1 —€) — ] 2(¢)
0gs 4
H H
+ P21 (nR2_>3(1 — 6) - 2(6>) + P31 (nR3_>2(1 — E) — 2(6>) (D21)
D2-3v1 10%2 q D3—1v2 10g2 q

where (D.20) follows from jointly combining (D.13) to (D.19); and (D.21) follows from
applying Fano’s inequality to each individual term. Since we can choose € arbitrarily,

by letting € — 0, we have proven (3.3A).
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E. DETAILED DESCRIPTION OF ACHIEVABILITY
SCHEMES IN FIG. 3.2.

In the following, we describe the 9-dimensional rate regions of each suboptimal achiev-
ability scheme used for the numerical evaluation in Section 3.6.5.

e LNC with pure operations 1, 2: The rate regions can be described by Propo-
sition 3.2.2 with the variables tfci?g] and tf? 4 hardwired to 0 for all i € {1,2,3}.

e TWRC at node 1 and RX coord.: This scheme performs two-way relay channel
(TWRC) coding only at node 1 for those 3 — 2 and 2 — 3 flows while allowing node
2 to relay the node 1’s packets destined for node 3 (i.e., W;_,3 and W1_,53) and vice

versa. The corresponding rate regions can be described as follows:

(@) (@)
> ottty <1 (E.1)
vie{1,2,3}
R R R
152 + 153 + 111523 <t&), (E.2)
P1-2v3
R R R R
2—>1+ 2—3 + 2—>31_|_ 2—31 <tfi])> (ES)
P21 P2—3v1 P21 P23
R R R R
3—>1_'_ 3—2 + 3—>12+ 3—>12<tﬁ])7 (E4)
P31 P3—1v2 P31 P32
Doz
Ry_y3 2231 <tg])'p1—>3> (E5)
D2—3v1
Ran D312 <t%)~p1—>2, (E.6)
D3—1v2
Dy_o3
(R1—>3+R1—>23> — <t$])'p2—>37 (E.7)
P1-2v3
Di_s
(Rl—>2+R1—>23> 1223 <tS])'P3—>2- (E.8)
DP1—2v3

Namely, each node ¢ has two variables t&)] and t%) for the respective stages, see
(E.1). During Stage 1, node 1 repeatedly transmits its packets uncodedly until at

least one of nodes 2 and 3 receives it. This stage can be finished within nt&) time
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slots, see (E.2). For node 2, we send all W,_,; and all W;_,3; messages directly
to node 1 and send all W,_,3; directly to node 3; but we send all W»_,3 messages
uncodedly until at least one of the nodes 1 and 3 receives it. Such an uncoded stage
can be finished in ntfj]) time slots, see (E.3). Node 3’s uncoded stage is symmetric to
that of node 2.

Eq. (E.5) to (E.6) allow node 1 to perform Two-Way-Relay coding over the 3 — 2
and 2 — 3 packets overheard at node 1. (E.7) allows node 2 to relay those packets it
has overheard from node 1 to the desired destination node 3. (E.8) is symmetric to
(E.7).

e [47] & Time-sharing: The rate regions can be described by Proposition 3.2.2 with
the variables tfgm, tfé?g}, and tfz) g = 0 hardwired to 0 for all 7 € {1,2,3}. Namely, we
only allow, as in [47], the broadcast channel LNC of coding choice [c, 1] during the
Stage 2.

e Uncoded direct TX: This scheme does not perform any coding operation when
transmitting, and just uncodedly transmits packets one by one until the desired re-
ceivers receive it. The rate region of this primitive scheme can be described by

R n Ri n Ry R

+ i—jk <1
Disj Disk Disj Disk

vie{1,2,3}
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F. PROOFS OF THREE LEMMAS AND THREE CLAIMS

Proof of Lemma 2.2.1: We prove this by induction. When ¢ = 1, then (2.6) and
(2.10) are equivalent by definition. Suppose (2.6) and (2.10) are equivalent for ¢ = 1
to to — 1. We now consider ¢ = t;,. By Lemma D.0.5, [Y,;]"" can be uniquely

computed by the values of W23y, and [Z]~". As a result, we can rewrite (2.6) by

—(to) -
Ui(to) = fscoH,i(W{l,2v3}*7 [Z]io 1)' (Fl)

Then due to the information equality (2.5), there is no dependence between o;(ty)
and Wy 533, As aresult, we can further remove Wiy 5 3}, from the input arguments

in (F.1), which leads to (2.10). By induction, the proof of Lemma 2.2.1 is thus

complete. [

Proof of Lemma D.0.5: The proof follows from the induction on time ¢t. When
t = 1, each node i encodes the input symbol X;(1) purely based on its information
messages Wi, see (2.7). As a result, {X;(1), X5(1), X3(1)} can be uniquely deter-
mined by Wy 531,. Lemma D.0.5 thus holds for ¢ = 1.

Suppose that the statement of Lemma D.0.5 is true until time ¢t =ty — 1. Consider
t = tg. By induction, [Xl,Xg,X3]§°_1 can be uniquely decided by W5 3. and
[Z]'°~2. Since [Yi., Ya., Y3,]° 7! is a function of [X1, X, X3~ " and [Z]?™!, we know
that [Yi., Ya., Y3.] " can be uniquely decided by Wiy 53y, and [Z]~". Then by the
encoding functions in (2.7), the input symbols {X;(to), Xa(to), X3(t0)} at time t = t,

can be uniquely determined as well. The proof of Lemma D.0.5 is thus complete. W

Proof of Lemma D.0.6: Similar to Lemma D.0.5, the proof follows from induction

on time t. When ¢ = 1, in the beginning of time slot 1, X;(1) (resp. X3(1)) is encoded
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purely based on the message Wi, (resp. Ws,), see (2.7). As a result, {X;(1), X3(1)}
can be uniquely determined by Wiy ay..

Assume that the statement of Lemma D.0.6 is true until time ¢ = t; — 1. By
induction, [X1,X3]P"" can be uniquely determined by {Wiy ., [Yo.|? 72, [Z]P %}
Now consider time ¢ = t;. Compared to time ¢t = t; — 1, we know additionally
Yo 1(to—1), Yau3(to—1), and Z(to —1). Since we already knew [X3]§°_1, the received
symbols [Y3.,1]°"" can be uniquely determined from the given [Z]*°~'. Jointly with
the known messages Wi,, the received symbols [Ya_,1]™*, and [Z]®!, we can also
uniquely determine Xj(ty), see the encoding function of node 1 in (2.7). The proof

regarding to X3(ty) can be done by symmetry. The proof of Lemma D.0.6 is thus
complete. |

Proof of Claim D.0.2. The equality (D.13) in Claim D.0.2 can be proven as follows.
Notice that

(Wi [Yalt | Wi, [Z]7)
= I(Wia3p 5 [Yaa, ZIT | Wii) = I(Wia gy 5 [Z]1 | W) (F.2)
= 1(Wia3p 5 [Yar, ZJT | W) (F.3)
= I(W{z,z}* ) [Y*h Z]?_l | Wl*)

+ 1(Wiaaye ;s Z(n) | [Yar, ZJ7 7, Wh)

+1(Waap s Yaa(n) | [Ya, Z)7 ™, Wi, Z(n)) (F.4)
= I(Wpaps [Yar, Z]771 | W)

+1(Wpaayes Ya(n) [ [Ya, Z)77H, Wi, Z(n)), (F.5)

where (F.2) follows from the chain rule; (F.3) follows from the fact that Wy 31, Wy,
and [Z]} are independent with each other; (F.4) follows from the chain rule; and (F.5)
can be obtained by showing that the second term of (F.4) is zero. The reason is that

by our problem formulation, Z(n) is independent of Wy, 3y, [Ya1, Z]7' and Wi,
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By iteratively applying the equalities (F.4) to (F.5), we have proven Claim D.0.2.
n

Proof of Claim D.0.3. For any fixed deterministic channel realization [z]}™*, we

will consider the mutual information terms in (D.16), conditioning on the event
[Z])" = [z],"". For notational simplicity, we use Z to denote the deterministic channel
realization [z]%™! of interest and use (Z) £ {[Z],"* = [z]®"'} to denote the correspond-
ing event.

For any fixed deterministic Z and fixed time instant ¢, we define

termg” £ I(Wpoap. 5 Yo (1) | [Yaali™", (2), Waa, Z(1)), (F.6)
term{” £ [(W.y; Yo (t) | [Yali™, (Z), Wi, Z(1)), (F.7)
termy” £ [(Waz; You () | [Yau i7", (2), Wo3, Z(1)), (F.8)
termy” £ [(W3_o; Yau () | [Ya.]{ ', (2), Wiz Z(1)). (F.9)
By the definition of mutual information, we have
I(Wiagye s Ya(t) | [Yer, 277, Wi, Z(2))
=Y " Prob([Z]\™! = Z) - term{?, (F.10)
I(W*l ; Y*1<t) ‘ [Y*17 Z]fi_lu W1*7 Z(t>>
= " Prob([Z]}™! = Z) - term?, (F.11)
I(Wass; Yo, (1) | [Yau, 2], Was3, Z(1))
=Y " Prob([Z]\™! = Z) - term?, (F.12)

I(Ws_z; Ya. (1) | [Ya, 2], W35, Z(1))
— Z Prob([Z]"! = Z) - term”. (F.13)
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Comparing (D.16) and equalities (F.10) to (F.13), it is clear that we only need to

prove that for all Z, the following inequality holds:

termgz} > term[lz] + Mterm[ﬁ + Mterméz]. (F.14)

P2-3v1 D3—1v2

To prove (F.14), we first partition all the past channel status realizations Z into
three disjoint sets, depending on the value of the scheduling decision o(t), see (2.9).

That is, for all i € {1, 2,3},
2; 2 {VZ:0(t) =i}

This partition can be done uniquely since the scheduling decision o(t) is a function
of the past channel status [Z]}™".

We now prove (F.14) depending on to which Z; the realization vector Z belong.
Specifically, we will prove the following:

e For all Z € Z;, we have

(2]

term;”’ = 0, (F.15)
term!? = 0, (F.16)
term[f} =0, (F.17)
termgz} = 0. (F.18)
e For all Z € Z,, we have
termgz] > term[lz} + hterm[ﬂ, (F.19)
P2—3v1

term!?) = 0. (F.20)
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e For all Z € Z3, we have

> term[lz} + Mtermg], (F.21)

D3—1v2

terml?) = 0. (F.22)

termgi]

Then, one can see that (F.15) to (F.22) jointly imply that (F.14) holds for all the
past channel output realizations z.

Consider the first case in which Z € Z;. (F.15) is true because

termg” £ [(Wpas),; Yar(8) | [Yal{ ', (), Who, Z(1)
< H(Ya(t)|[Yali, (7)) (F.23)
=0, (F.24)

where (F.23) follows from the definition of mutual information, non-negativity of
entropy, and the fact that conditioning reduces entropy; and (F.24) follows from
that, when the scheduling decision is () = 1, the received symbols at node 1, i.e.,
Y.1(t), are always erasure.

Similarly applying the above arguments, one can prove that (F.16) to (F.18) are

true as well when Z € Z;. The first case is thus proven.
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Consider the second case in which Z € Z,. By the same argument as used in
proving (F.15) to (F.18), we can easily prove (F.20). We now prove (F.19). Then

notice that

term”) £ [(Wiaay. s Y (8) | [Ya]oh (Z), W, Z(1))
(W5 Yo (8) | [Vt (2), Wha, Z(1))

+ ](W3—>2 ; Y*l(t) ‘ [Y*l]i_lv <Z>7 W1*7 W*17 Z(t>)

+ I(Woss; Ya(t) | [Yali ™ (2), Wass, Z(1)) (F.25)
> term?) + 1(Waoys; Yo () | [Yaali ™' (2), Wass, Z(1)) (F.26)
= term\” + [(Wao3; Yaua(t) | [Yaa]i L, (2), Wass, Z(1)), (F.27)

where (F.25) follows from the chain rule and the fact that W1, UW,; UW3_,, contains
all 9-flow messages except for Wy_,3, which, by definition (D.14), equals W5—3. (F.26)
follows from the definition (F.7) and the non-negativity of mutual information. (F.27)
follows from that when Z € Z,, the received symbol Y3_,1(t) C Y,1(t) is always erasure.

The second term in the RHS of (F.27) satisfies

I(Wass; Yoo (8) [ [Yali™ (2), Wass, Z(1))

= P21 [(Wy g Yau(t) | [Yal ', (2), Wz, (1)) (F.28)
P2—3v1

Proof of (F.28): For the ease of exposition, let us denote V £ {[Y,1]:™!, W5—3}.
Rewriting (F.28), we thus need to prove

I(Wass: Yo (8) |V, (2), Z(t) = 222 I(Wass: Yau(t) |V, (2), Z(t).  (F.29)

P2-3v1
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Since Z € Z, we have Y, ,1(t) = X5(t) 0 Zp_,1(t). Since Zp_,1(t) is independent of
W3, Xo(t), V, and the random event (Z), we thus have

](W2—>3 ) YV2—>1(t) | Va <Z>a Z(t))
= Prob(Z,1(t) = 1) - I(Wa_3; Xa(t) |V, (Z))
= P21 [(W2_>3 3 Xg(t) ‘ V, <Z>) (F?)O)

By similar arguments, we can also prove that

I(Wass; You (1) |V, (2), Z(1))
= Prob({Z2-1(t) = 1} U{Z23(t) = 1}) - I(Was3; Xa(1) [V, (2))

= P233v1 I(W2_>3, XQ(t) | V, <Z>) (F31)

Equalities (F.30) and (F.31) jointly imply (F.29), which completes the proof of
(F.28). O
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Then we observe that the mutual information term on the RHS of (F.28) also

satisfies

I(Wasss You () | [Yali ' (2), Woss, Z(1))
= H(Ya.(t) | [Ya]i ", (2), W3, Z(1))

— H(Yo.(t) [ [Yarli ™, (2), Woms, Waois, Z(1)) (F.32)
= H(Yz(t) | [Yali™" (2), W3, Z(1))

— H(Ya2.(1) | [Yz*]i_l, (Z), W3, Waos, Z(1)) (F.33)
> H(You(t) | [Yau, Ya]i ', (2), Woms, Z(1))

— H(Yo.(t) [ [Ya]i

(Z), Was3, Wa3, Z(t)) (F.34)
= H(Ya.(t) | [You 7', (2), W53, Z(1))
{

— H(Ya.(t) | [Yo.]s 1, (Z), W3, Wa_,3, Z(1)) (F.35)
= I(Wass; You (1) | [Yaul 71, (2), W3, Z(1)) (F.36)
= term[;‘}7 (F37)

where (F.32) follows from the definition of mutual information; (F.33) follows from
that (1) W353U W3 contains all the 9-flow information messages Wiy 53}, and (ii)
by Lemma D.0.5, both [Y,1]t™" and [Y2.],"" can be uniquely computed once we know
all the messages Wi 233, = W33 U Wh_,3 and the past channel realizations Z =
[z],~'. Therefore, the conditional entropy remains identical even when we substitute
(Y1) by [Ya.]i™t; (F.34) follows from the fact that conditioning reduces entropy;
(F.35) follows from Lemma D.0.6 that knowing the messages {Wi,, W3} C Wy3,
the received symbols [Ya,]:™!, and the past channel realizations Z = [z]}"* can uniquely
decide [X3]t, and thus also the received symbols [Y3,]5™" (since [z]i " is known). As
a result, removing [Y3.];™" in the first term of (F.34) will not change the conditional
entropy; (F.36) follows from the definition of mutual information; and (F.37) follows

from the definition (F.8).
Jointly (F.27), (F.28), and (F.37) imply (F.19).
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The third case, Z € Z3, is symmetric to the case of Z € Z,. The proof of
Claim D.0.3 is thus complete. |

Proof of Claim D.0.4. We provide the proofs for the (in)equalities (D.17) to (D.19)
in Claim D.0.4. We first show the proof for (D.17).
Proof of (D.17): Note that

I(W.1; Wi, [Yq, Z]7) = I(Weg; W) +1(Wey; [Yo, Z]7 | Why) (F.38)

I(Waa; [Ya, Z]yll_l | W)

FI(War; Z(0) | [Yor, ZI5 " W)
+ I(W*l ) Y*l (TL) | [Y*la Z]?_la W1*7 Z(TL)) (F40)
= ](W*l ; [Y*17 Z]?_l ‘ Wl*)

+1(Waa; Ya(n) | [Ya, Z]77 Wi, Z(n)), (F.41)

where (F.38) follows from the chain rule; (F.39) follows from the fact the messages
W,; and Wy, are independent with each other; (F.40) follows from the chain rule;
and (F.41) can be obtained by showing that the second term of (F.40) is zero. The
reason is because Z(n) is independent of W,y, [Y,1,Z]" ", and Wi,. By iteratively
applying the equalities (F.40) to (F.41) for t = n — 1 back to ¢t = 1, the result (D.17)
follows. O

Secondly, we prove (D.18). The proof of (D.19) can be derived symmetrically by

swapping the node indices 2 and 3.
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Proof of (D.18): Note that

[(W2_>3 3 W3*7 [Y*37 Z]?)
S [(W2_>3 ; W{1’3}*, W2_>1, W2_>31, [Y2*7 }/1—>37 Z]?)

= I(Wa_3; Wiy, Wa1, Wo_s, [Yo,, Z]7)

I(Wa3; Ws3) + [(Walz; [Ya., Z]} | Was3),

(

(
I(Wass; [Yoo, Z]} | Wis3),
I(Wass; [You, Z]7 7 | Wiss)
+1(Wass; Z(n) | [Yau, 2771, Wiss)
+ 1(Wass; Yo (n) | [Yau, Z]7 7, W3, Z(n)) (F.46)
= 1(Wao3; Yo, Z)i 7' [ Wass3)
b I(Wass: You(n) | [You ZIN-1, W0, Z(n)), (F.47)

where (F.42) follows from the fact that adding the observations Wi,, Wy 1, Wy 31,
and [Y2-1]7 increases the mutual information; (F.43) follows from Lemma D.0.6 that
[X1]7 is a function of Wy sy, [Ya.|77', and [Z]77", which in turn implies that [Y;_,3]7
is a function of Wiy 3y, [Yo.]7 ™!, and [Z]} since [Y13]7 is a function of [X;]} and
[Z]}. As a result, removing [Y]_,3]7 does not decrease the mutual information; (F.44)
follows from the chain rule and the definition of W5=5 in (D.14); (F.45) follows from
the fact the messages Wy_,3 and W53 are independent of each other; (F.46) follows
from the chain rule; and (F.47) follows from the second term of (F.46) being zero,
since Z(n) is independent of Wy _,3, [Ya., Z]7™!, and W5—3. By iteratively applying
the equalities (F.46) to (F.47), the inequality (D.18) follows. O

The proof of Claim D.0.4 is thus complete. |
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G. LIST OF CODING TYPES FOR sFTs AND rFTs

We enumerate the 154 Feasible Types (FTs) defined in (4.7) that the source s can

transmit in the following way:

sFTs £{00000, 00010, 00020, 00030, 00070, 00110, 00130, 00170, 00220, 00230,
00270, 00330, 00370, 00570, 00770, 00A70, 00B70, OOF70, 00F71, 01010,
01030, 01070, 01110, 01130, 01170, 01230, 01270, 01330, 01370, 01570,
01770, 01A70, 01B70, 01F70, 01F71, 02020, 02030, 02070, 02130, 02170,
02220, 02230, 02270, 02330, 02370, 02570, 02770, 02A70, 02B70, 02F70,
02F71, 03030, 03070, 03130, 03170, 03230, 03270, 03330, 03370, 03570,
03770, 03A70, 03B70, 03F70, 03F71, 07070, 07170, 07270, 07370, 07570,
07770, 07A70, 07B70, O7F70, O7F71, 11110, 11130, 11170, 11330, 11370,
11570, 11770, 11B70, 11F70, 11F71, 13130, 13170, 13330, 13370, 13570,
13770, 13B70, 13F70, 13F71, 17170, 17370, 17570, 17770, 17B70, 17F70,
17F71, 22220, 22230, 22270, 22330, 22370, 22770, 22A70, 22B70, 22F70,
20F71, 23230, 23270, 23330, 23370, 23770, 23A70, 23B70, 23F70, 23F71,
27270, 27370, 27770, 27A70, 27B70, 27F70, 27F71, 33330, 33370, 33770,
33B70, 33F70, 33F71, 37370, 37770, 37B70, 37F70, 37F71, 57570, 57770,
57F70, 57F71, 77770, TTF70, T7F71, ATA70, A7B70, ATF70, ATF71, B7B70,

B7F70, B7F71, FTF70, F7TF71},

hexadecimal of first four bits, b, is a octal of the next three bits, bs is a hexadecimal

of the next four bits, by is a octal of the next three bits, and b is binary of the last
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bit. The subset of sFTs that the relay r can transmit, i.e., rFTs are listed separately

in the following:

rFTs £{00F71, 01F71, 02F71, 03F71, 07F71, 11F71, 13F71, 17F71, 22F71, 23F71,

Q7F71, 33F71, 37F71, 57F71, 7T7F71, ATF71, BTF71, FTF71},

Recall that the by5 of a 15-bitstring b represents whether the coding subset belongs
to Ay5(t) or not, and A5(t) = S,.(t — 1) by definition (4.6). As a result, any coding
type with b;5 = 1 implies that it lies in the knowledge space of the relay r. The
enumerated rFTs in the above is thus a collection of such coding subsets in sFTs with

55:]_.
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H. LNC ENCODING OPERATIONS, PACKET
MOVEMENT PROCESS, AND QUEUE INVARIANCE

H.1 For The Strong-Relaying Scenario of Proposition 4.2.1

In the following, we will describe all the LNC encoding operations and the corre-
sponding packet movement process of Proposition 4.2.1 one by one, and then prove
that the Queue Invariance explained in Section 4.2.1 always holds.

To simplify the analysis, we will ignore the null reception, i.e., none of {d;, ds, 7}
receives a transmitted packet, because nothing will happen in the queueing network.
Moreover, we exploit the following symmetry: For those variables whose superscript
indicates the session information k& € {1,2} (either session-1 or session-2), here we
describe session-1 (k=1) only. Those variables with £ =2 in the superscript will be
symmetrically explained by simultaneously swapping (a) session-1 and session-2 in
the superscript; (b) X and Y’; (¢) ¢ and j; and (d) dy and ds, if applicable.

e sic: The source s transmits X; € Qé. Depending on the reception status, the

packet movement process following the inequalities in Proposition 4.2.1 is summarized

as follows.
| Departure | Reception Status | Insertion |

dl dQT L {17‘}

p— — Xi
d1 dg?‘ — Q{ldg}
Q<lz§ ﬁ} d1 dg?‘ — leec
Tyt X

172 Case 1 {rda}

d1 dg?‘ — leec

_ X,
d1 dg?‘ — leec

X
d1 dg?‘ — chiec

- Departure: One property for X; € Qé} is that X; must be unknown to any of
{di,ds,r}. As a result, whenever X; is received by any of them, X; must be

removed from Qé for the Queue Invariance.
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- Insertion: One can easily verify that the queue properties for Q{lr}, Q{ldﬂ, Qlee,

and Q{[:C]lz} hold for the corresponding insertions.

® sic: s transmits Y; € Qi. The movement process is symmetric to sc.
® Spyy: s transmits a mixture [X; + Yj] from X; € Q) and Y; € Qf,. The movement

process is as follows.

QL5 didor =5 Qh
—_— . _ [X +Yj5] m|2
drdoT — " Quipy
X didar ESERAREN Qmix
=L —> —

Q Q{T} dldQT [XH_YJ Xl} lex
dydr [Xi+Y;]:;
dld27 — Qmix
dydyr [Xi+Yj]: either X; or Y Qmix

- Departure: The property for X; € Qé is that X; must be unknown to any
of {dy,ds,r}, even not flagged in RLyg, 4, .. As a result, whenever the mixture
[Xi+Y]] is received by any of {dy,ds, 7}, X; must be removed from Qj. Similarly,
the property for Y; € Q{%} is that Y; must be unknown to any of {d;,ds}, even
not flagged in RLyg, 4,3. Therefore, whenever the mixture is received by any of

{d1, ds}, Y; must be removed from Qp,.

- Insertion: When only r receives the mixture, r can use the known Y and the
received [X; +Yj] to extract the pure X;. As a result, we can insert X; to Q{lr} as
it is not flagged in RLy4, 4,3. The case when only dy receives the mixture satisfies
the properties of QE;'; @ asT knows the pure Y} only while d2 knows the mixture
[X; + Y] only. As a result, we can insert [X; + Y]] to Q{ 4 }| - The remaining
reception cases fall into at least one of two conditions of Qnix. For example when
only d; receives the mixture, now [X; 4 Y]] is in RLg,} while Y is still known by
r only. This corresponds to the first condition of Qnix. One can easily verify that
other cases satisfy either one of or both properties of Qnix. Following the packet
format for Qmix, we insert [X; + Y;] : W into Qmix where W denotes the packet
in r that can benefit both destinations when transmitted. From the previous

example when only d; receives the mixture, we insert [X; +Y;| : Y; into Qmix as
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sending the known Y; from r simultaneously enables dy to receive the desired Y

and d; to decode the desired X; by subtracting Y; from the received [X; + Yj].

® s3y: s transmits a mixture [X;+Y]] from X; € Q{lr} and Y; € Q2. The movement
process is symmetric to spy;-
® Spyp: S transmits a mixture [X; +Yj] from X; € Qg and Y € QF,. The movement

process is as follows.

2 Y N Yi [2]
Q{dl}—> dydar m Q{le}
i Y -, _ Xi+Y;]: X
QL. Q{le}—> dydoT OB Qi
Q{’I‘} dl@ _{; Qéec
d_ldg’l’ —)[XHFY]]XI Qmix
; R Xi (2]
Q{lr}@ Q?dl}i didar | =5 Qlecs C—> Qpay
— X; 1 X
didaT | — Qgec; C Q{le}
X;
dl dQ’I’ — Qéec’ Case Q{[flil}

- Departure: The property for X; € Q{lr} is that X; must be unknown to any
of {dy,ds}, even not flagged in RLy4, 4,3. As a result, whenever the mixture
[X; +Y]] is received by any of {d;,d>}, X; must be removed from Q{lr}. Similarly,
the property for Y; € Q{2d1} is that Y; must be unknown to any of {dy,r}, even
not flagged in RLyg,,}. Therefore, whenever the mixture is received by any of

{dy, 7}, Y; must be removed from Q{Zdl}.

- Insertion: Whenever d; receives the mixture, d; can use the known Y; and the
received [X; + Yj] to extract the pure/desired X;. As a result, we can insert X;
into Q}.. whenever d; receives. The cases when dy receives but d; does not fall
into the second condition of Qmix as [X; + Yj] is in RL{4,) and X; is known by
r only. Namely, r can benefit both destinations simultaneously by sending the
known X;. For those two reception status d;ds7 and didsr, we can thus insert
this mixture into Qmix as [X; + Yj]: X;. Whenever r receives the mixture,  can
use the known X; and the received [X; + Yj] to extract the pure Y;. Now Y is
known by both r and d; but still unknown to dy even if dsy receives this mixture

[X; +Y;] as well. As a result, Y; can be moved to Q{[fc]ll} as the Case 1 insertion.
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But for the reception status of dydyr, note from the previous discussion that we
can insert the mixture into Qmix since dy receives the mixture but d; does not.
In this case, we chose to use more efficient (Qmix that can handle both sessions
simultaneously. Finally when the reception status is dyds7, we have that X; is
known by both r and d; while the mixture [X; + Yj] is received by ds. Namely,
X is still unknown to dy but when it is delivered, ds can use X; and the received
[X;+Y]] to extract a desired session-2 packet Y;. Moreover, X; is already in Q}..
and thus can be used as an information-equivalent packet for Y;. This scenario
is exactly the same as the Case 2 of Q{[fc]l} and thus we can move X; into Q{T, i)

as the Case 2 insertion.

® s3\o: S transmits a mixture [X; + Y] from X; € Q{ldz} and Y; € Qg,} The movement

. . 1
process is symmetric to spy.,-

® skc: s transmits X; of the mixture [X; + Y]] in @'i gy~ The movement process is

as follows.
MT SIARE Qm'x
d_1d27 ﬁ) Q{d }7 _> Qdec
mlz  [Xi+Y)] r | X o

Qpl oy T N ddyr | X Qéeca Q{ e
— 1 2
dldQT Casc 1 Q{Td2}’ _> Qdec

R X Y

didar X, Qecr ——— : ) Q{[ﬂil}
dido7 Xi
d1d27° — Qdec’ —> Qdec

- Departure: One condition for [X; + Y| € ng‘ﬁ gy 18 that X; is unknown to
any of {dy,ds,r}. As a result, whenever X is received by any of {d;,ds, r}, the

mixture [X; 4+ Y;] must be removed from Q{Ti o

- Insertion: From the conditions of ng' g We know that X; is unknown to d;
and Y; is known only by r. As a result, whenever d; receives X;, d; receives the
new session-1 packet and thus we can insert X; into Q}... Whenever dy receives
X, dy can use the known [X; + Y;] and the received X; to subtract the pure Y.
We can thus insert Y; into Q3. The case when only r receives X; falls into the

first condition of Qmix as [X; + Yj] is in RLyg,y and Xj; is known by r only. In
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this case, r can benefit both destinations simultaneously by sending the received
X;. For this reception status of d;dsr, we thus insert the mixture into Qmix as
[X;+Y;]: X;. The remaining reception status to consider are dydyT, didyr, didsr,
and dydyr. The first when only dy receives X; falls into the property of Q{ldz} as
X is known only by dy and not flagged in RLg4, ;. Thus we can insert X; into
Q{{b}. Obviously, dy can decode Y; from the previous discussion. For the second
when only d; receives X;, we first have X; € Q}jec while X; is unknown to any of
{dy,r}. Moreover, Y} is known by r only and [X;+Y]] is in RL;g,}. This scenario
falls exactly into Q{%zl} and thus we can insert X; into Q{2d1}' The third case when
both dy and r receive X; falls exactly into Case 1 of Q{[j}b} as X; is now known by
both dy and r but still unknown to d;. And obviously, ds can decode Y} from the
previous discussion. For the fourth case when both d; and r receive X;, we now
have that r contains {X;,Y;}; di contains X;; and dy contains [X; +Y;]. That is,
X; is already in Q). and known by r as well but still unknown to dy. Moreover,
dy can decode the desired session-2 packet Y; when it receives X; further. As
a result, X; can be used as an information-equivalent packet for ¥; and can be

moved into Q{[f}il} as the Case 2 insertion.

e sic: s transmits V; of [X; + Y]] € le‘ﬁ gy- The movement process is symmetric to

1

e shy: s transmits X; € Q{lch}. The movement process is as follows.

1 X T Xi (1]
Q{dz}—> dldz’f’ Case 1 {rds}
do nothing | didy7 | do nothing
didyr X Qliec
— X; ]
dl dQT‘
Xi ase Td
62{1(12}—> a5 < - e
dl dQT‘
didsT _{; Qéec
dl dQT‘

- Departure: One condition for X; € Q{1d2} is that X; must be unknown to any
of {di,r}. As a result, X; must be removed from Q{{b} whenever it is received

by any of {d;,r}.
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- Insertion: Whenever d; receives X, it receives a new session-1 packet and thus
we can insert X; into Q.. If X; is received by r but not by d;, then X; will be
known by both dy and r (since dy already knows X;) but still unknown to d;.
This falls exactly into the first-case scenario of Q{[:gb} and thus we can move X;

into Q{[Tlc]lg} as the Case 1 insertion.

e siy: s transmits Y; € Q{Zdl} The movement process is symmetric to spy.

° 5(Dl>)<' s transmits Y; € Q{d }‘ oL The movement process is as follows.

(O Y T Yi (1]
Quapipy > | drdar | o= Qpay
do nothing | dids7 | do nothing

_— Xi(=Ys) 1
dldQT _— Qdec
5 Y; [1]
Q(l [1 Y% dldzr Case 2 {rda}
fda} | )" didyr
— Xi(=Ys)
dldQT AN ch:lec
dldQT

- Departure: One property for Y; € Q{(dl}nl g 18 that Y; must be unknown to any

of {d1,r}. As a result, whenever Y; is received by any of {di,r}, Y; must be

removed from Q{ » }| IeE

- Insertion: From the property of Y; € Q{d }‘ o We know that Y; € Q%.; there
exists a session-1 packet X; still unknown to d; where X; = Y;; and [X; + Y]
is in RLyg,}. As a result, whenever d; receives Y;, d; can use the received Y;
and the known [X; + Y;] to extract X; and thus we can insert X; into Qéec. If
Y; is received by r but not by d;, then Y; will be known by both dy and r but
unknown to d;, where [X; + Y;] is in RLygy. Thus when d; receives Y;, d; can
further decode the desired X;. Moreover, Y; is already in Q%... As a result, we

can move Y; into Q{[ﬂb} as the Case 2 insertion.

° S(Dz))(. s transmits X; € Q{ » }‘ ae The movement process is symmetric to s(Dl))<.
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® scx.1: s transmits [X; +Y;] from X; € Q{ldﬂ and Y; € Q{le}. The movement process

is as follows.

1 X
Q{dz} —, didyr [Xi+Y5] chx

2 Y
Qay —

2 Yio | 7 = Yi. 2
Q{dl} — dldgT‘ — Qdec

X; - X

Q{1d2} — dldgT‘ — Qéec

WE N Ll Brrnd Pl
g~ [—— BTN

2 Y didar —> Qdec’ Q{rd }
Qay — = -

{d dldgT‘ X;

didar — QdeU —> Qdec

- Departure: One condition for X; € Q{ldz} is that X; must be unknown to any of
{dy,r}, even not flagged in RL{4, ;. As a result, whenever the mixture is received
by any of {di,}, X; must be removed from Qg,. Symmetrically for Y; € QF,,
whenever the mixture is received by any of {ds,r}, ¥; must be removed from
Q{2d1}'

- Insertion: Whenever d; receives the mixture [X; + Y}], d; can use the known
Yj € Qf,, and the received [X; + Y]] to extract the desired X; and thus we can
insert X; into Q... Similarly, whenever dy receives this mixture, da can use the
known X; € Q{ldﬂ and the received [X; + Y}] to extract the desired Y; and thus
we can insert Y; into Q2_.. The remaining reception status are didar, didyr, and
dodyr. The first when only r receives the mixture exactly falls into the first-case
scenario of Qgcx as [X; + V)] isin RLy,y; X, € Q{ldz} is known by dy only; and
Y; € Q{zdl} is known by d; only. As a result, r can then send this mixture [X;+Y]]
to benefit both destinations. The second case when both dy and r receive the
mixture, jointly with the assumption Y; € Q{zdl}, falls exactly into the third-case
scenario of Q{[:C]lz} where W; is a pure session-1 packet. As a result, we can move
[X; +Y;] into Q{[:C]lg} as the Case 3 insertion. (And obviously, ds can decode Y;
from the previous discussion.) The third case when both d; and r receive the
mixture follows symmetrically to the second case of dydyr and thus we can insert

[X; +Y;] into Q{[fc]ll} as the Case 3 insertion.
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® scx.2:S transmits [ X,+X;] from X, € Q{d} and X; € Q{d }\ o The movement process

is as follows.

Qiy =
d ) - Xt X1, m
Qe — . e
Q{Zl)}lwz{r} o | didoT Qe
Q{dg} dl@ ———) Qdec
- [Xi+X;] 1 Y; (=X;)
Ql ﬁ> drdzr Case 3 Q{[le}’ Qgec
{da} — X, (X +X;]
Q(z 2 X dydar = Qliecs Cnso Q{rdl}
{d1}|{T} ddoT _{L) Q! Y; ( X;) YilEX), o2
d1d27° dec’ dec

- Departure: One condition for X; € Q{ldz} is that X; must be unknown to any of
{dy,r}, even not flagged in RLy4, ;3. As a result, whenever the mixture [X; 4+ X|]
is received by any of {d;,r}, X; must be removed from Q{ldﬂ. From the property
for X; € Q{(dz }“2{ }, we know that X, is unknown to any of {ds, r}, even not flagged
in RLgy. As a result, whenever r receives the mixture [X; 4+ X;], X; must be
removed from ngﬁ{r}. Moreover, whenever dy receives this mixture, dy can use
the known X; € Q{ld ; and the received [X; + X;] to decode X; and thus X; must

be removed from ijﬁf{r}

Insertion: From the properties of X; € Q{d y and X; € Q{d }\ o We know that r
contains Y; (still unknown to dy and Y; = Xj); d; contains X;; and dy contains
{Xi,[Y; + Xj]} already. Therefore, whenever d; receives the mixture [X; + X;],
d; can use the known X; and the received [X; 4+ X;] to extract the desired X; and
thus we can insert X; into Q}.. Similarly, whenever dy receives this mixture,
dy can use the known {X;, [Y; + X;]} and the received [X; + X,] to extract the
desired Y}, and thus we can insert Y; into Q3... The remaining reception status
are didor, didyr, and dyodor. One can see that the case when only r receives the
mixture exactly falls into the Case 2 scenario of Q{Z;CX. For the second case when
both dy and r receive the mixture, now r contains {Y}, [X; + X,|}; di contained
X; before; and dy contains {X;, [Y; + X,], [X; + X;]}. This falls exactly into the
third-case scenario of Q{[:C]lz} where W; is a pure session-1 packet X;. As a result,

we can move [X; + X into Q{[:C]lz} as the Case 3 insertion. (And obviously, dy can
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decode the desired Y; from the previous discussion.) For the third case when
both d; and r receive the mixture, now r contains {Y}, [X; + Xj|}; di contains
{X;,[X; + X,]}; and dy contained {X;,[Y; + X,]} before, where we now have
X; € @} from the previous discussion. This falls exactly into the third-case
scenario of Q{[fc]ll} where W, is a pure session-1 packet X; € Q}... Note that
delivering [X; + X] will enable d to further decode the desired Y;. Thus we can
move [X; + Xj| into Q{[fc]ll} as the Case 3 insertion.

® scx.3:s transmits [Y; + Y] from Y] € Q{(;}“l{r} and Y; € Q{zdl}. The movement process

is as follows.

Q(l [1 1@
{dz}\{T} didor [Y +Y;] Q{ﬁcx
Q2
Y —_ Y,
Q{2d1} J dldzr —J> Qgec
(D)1 1@ - Xl( Yi)
Qudipy ~ | hider Qdec
= [Yi+Y;]
o, 2o, [T | G Gy e
d 7] —_
{2}‘{} dld2r ad Qdec’ Yr’_yj Q{[fli}
Qd ) —> - se 3 1
{ B dldQT‘ XZ(*Yz
didar - Qdec’ —> Qdec

- Departure: From the property for Y; € Q{ x }‘ o we know that Y; is unknown
to any of {dy,r}, even not flagged in RLy,;. As a result, whenever r receives
the mixture [Y; + Y}], ¥; must be removed from Qf;z)ﬁ‘l{r}. Moreover, whenever d;
receives this mixture, d; can use the known Y; € QF, and the received [Y; + Y}
to decode Y; and thus Y; must be removed from Q{(;}‘ﬁ - One condition for
Y, € Q{dl} is that Y; must be unknown to any of {ds, 7}, even not flagged in
RL{dyr}- As a result, whenever the mixture [Y; 4 Y]] is received by any of {ds, 7},

Y; must be removed from Q.

- Insertion: From the properties of Y; € Q{(dl }‘|1 ) and Y, € Q{zdl}, we know that r

contains X; (still unknown to d; and X; = Y;); d; contains {Y}, [X; + Y;]}; and
dy contains Y; already. Therefore, whenever d; receives the mixture [Y; + Yj],
d; can use the known {Y}, [X; + Y;]} and the received [Y; + Y]] to extract the

desired X; and thus we can insert X; into Q... Similarly, whenever dy receives
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this mixture, dy can use the known Y; and the received [Y; 4+ Y;] to extract the
desired Y}, and thus we can insert Y; into Q3... The remaining reception status
are dydyr, didyr, and dadyr. One can see that the first case when only r receives
the mixture exactly falls into the Case 3 scenario of Q{Z;CX. For the second
case when both dy and r receive the mixture, now r contains {X;, [Y; + Y]}
dy contained {Y}, [X; + Yi]} before; and dy contains {Y;, [Y; + Y;]}, where we
now have Y; € Q3. from the previous discussion. This falls exactly into the
third-case scenario of Q{%Q} where W, is a pure session-2 packet Y;. Note that
delivering [Y; + Y| will enable d; to further decode the desired X;. Thus we
can move [Y; + Y] into Q{[j}b} as the Case 3 insertion. For the third case when
both d; and r receive the mixture, now r contains {X;, [Y; + Y;]}; d; contains
{Y;,[Xi + Yi], [Y: + Y;]}; and dy contained Y; before. This falls exactly into the
third-case scenario of Q{[i]h} where W; is a pure session-2 packet Y;. As a result,
we can move [Y; + Y]] into Q{[f}il} as the Case 3 insertion. (And obviously, d; can

decode the desired X; from the previous discussion.)

® scx.4: s transmits [Y; + X;] from Y; € Q{d }\{} and X; € Q{(dz}‘f{} The movement

process is as follows.

Q(l [1 YZ
S x, | D DD, Qe
Quadim = - —
e Qi
1 5 Xl l/z
Qi = | hibr D, Qe
— Vit X1 1] V(=X
Q(l 11 n didar Case; Q{sz}u 5 2 Qfec
a1} — Xi(=Yh), 1 Yt X] (2]
Q{(dQ}‘\Q{} X] iy Qdec? Case 3 Q{le}
) didaT | x,(=v) Y (=X;)
d1d27’ Qéec’ - - Q?:Iec

- Departure: From the property for Y; € Q{d }\ o We know that Y; is unknown
to any of {d;,r}, even not flagged in RL{;y. As a result, whenever r receives the
mixture [Y; + Xj], ¥; must be removed from Q{d }| - Moreover, X; € Q{dl}‘ I
is known by d;. As a result, whenever d; receives the mixture, d; can use the

known X; and the received [Y; + X;] to decode Y; and thus Y; must be removed
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from Q{ » }\ Ioe Symmetrically for X; € Q{ ) }\ o whenever the mixture is received
by any of {ds,r}, X; must be removed from Q{(j }‘\2{@

Insertion: From the properties of Y; € Q{(dl}nl{} and X; € Q{d }I{}’ we know

that r contains {X;,Y;} where X; (resp. Y;) is still unknown to d; (resp. da)
and X; = Y, (resp. Y; = Xj); dy contains {[X; + Yi], X,;}; and ds contains
{Yi,[Y;+ X;]} already. Therefore, whenever d; receives the mixture [Y; + X;], d;
can use the known {[X;+Y;], X;} and the received [Y;+X;] to extract the desired
X; and thus we can insert X; into Q... Similarly, whenever dy receives this
mixture, dy can use the known {Y;, [Y;+X;]} and the received [Y;+ X} to extract
the desired Y;, and thus we can insert Y; into Q3... The remaining reception
status are dydor, didor, and dadyr. One can see that the first case when only r
receives the mixture exactly falls into the Case 4 scenario of Qgcx. For the second
case when both dy and r receive the mixture, now r contains {X;,Y;, [Y; + X, };
d; contained {[X; + Y], X;} before; and dy contains {Y;,[Y; + X;|, [Y; + X;]}
where we now have X; € Q},. from the previous discussion. This falls exactly
into the third-case scenario of Q{[j}b} where W; is a pure session-2 packet Y;. Note
that delivering [Y; + X;| will enable d; to further decode the desired X;. Thus
we can move [Y; + X;] into Q{[Tlc]lg} as the Case 3 insertion. For the third case
when both dy and r receive the mixture, now r contains {X;, Y}, [Y; + X;]}; &4
contains {[X; +Y;], X;, [Yi + X;]}; and ds contained {Y;, [Y;+ X/|} before, where
we now have Y; € Q% from the previous discussion. This falls exactly into the
third-case scenario of Q{[fc]ll} where W; is a pure session-2 packet X;. Note that
delivering [Y; + X;] will enable d; to further decode the desired Y;. Thus we can
move [Y; + X] into Q{[fc]ll} as the Case 3 insertion.
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® scx.5:s transmits [X; +W ;] from X; € Q{{b} and W; € Q{[fc]ll}' The movement process

is as follows.

Xi -7 X [1]
Q{ldz}—> didar —>0asc ; Q{sz}

Wi | 5, = Y; (EW;)
QP | didoT ST Q2
Q{ldz}ﬁ dydyr 2 QL

X.
Q‘{ldz}—l>

N 1] Y( 1))
Q[Q] WJ‘ dldz”’ Case 1 Q{szp Qdec
{le}

Q> | diilor = Qe
Q{1d2}£>7 dldgF o

" 2 Qe 252 3
Q{[i]il} ] dldgT‘ ec ec

- Departure: The property for X; € Q{{b} is that X; must be unknown to any of
{dy,r}, even not flagged in RLy4, »y. As a result, whenever the mixture [X;+ W]
is received by any of {d;,r}, X; must be removed from Q{1d2}. Similarly, one
condition for W € Q{ i) is that Wj must be unknown to ds. However when dy
receives the mixture, dy can use the known X; € Q{ldz} and the received [X; + W]

to decode W;. Thus W; must be removed from Q{[f}il} whenever d, receives.

- Insertion: From the properties of X; € Q{ldz} and W; € Q{T ) We know that r
contains Wj; d; contains Wj; and ds contains X; already. Therefore, whenever
dy receives this mixture, d; can use the known W; and the received [X; + W] to
extract the desired X; and thus we can insert X; into Q.. Similarly, whenever
dy Teceives this mixture, dy can use the known X; and the received [X; + W]
to extract W;. We now need to consider case by case when W, was inserted
into Q{T ) If it was the Case 1 insertion, then W, is a pure session-2 packet
Y; and thus we can simply insert Y; into Q%.. If it was the Case 2 insertion,
then Wj is a pure session-2 packet X; € Q}.. and there exists a session-2 packet
Y; still unknown to dy where Y; = X,;. Moreover, dy has received [Y; + X;].
As a result, dy can further decode Y; and thus we can insert Y; into Q3. If it
was the Case 3 insertion, then W; is a mixed form of [W; + W;] where W; is
already known by dy but W is not. As aresult, dy can decode W; upon receiving

W; = [W; + W;]. Note that W; in the Case 3 insertion W; = [W; + W,] € Q{T,dl}
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comes from either Q{d} or Q{ d1}| o If W; was coming from Q{%h}’ then Wj is a
session-2 packet Y; and we can simply insert Y; into Q4. If W; was coming from
Qf;!f{r}, then W; is a session-1 packet X, and there also exists a session-2 packet
Y; still unknown to dy where Y; = X;. Moreover, dy has received [Y; + Xj|. As
a result, dy can further use the known [Y; + X;] and the extracted X; to decode
Y; and thus we can insert Y; into Q%.. In a nutshell, whenever dy receives the
mixture [X; + W], a session-2 packet Y; that was unknown to dy can be newly
decoded. The remaining reception status are didaor and dydor. For both cases
when r receives the mixture but d; does not, r can use the known Wj and the

received [X; + W] to extract X;. Since X; is now known by both r and dy but

unknown to d;, we can thus move X; into Q{%Q} as the Case 1 insertion.

® scx.6:s transmits [W; +Y;] from W, € Q{[:C]lz} and Y; € Q{2d1}‘ The movement process
1s symmetric to Scxs.
® scx.7: s transmits [V; + W] from Y, € Q{d }\{} and W; € Q{[fc]ll}' The movement

process is as follows.

(1)1 1@ -3
Q{dz}l{r} drdar Cuss 7 Q{sz}
—_— ;5 (

Q{le} dldQT Qdec
Y; - X (=Ys5)
Quylpy | hider —— Qlec

Q (D1 Yz
e | o YEW),
Q[Q] WJ‘ dldz?" Case 2 Q{Td2}, Qdec
{T‘dl}
M i 7 Xi(ZYi) 1
Quyipy—? | dder dec
M Y — Xi(=Y3)
Quuyipr— | hrde 2 Qlees
[2] WJ Y EW]‘
Q{le} dldgT g 3ec

- Departure: From the property for Y; € Q{d }\ o We know that Y; is unknown
to any of {dy,r}, even not flagged in RLy,y. As a result, whenever r receives the
mixture [Y; + W,], ¥; must be removed from Q{(;gﬁ g Moreover, W; e Q{T, iy L
known by d;. As a result, whenever d; receives the mixture, d; can use the known
W; and the received [Y; + W] to decode Y; and thus Y; must be removed from

Q{(dl }‘|1 Iee Similarly, one condition for W; € Q{ i) is that W, must be unknown
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to dy. However when dj receives the mixture, dy can use the known Y; € Qf;2)}|‘1{r}
and the received [Y; + W] to decode W;. Thus W; must be removed from Q{[f}il}
whenever ds receives.

Insertion: From the properties of Y; € Qf;z);ﬁ{r} and W; € Q[fc]ll}, we know that

r contains {X;, W,}; di contains {[X; + Yi],W;}; and dy contains Y; already.
Therefore, whenever d; receives this mixture, d; can use the known {[X; +
Y], W;} and the received [Y; + W] to extract the desired X; and thus we can
insert X; into Q.. Similarly, whenever dy receives this mixture, dy can use the
known Y; and the received [Y; + W] to extract W;. We now need to consider
case by case when W; was inserted into Q{[fc]ll}. If it was the Case 1 insertion,
then W is a pure session-2 packet Y; and thus we can simply insert Y; into Q3.
If it was the Case 2 insertion, then W is a pure session-1 packet X; € Q... and
there exists a session-2 packet Y; still unknown to dy; where Y; = X;. Moreover,
dy has received [Y; + X;]. As a result, dy can further decode Y; and thus we
can insert Y; into Q2. If it was the Case 3 insertion, then W; is a mixed form
of [W; + W;] where W; is already known by dy but W; is not. As a result, d
can decode W; upon receiving W; = [W; + W;]. Note that W, in the Case 3
insertion W, = [W; + W,] € Q{[ﬂh} comes from either Qf, or Qf;l);f{r}. If W, was
coming from Q{%l}, then W; is a session-2 packet Y; and we can simply insert
Y; into Q3... If W; was coming from Q{(jl)}‘f{r}, then W; is a session-1 packet X;
and there also exists a session-2 packet Y; still unknown to dp where Y; = X.
Moreover, dy has received [Y; + X;]. As a result, dy can further use the known
[Y; + X,] and the extracted X; to decode Y; and thus we can insert Y; into Q3.
In a nutshell, whenever dj receives the mixture [Y; + Wj], a session-2 packet Y;
that was unknown to d, can be newly decoded. The remaining reception status
are dydsr and dydsr. For both cases when r receives the mixture but d; does
not, r can use the known W; and the received [Y; + W] to extract Y;. Since Y;
is now known by both r and dy but [X; + Y] is in RL{4,}, we can thus move Y;

into Q{[:C]lz} as the Case 2 insertion.
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® scx.g: s transmits [W; + X;] from W; € Q{Td} and X; € Q{d }\{T} The movement
process is symmetric to scx.r.

e rlc: r transmits X; from X; € Q{lr}. The movement process is as follows.

— X, 0

Ql X dl% Case 1 -trdz}
dyds X
dids — Qdec

- Departure: One condition for X; € Q{lr} is that X; must be unknown to any
of {di,ds}. As a result, whenever X is received by any of {d;,ds}, X; must be

removed from Q{i} :

- Imsertion: From the above discussion, we know that X; is unknown to d;. As a
result, whenever X is received by dy, we can insert X; to QL. If X; is received
by dy but not by dy, then X; is now known by both dy and r but still unknown
to dy. This exactly falls into the first-case scenario of Q{[:C]lz} and thus we can

move X; into Q{[:c]zz} as the Case 1 insertion.

e ric: r transmits Y; from Y; € Q{QT,}. The movement process is symmetric to rjc.

° rlgl-l)-' r transmits X; that is known by r only and information equivalent from

Y; € Q{(dl}nl - The movement process is as follows.

QI Yi dl% Case 1 Q{sz}
{d2}|{’l"} d1d2 X; ( Y
d1d2 Qdec

- Departure: From the property for Y; € Q{(dl}nl gy We know that there exists an

information-equivalent session-1 packet X; that is known by r but unknown to
any of {dy,ds}. As a result, whenever X; is received by any of {d;,d>}, Y; must

be removed from Q{(dl}nl -

- Imsertion: From the above discussion, we know that X, is unknown to d; and
thus we can insert X; to Q}jec whenever X is received by d;. If X; is received by
ds but not by dy, then X, is now known by both dy and r» but still unknown to
dy. This exactly falls into the first-case scenario of Q{%Q} and thus we can move

X; into Q{[:C]lz} as the Case 1 insertion.
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Q{dl}‘ o The movement process is symmetric to D

® T'RC:
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r transmits Y; that is known by r only and information equivalent from X; €
(1)

r transmits W known by r for the packet of the form [X; + Y] : W € Qnix.

The movement process is as follows.

. X
ther ——
dids ely er < Qpay OF oy Qay
Qmix XAy —]> gec
X»; 1
d d_ dec
102
y o2 [2]
cither Casc 1 Q{le} Case 2 Q{le}
d1d2 —_> Qdec’ _> Qdec

Departure: From the conditions of [X; + Y] : W € Qmix, we know that Qmix is
designed to benefit both destinations simultaneously when r transmits W. That
is, whenever d; (resp. ds) receives W, d; (resp. dy) can decode the desired X;
(resp. Y;), regardless whether the packet W is of a session-1 or of a session-2.
However from the conditions of Qmix, we know that X; is unknown to d; and
Therefore, whenever W is received by any of {d;,d>},

Y; is unknown to do.

[X; +Y;] : W must be removed from Q{Eﬂlc]lz}

Insertion: From the above discussions, we know that d; (resp. dy) can decode
the desired X; (resp. Y;) when W is received by d; (resp. d3). As a result, we
can insert X; into Q.. (resp. Y; into Q%) when d; (resp. dz) receives W. We
now consider two reception status dydy and d;d,. From the conditions of Qmix,
note that W is always known by r and can be either X; or Y;. Moreover, X,
(resp. Y;) is unknown to d; (resp. dq). For the first reception case dydy, if X; was
chosen as W to benefit both destinations, then X; is now known by both d, and
r but still unknown to d;. This exactly falls into the first-case scenario of Q{%Q}
and thus we move X; into Q}:glz} as the Case 1 insertion. On the other hand, if
Y; was chosen as W to benefit both destinations, then we know that Y; is now
known by both dy and 7, and that [X; + Y]] is already in RLg4y. This exactly
falls into the second-case scenario of Q{[j}b} and thus we can move Y; € Q3. into
Q{ iy} 85 the Case 2 insertion. The second reception case dydy will follow the the

previous arguments symmetrically.
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o ryr: 7 transmits [W; + W] € Q{Tgcx. The movement process is as follows.

[1]

[Wi+W;] Q[l]
d_ldg Cdse 3 trda}
Y
mex [(Wi+W;] Qdec
Q{T} - X; ( W;) Q
R dec?
didy Wi+ W;] . [2]
Ce(xsc 3 ) {rdi}
X (=W;
d1d2 Y Qdec’
Qdec

Departure: From the property for [W;+W,] € chx we know that W; is known
only by ds and that W; is only known by d;. As a result, whenever d; receives
this mixture, d; can use the known W, and the received [W; 4+ W}] to extract

mCX

W; and thus the mixture must be removed from Q Similarly, whenever dy

receives this mixture, dy can use the known W; and the received [W; + W;] to

extract W; and thus the mixture must be removed from Qgcx

Insertion: From the above discussions, we have observed that whenever d;
(resp. dy) receives the mixture, dy (resp. dp) can extract W; (resp. W;). From
the four cases study of chx, we know that dy (resp. dy) can decode a desired
session-1 packet X; (resp. session-2 packet Y;) whenever d; (resp. dy) receives
the mixture, and thus we can insert X; (resp. Y;) into Qj.. (resp. Q3..). We
now consider the reception status dyds and didsy. If dy receives the mixture but
d; does not, then d; contained W; and dy now contains [W; + W;]. Moreover,
[W; +W,] was transmitted from r. This falls exactly into the third-case scenario
of Q{[:C]lz}. As a result, we can move [W; + W] into Q{[j}b} as the Case 3 insertion.
The case when the reception status is didy can be symmetrically followed such

that we can move [W; 4+ W] into Q{[fc]ll} as the Case 3 insertion.

e rpr: 7 transmits W, € Q{T i)+ LThe movement process is as follows.

do nothing | dids do nothing

| didy
) w. 192 | Xi(=W0),
62{7“(12}_——> dida Qdec

Departure: One condition for W, € Q{T d} is that W, is known by dy unknown
to d;. As a result, whenever d; receives, W; must be removed from Q{[ﬂb}. Since

W, e Q{[:C]lz} is already known by ds, nothing happens if it is received by ds.
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- Insertion: From the previous observation, we only need to consider the recep-
tion status when d; receives W;. For those dids and d;ds, we need to consider
case by case when W; was inserted into Q{%Q}. If it was the Case 1 insertion,
then W, is a pure session-1 packet X; and thus we can simply insert X; into QJ...
If it was the Case 2 insertion, then W, is a pure session-2 packet Y; € Q% _ and
there exists a session-1 packet X; still unknown to d; where X; = Y;. Moreover,
dy has received [X; +Y;]. As a result, d; can further decode X; and thus we can
insert X; into Ql... If it was the Case 3 insertion, then W; is a mixed form of
[W; + W;] where W; is already known by d; but W; is not. As a result, d; can
decode W; upon receiving W; = [W; +W;]. Note that W; in the Case 3 insertion
W, =W, + W] € Q{Td} comes from either Q{d} or Q{d }\{T} If W; was coming
from Q{d b then W; is a session-1 packet X; and we can simply insert X; into
Qlee. If W; was coming from Q{ o }\ o then W; is a session-2 packet Y; and there
also exists a session-1 packet X; still unknown to d; where X; = Y;. Moreover,
d; has received [X; +Y;]. As a result, d; can further use the known [X; +Y;] and
the extracted Y; to decode X; and thus we can insert X; into Q... In a nutshell,
whenever d; receives W;, a session-1 packet X; that was unknown to d; can be

newly decoded.

o TI[321I': 7 transmits W; € Q{[fc]ll}' The movement process is symmetric to rglr.

® rcx: 1 transmits [W,;+W;] from W, € Q{[:C]lz and W, € Q{T 4y~ The movement

process is as follows.

Q2 o | Tdy

{le} dec
1 —_ Xi EWi
Q{[TI(]iQ} U d1d2 % éec
(1] WZ X (=W)
Q{rdg} éec’
_ dids
(0] IR Wi Y, (=W,)
{rd1} IR Qgec

- Departure: From the property for W; € Q{r B }, we know that W; is known by
do but unknown to d;. Symmetrically, W; € Q{T dp} 18 known by d; but unknown
to ds. As result, whenever d; (resp. ds) receives the mixture, d; (resp. dy) can

use the known W; (resp. W;) and the received [W;+W;] to extract W, (resp.



198

Wj). Therefore, we must remove W, from Q{[j}b} whenever d; the mixture and

T (2] :
remove W from Q{T i1} whenever d, receives.

Insertion: From the above discussions, we have observed that whenever d;
(resp. dy) receives the mixture, d; (resp. dy) can extract W, (resp. W;). We
first focus on the case when d; receives the mixture. For those d;dy and d;ds, we
can use the same arguments for W; as described in the Insertion process of TBJI—.
Following these case studies, one can see that a session-1 packet X; that was
unknown to d; can be newly decoded whenever d; receives W,;. The reception
status when ds receives the mixture can be followed symmetrically such that ds

can always decode a new session-2 packet Y; that was unknown before.
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I. DETAILED DESCRIPTION OF ACHIEVABILITY
SCHEMES IN FIG. 4.3

In the following, we describe (R;, Ry) rate regions of each suboptimal achievability
scheme used for the numerical evaluation in Section 4.3.

e Intra-Flow Network Coding only: The rate regions can be described by Propo-
sition 4.2.1, if the variables {sEy1, SEyo, She @ for all k € {1,2}}, {scxa (I=1,---,8)},
{rrc, rx1,Tcx } are all hardwired to 0. Namely, we completely shut down all the vari-
ables dealing with cross-packet-mixtures. After such hardwirings, Proposition 4.2.1

is further reduced to the following form:

1> Z (36c + sPx + The + Tl[Dk}T) ;
ke{1,2}

and consider any 7,5 € (1,2) satisfying ¢ # j. For each (i,7) pair (out of the two
choices (1,2) and (2, 1)),

R > syc - ps(di, dj, ),
Suc " Doy = Tuc - Pr(dis dj),
SuC * Psssyayr = Sox * Ps(dis 7)),
Suc “Psdia;r T Sox * Ps(dir) + Thc Prosdid; 2= TI[;]T - pr(ds),

(sbe + sbx) - Pald) + (rbc + 78 ) - po(di) > B
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e Always Relaying with INC: This scheme requires that all the packets go through
r, and then r performs 2-user broadcast channel NC. The corresponding rate regions

can be described as follows:

Ry Ry R+ R,
+ S 1 - )
pr(d1> pr(db d2) Ps (T)
Ry Ry R+ Ry
+ <1- .
pr(di,da)  pp(da) ps(7)

e Always Relaying with routing: This scheme requires that all the packets go
through r as well, but r performs uncoded routing for the final delivery. The corre-

sponding rate regions can be described as follows:

Ry ) Ry + Rs
+ <1-
pr(dl) pr(dZ) ps(r)

e [47] without Relaying: This scheme completely ignores the relay 7 in the middle,
and s just performs 2-user broadcast channel LNC of [47]. The corresponding rate

regions can be described as follows:

Ry n Ry <1
ps(dl) ps<d17d2> -
I LR

+ <1
ps(db d2) ps(d2>

e Routing without Relaying: This scheme completely ignores the relay r in the
middle, and s just performs uncoded routing. The corresponding rate regions can be

described as follows:

Ry Ry
+ <L
ps(dl) ps(d2)



201

J. PROOFS OF PROPOSITIONS AND COROLLARIES
FOR CHAPTER 5

J.1 Proofs of Propositions 5.4.1 and 5.4.2

We prove Proposition 5.4.1 as follows.

Proof of = direction of Proposition 5.4.1: We prove this direction by contra-
diction. Suppose that h(x) is linearly dependent. Then, there exists a set of coef-
ficients {ay}Y_, such that Z]kvzl arhi(x) =0 and at least one of them is non-zero.
Since [h(x®)]Y_, is row-invariant, we can perform elementary column operations on
[h(x®)]N_, using {a;}_, to create an all-zero column. Thus, det([h(x®)]Y,) is a

zero polynomial. |

Proof of < direction of Proposition 5.4.1: This direction is also proven by con-
tradiction. Suppose that det([h(x®)])_,) is a zero polynomial. We will prove that
h(x) is linearly dependent by induction on the value of N. For N =1, det([h(x®)]Y_))
= 0 implies that h;(x) is a zero polynomial, which by definition is linearly dependent.

Suppose that the statement holds for any N <ng. When N = ng, consider the
(1,1)-th cofactor of [h(x®)]Y_,, which is the determinant of the submatrix of the
intersection of the 2nd to N-th rows and the 2nd to N-th columns. Consider the
following two cases. Case 1: the (1,1)-th cofactor is a zero polynomial. Then by
the induction assumption {hs(x), ..., hy(x)} is linearly dependent. By definition, so
is h(x). Case 2: the (1,1)-th cofactor is a non-zero polynomial. Since we assume
a sufficiently large ¢, there exists an assignment x, € EF' to x € EF' such that the
value of the (1,1)-th cofactor is non-zero when evaluated by x, to X,. But note that
by the Laplace expansion, we also have S1n_ hy(x®) Cix = 0 where Oy, is the (1, k)-
th cofactor. By evaluating Cy;, with {x,}Y,, we can conclude that h(x) is linearly

dependent since at least one of Oy, (specifically ;) is non-zero. |
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We prove Proposition 5.4.2 as follows.

Proof of < direction of Proposition 5.4.2: This can be proved by simply choos-
ing G'=G. [ |

Proof of = direction of Proposition 5.4.2: Since we have f({me(x) : Vi €
x) : VieT}) =ag({me . (x)

1Y) = g({mege (x) 1 Vi€l}), we can assume f({me,e(
Viel}) for some non-zero a €F,. Consider any subgraph G’ containing all edges in
{ei e} 1 Viel} and the channel gain m,,(x’) on G'. Then, me,.(x') can be derived
from m,.. (x) by substituting those x variables that are not in G’ by zero. As a

x'):Viel})=ag({me,(x') : Viel}) for the

result, we immediately have f({me,.e (

same «. The proof of this direction is thus complete. |

J.2 Proofs of Corollaries 5.4.1 and 5.4.2
We prove Corollary 5.4.1 as follows.

Proof of = direction of Corollary 5.4.1: We assume (i1,i2)=(1,2) and (j;, j2) =
(1,3) without loss of generality. Since EC({s1, s2}; {d1,ds}) =1, there exists an edge
e” that separates {di, d3} from {sy, so}. Therefore, we must have my; =me, ;eMese,
Mg = Me, e Mexieq,s M2l = Meyyier Meriey s AN Moz = M exMexe, . As a Tesult,

M11M23 = M211M13. [ |

Proof of < direction of Corollary 5.4.1: We prove this direction by contradic-
tion. Suppose that EC({s;,, s;, };{d;,,d;,}) > 2. In a Gsana network, each source
(resp. destination) has only one outgoing (resp. incoming) edge. Therefore, the
assumption EC({s;,,si,};{d;,,d;,}) > 2 implies that at least one of the following
two cases must be true: Case 1: There exists a pair of edge-disjoint paths P, 4,
and Psizdjz; Case 2: There exists a pair of edge-disjoint paths Psildj2 and P%djl'
For Case 1, we consider the network variables that are along the two edge-disjoint

paths, i.e., consider the collection x’ of network variables x.. € x such that either
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both e and €' are used by P, 4;, or both e and e’ are used by P, 4;,- We keep those

J1
variables in x’ intact and set the other network variables to be zero. As a result,
we will have my, j, (x")miyj, (X') = [lv,,, ex Teer and My, (X )4 3, (x') = 0 where the
latter is due the edge-disjointness between two paths Psildjl and P%dh. This im-
plies that before hardwiring the variables outside x/, we must have m;, j, (X)m;,;, (X)

# My, (X)My,j,(x). The proof of Case 1 is complete. Case 2 can be proven by

swapping the labels of j; and js. [ |
We prove Corollary 5.4.2 as follows.

Proof of Corollary 5.4.2: When (i1, j1) = (i3, j2), obviously we have m;, j, =m;y,j,
and GCD(my,j,, miyj,) = Miyj,. Suppose that for some (i1,71) # (i2,J2), we have
GCD(myy 4y, Miyjy) = Miys,- Without loss of generality, we assume i; # ip. Since
the channel gains are defined for two distinct sources, we must have my,;, Z mi,js,.
As a result, GCD(m;,;,, Mi,j,) = Miy;, implies that m; ; must be reducible. By
Proposition 5.4.3, m;,;, must be expressed as m;, ;, = Me,, ;61<H7]j\;_11mei§ei+1) Meysea,
where each term corresponds to a pair of consecutive 1-edge cuts separating s;, and
dj,. For m;,;, to contain m;,;, as a factor, the source edge €5, must be one of the 1-

edge cuts separating s;, and d;,. This contradicts the assumption that in a 3-unicast

ANA network |In(s;)|=0 for all <. The proof is thus complete. [

J.3 Proof of Proposition 5.4.3

Proposition 5.4.3 will be proven through the concept of the line graph, which is
defined as follows: The line graph of a DAG G = (V| F) is represented as §=(V, £),
with the vertex set V= FE and edge set &= {(¢/,¢") € E? : head(¢') =tail(¢”)} (the
set representing the adjacency relationships between the edges of E). Provided that
G is directed acyclic, its line graph G is also directed acyclic. The graph-theoretic
notations for G defined in Section 5.1 are applied in the same way as in G.

Note that the line graph translates the edges into vertices. Thus, a vertex cut in

the line graph is the counterpart of the edge cut in a normal graph. Specifically, a
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k-vertex cut separating vertex sets U and W is a collection of k vertices other than
the vertices in U and W such that any path from any v €U to any w € W must use
at least one of those k vertices. Moreover, the minimum value (number of vertices)
of all the possible vertex cuts between vertex sets U and W is termed VC(U; W). For
any nodes u and v in V, one can easily see that EC(u;v) in G is equal to VC(%; 0) in
G where u and v are the vertices in G corresponding to any incoming edge of u and
any outgoing edge of v, respectively.

Once we focus on the line graph G, the network variables x, originally defined over
the (¢, €”) pairs of the normal graph, are now defined on the edges of the line graph.

We can thus define the channel gain from a vertex u to a vertex v on G as

M = > ] e (J.1)

VY Puy€P,, ¥ e€ Py

where P, denotes the collection of all distinct paths from u to v. For notational
simplicity, we sometimes simply use “an edge e” to refer to the corresponding network
variable x.. Each x. (or e) thus takes values in F,. When u=v, simply set 17,,, =1.

The line-graph-based version of Proposition 5.4.3 is described as follows:

Corollary J.3.1. Given the line graph G of a DAG G, m defined above, and two

distinct vertices s and d, the following is true:
o [fVC(s;d)=0, then ms4=0

o IfVC(s;d)=1, then myq is reducible and can be expressed as

N-1

ﬁ%;d:msml (H Thui;“i+1> m“N§d7

i=1

where {u;}Y., are all the distinct 1-vertex cuts between s and d in the topological

order (from the most upstream to the most downstream). Moreover, the polyno-
N-1

mial factors Mg, , {Musu tiet » and Myy.q are all irreducible, and no two of

them are equivalent.
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o I[fVC(s;d)>2 (including 0c), then ms.q is irreducible.

Proof of Corollary J.3.1: We use the induction on the number of edges || of
G=(V,€). When €] =0, then VC(s;d) =0 since there are no edges in §. Thus
mg.q =0 naturally.

Suppose that the above three claims are true for |E| =k — 1. We would like to
prove that those claims also hold for the line graph § with |E]|=k.

Case 1: VC(s;d) =0 on G. In this case, s and d are already disconnected.
Therefore, my.q=0.

Case 2: V(C(s;d)=1 on G. Consider all distinct 1-vertex cuts uy, - - -, uy between
s and d in the topological order. If we define ug £ s and uy,1 2 d, then we can express
Mg aS ﬁ?s;dzni\io Mgy, - Since we considered all distinct 1-vertex cuts between s
and d, we must have VC(u; u;41)>2 for i=0, -+, N. By induction, {1y, , }~r, are

all irreducible. Also, since each sub-channel gain m,,, covers a disjoint portion of

wit1
G, no two of them are equivalent.

Case 3: V(C(s;d)>2 on G. Without loss of generality, we can also assume that
s can reach any vertex u €V and d can be reached from any vertex u€V. Consider
two subcases: Case 3.1: all edges in € have their tails being s and their heads being

d. In this case, mgq =Y ¢ T.. Obviously my., is irreducible. Case 3.2: at least one

ecé
edge in € is not directly connecting s and d. In this case, there must exist an edge
¢’ such that s<tail(¢’) and head(¢’) =d. Arbitrarily pick one such edge ¢’ and fix it.

We denote the tail vertex of the chosen e’ by w. By the definition of (J.1), we have
ms;d = ms;wxe’ + ﬁl;;d? (J2)

where 1, is the channel gain from s to w, and m, is the channel gain from s to d
on the subgraph §'=G\{¢'} that removes ¢’ from G. Note that there always exists a
path from s to d not using w on G’ otherwise w will be a cut separating s and d on

G, contradicting the assumption that VC(s;d) > 2.
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We now argue by contradiction that m,., must be irreducible. Suppose not, then
Mms,q can be written as a product of two polynomials A and B with the degrees of A
and B being larger than or equal to 1. We can always write A = z A+ A, by singling
out the portion of A that has z. as a factor. Similarly we can write B = x. B + Bs.

We then have
Mhsa = (2,41 + Az) (2. B1 + Ba). (J.3)

We first notice that by (J.2) there is no quadratic term of z. in my,4. Therefore,
one of Ay and B; must be a zero polynomial. Assume B; = 0. Comparing (J.2) and
(J.3) shows that my,, = A; By and my.q = AgBay. Since the degree of B is larger than
or equal to 1 and B; = 0, the degree of B, must be larger than equal to 1. As a
result, we have GCD( 17, .4) #Z1 (having at least a non-zero polynomial B, as its
common factor).

The facts that GCD (1w, m).4) # 1 and w < d imply that one of the following
three cases must be true: (i) Both 1, and m/ , are reducible; (ii) 77, is reducible
but 1, is not; and (iii) 1., is reducible but 7, is not. For Case (i), by applying
Proposition 5.4.3 to the subgraph §'=G\{¢'}, we know that VC(s;w)=VC(s;d) =1
and both polynomials 7, and ., can be factorized according to their 1-vertex
cuts, respectively. Since 1, and m/ , have a common factor, there exists a vertex
u that is both a 1-vertex cut separating s and w and a 1-vertex cut separating s and
d when focusing on §'. As a result, such u is a 1-vertex cut separating s and d in
the original graph §. This contradicts the assumption VC(s;d) > 2 in §. For Case
(ii), by applying Proposition 5.4.3 to §', we know that VC(s;w)=1 and 7, can be
factorized according to their 1-vertex cuts. Since 7, and the irreducible 7 ; have a
common factor, my,,, must contain m_, as a factor, which implies that d is a 1-vertex
cut separating s and w in §’. This contradicts the construction of §’ where w < d.
For Case (iii), by applying Proposition 5.4.3 to §', we know that VC(s;d) =1 and

m.,, can be factorized according to their 1-vertex cuts. Since m/, , and the irreducible
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M.y have a common factor, M/, must contain 1, as a factor, which implies that w
is a 1-vertex cut separating s and d in §’. As a result, w is a 1-vertex cut separating s

and d in the original graph G. This contradicts the assumption VC(s;d)>2in G. W
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K. PROOFS OF LEMMAS FOR CHAPTER 6

We prove Lemma 6.1.1 as follows.

Proof of Lemma 6.1.1: Consider indices ¢ # j. By the definition, all paths from
s; to d; must use all edges in S; and all edges in D;. Thus, for any ¢’ € S; and any

" € D;, one of the following statements must be true: ¢’ <e”, ¢ =¢” or ¢=¢". N
We prove Lemma 6.1.2 as follows.

Proof of Lemma 6.1.2: Consider three indices 7, j, and k taking distinct values in
{1,2,3}. Consider an arbitrary edge e € D; N D;. By definition, all paths from sj, to

d;, and all paths from s to d; must use e. Therefore, e € S [ |
We prove Lemma 6.1.3 as follows.

Proof of Lemma 6.1.3: Without loss of generality, let :=1 and j=2. Choose the
most downstream edge in S;\ D, and denote it as €. Since ¢/, belongs to lcut(sy; dy)N
lcut(sy;ds) but not to leut(ss;ds), there must exist ass-to-depath Py not using e,.
In addition, for any €” € D, we have either ¢ <¢., ¢’ =¢’, or ¢’ =¢’ by Lemma 6.1.1.
Suppose there exists an edge e” € D, such that ¢” <e’. Then by definition, anyss-to-ds
path must use e”. Also note that since ¢” € D, there exists a path Py, saii(ery from s
to tail(e”). Consider the concatenateds;-to-dspath P taierye” Ps2. We first note that
since €’ <e., the path segment P e’ does not use e,. By our construction, P,
also does not use ¢’. Jointly, the above observations contradict the fact that e/ €.5;
is a 1-edge cut separating s; and dy. By contradiction, we must have e/ <e”. Note
that since by our construction e, must not be in Dy while e” is in D5, we must have
e’ #e" and thus €/, <e”. Since ¢/ was chosen as the most downstream edge of S;\ D,

we have ¢’ <¢” for all ¢’ € S,\D; and e” € D,. The proof is thus complete. [ |
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We prove Lemma 6.1.4 as follows.

Proof of = direction of Lemma 6.1.4: We note that (S;ND;) D (S;ND;NDy)=
(D,NDy) where the equality follows from Lemma 6.1.2. As a result, when D;ND;#0,
we also have S;ND;#0.

Proof of < direction of Lemma 6.1.4: Consider three indices ¢, j, and k taking
distinct values in {1,2,3}. Suppose that S; N D;#0 and S; N Dy# 0. Then, for any
¢’ €S5;N D; and any e” € S; N Dy, we must have either ¢/ <¢€”, ¢’ =¢”, or ¢ =¢” by
Lemma 6.1.1. Suppose that D;NDy=0. Then we must have €’ #¢e”, which leaves only
two possibilities: either ¢/ <¢e” or ¢ > ¢”. However, ¢/ <e” contradicts Lemma 6.1.3
because ¢’ € (S;ND,)C D; and ¢” € (S;NDy) C (S;\D;), the latter of which is due to
the assumption of Ej ND,=0. By swapping the roles of j and k, one can also show
that it is impossible to have ¢’ > ¢”. By contradiction, we must have D; N D#@. The

proof is thus complete. u
We prove Lemma 6.1.5 as follows.

Proof of Lemma 6.1.5: Without loss of generality, consider i=1 and j =2. Note
that by Lemma 6.1.1 any € € S;NS, and any e’ € D;ND, must satisfy either ¢/ <e”,
e =¢e", or ¢ =¢€". For the following, we prove this lemma by contradiction.

Suppose that there exists an edge € € D;N D, such that for all ¢ € S;NSy we
have e < €’. For the following, we first prove that any path from s; to d; where
i,7€{1,2,3} and i # j must pass through €. To that end, we first notice that by the
definition of D; and D, and by the assumption e’ € D; N Dy, any path from {s,, s3}
to dy, and any path from {s1,s3} to dy must use €/. Thus, we only need to prove
that any path from {si, ss} to d3 must use €/ as well.

Suppose there exists as;-to-dspath Pj3 that does not use €”. By the definition of
S1, Pi3 must use all edges of S; NSy, all of which are in the downstream of e” by the
assumption. Also d is reachable from any e € S; N S;. Choose arbitrarily one edge

¢/ €5,N S, and a path Phead(e1)d, from head(e)) to dp. Then, we can create an path
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Py3 €, Pread(er)d, from s; to dy without using e. The reason is that Py3 does not use
el by our construction and €, Phead(e,)d, does not use €] since e <e,. Such ans;-to-d,
path not using e’ thus contradicts the assumption of e’ € (D;NDsy) C lcut(sy; ds).
Symmetrically, anyss-to-dspath must use e”.

In summary, we have shown that ¢/ € N?_, (?,ﬂbi). However, this contradicts
the assumption that e’ is in the upstream of all ¢/ € S, N Sy, because we can simply
choose ¢'=¢ €n?_, (giﬂﬁi) C (S1NSy) and e” cannot be an upstream edge of itself

e’ =e¢!. The proof is thus complete. [ |
We prove Lemma 6.1.6 as follows.

Proof of Lemma 6.1.6: Without loss of generality, let i =1, j; =1, j, = 2, and
js = 3. Suppose that Si.q12,7# 0 and Sy.q13y7# 0. For the following, we prove this
lemma by contradiction.

Suppose that ?1;{172}ﬁ§1;{1,3}: (). For any ¢ e?l;{m} and any e” 6?1;{1’3}, since
both ¢ and €” are 1-edge cuts separating s; and d;, it must be either ¢’ < €” or
e =e" or ¢ =¢". The last case is not possible since we assume gl;{lg} N g1;{173}:®.
Consider the most downstream edges €/, E?l;{l,g} and e’ Egl;{Lg}, respectively. We
first consider the case e/, <e”. If all paths from s; to ds use €., which, by definition,
use €’ then e/ will belong to lcut(sy;ds), which contradicts the assumption that
St.1,23 N S1.q1,3y="0. Thus, there exists as;-to-dzpath Pi3 using €/ but not €,. Then,
s1 can follow Pi3 and reach d; via e without using e/. Such as;-to-d;path contradicts
the definition €, € §1;{1,2} C lcut(sy;dp). Therefore, it is impossible to have €], < €.
By symmetric arguments, it is also impossible to have €, > ¢/. By definition, any
edge in gl;{lg} ﬂ?l;{lvg} is a 1-edge cut separating s; and {ds, d3}, which implies that
S1.237#0 and S1#0. [

We prove Lemma 6.1.7 as follows.

Proof of = direction of Lemma 6.1.7: Suppose gi;{jhh};ﬁ (). By definition, there

exists an edge e € lcut(s;; d;,) N Leut(s;; d;,) in the downstream of the s;-source edge
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es;- Then, the channel gains m;; and m;;, have a common factor m,, .. and we thus
i’

have GCD(mm, mm)§él |

Proof of < direction of Lemma 6.1.7: We prove this direction by contradiction.
Suppose GCD(my;,,m;;,)# 1. By Corollary 5.4.2, we know that GCD(my;,, mij,)
must not be m;;, nor m,j;,. Thus, both must be reducible and by Proposition 5.4.3
can be expressed as the product of irreducibles, for which each factor corresponds to
the consecutive 1-edge cuts in lcut(s;;d;,) and lcut(s;;d;,), respectively. Since they
have at least one common irreducible factor, there exists an edge e € leut(s;;d;,) N
lcut(s;; dy,) in the downstream of the s;-source edge e,. Thus, e€ S;.(j, j,3- The case

for GCD(mj,;, mj,;) =1 can be proven symmetrically. The proof is thus complete. B
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L. THE REFERENCE TABLE FOR THE PROOF OF
PROPOSITION 6.3.1

Table L.1: The reference table for the proof of Proposition 6.3.1

The Logic Statements for the Proof of Proposition 6.3.1

CO0 to C6 defined in p. 224. GT7 to G15 defined in p. 234.
D1 to D6 defined in p. 225. G16 to G26 defined in p. 246.
EO to E2 defined in p. 223. G27 to G31 defined in p. 265.
GO defined in p. 213. G32 to G36 defined in p. 270.
G1, G2 defined in p. 100. G37 to G43 defined in p. 274.
G3, G4 defined in p. 213. | H1, H2, K1, K2 defined in p. 100.
G5, G6 defined in p. 215. LNR defined in p. 100.

The Logic Relationships for the Proof of Proposition 6.3.1

defined in p. 215, to help proving Corollary M.2.1,
N1 to N9  the general structured proof for the necessity of
Proposition 6.3.1.
R1 to R10 defined in p. 235, to help proving S11.
R11 to R25 defined in p. 247, to help proving S13.
R26 to R33 defined in p. 266, to help proving S14.
R34 to R40 defined in p. 270, to help proving R28.
RA41 to R47 defined in p. 275, to help proving R29.
defined in p. 225, to help proving Corollary N.2.1,
S1 to S14  the general structured proof for the sufficiency of
Proposition 6.3.1.

For the ease of exposition, we provide the Table L.1, the reference table. The
reference table helps finding where to look for the individual logic statements and

relationships for the entire proof of Proposition 6.3.1.
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M. GENERAL STRUCTURED PROOF FOR THE
NECESSITY OF PROPOSITION 6.3.1

In this appendix, we provide Corollary M.2.1, which will be used to prove the graph-
theoretic necessary direction of 3-unicast ANA network for arbitrary n values. Since
we already provided the proof for “LNR A G1 <= H1” in Proposition 6.3.1, here
we focus on proving “LNRAG1AG2 <= H2, K1, K2”. After introducing Corol-
lary M.2.1, the main proof of "LNR A G1 A G2 <= H2, K1, K2” will be provided in
Appendix M.3.

Before proceeding, we need the following additional logic statements to describe

the general proof structure.

M.1 The first set of logic statements

Consider the following logic statements.

o GO: myymeysmss = R+ L.
e G3: SyN Ds=0.
o G4: S5N Dy=0.

Several implications can be made when G3 is true. We term those implications
the properties of G3. Several properties of G3 are listed as follows, for which their
proofs are provided in Appendix M.4.

Consider the case in which G3 is true. Use e} to denote the most downstream
edge in lcut(sy; dy)Nlcut(se; ds). Since the source edge ey, belongs to both lcut(se; dy)
and lcut(sy;ds), such e} always exists. Similarly, use e} to denote the most upstream
edge in lcut(sy;ds) N leut(se;ds). The properties of G3 can now be described as

follows.
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¢ Property 1 of G3: e < ej and the channel gains my3, ma;, and mg3 can be ex-

pressed as mq3 = My, se5Mefseq, s M1 = MeyiesMegieq, and mo3 = My 03 Mesies Megseq, -

¢ Property 2 of G3: GCD(mesﬁe;, meS2;e;me;;e§)El, GCD(me;;egmeg;edS, meg;edl)z
1, GCD(ma3, Meyier)=1, and GCD(ma1, Mes,es)=1.

On the other hand, when G3 is false, or equivalently when = G3 is true where “=”
is the NOT operator, we can also derive several implications, termed the properties
of =~ G3.

Consider the case in which G3 is false. Use €2* (resp. €?*) to denote the most
upstream (resp. the most downstream) edge in Sy N Ds. By definition, it must be
e2 <e?3. We now describe the following properties of - G3.
¢ Property 1 of = G3: The channel gains my3, mo;, and msog can be expressed as
M3 = M, 0237M23,623Me2Bre, , Mol = M, 0337M23,623Me23.e, , AN Mgz = M, 025M, 23,023
Me235e 4
o Property 2 of = G3: GCD(me, .2, M, .23)=1 and GCD(megs;edl, megs;edg)zl.

o Property 3 of - G3: {e3, e} Clcut(s;; head(e??)) and {23, e2*} C lcut(tail(e?®); dy).
This further implies that for anys;-to-d;path P, if there exists a vertex w € P satis-
fying tail(e?3) <w < head(e??), then we must have {e23 e23} C P.

Symmetrically, we define the following properties of G4 and = G4.

Consider the case in which G4 is true. Use ej to denote the most downstream
edge in lcut(ss;dy) N leut(ss; ds), and use e; to denote the most upstream edge in
lcut(sy; da) N lcut(ss; d2). We now describe the following properties of G4.
¢ Property 1 of G4: e < ¢e5 and the channel gains myy, ms;, and mgy can be ex-
pressed as miy = Me, e3Mes, M31 = Me,, e Mes; and msy = M, sesMessesMegseq, -

€dy? €dq?

¢ Property 2 of G4: GCD(mesﬁe;, mesg;egmeg;eg)zl, GCD(meé;egmeg;edQ, meg;edl):
1, GCD(mag, Mesies)=1, and GCD(ma1, Mes,es)=1.

Consider the case in which G4 is false. Use €32 (resp. €3?) to denote the most
upstream (resp. the most downstream) edge in S3 N D,. By definition, it must be

e32 <e32. We now describe the following properties of — G4.
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¢ Property 1 of — G4: The channel gains mis, ms;, and mgs can be expressed as
M1y = Me, 632232 Mei2ie, s 31 = M, ;03232032 Med2e, , AN Mg = M, e32Me32,32
Me235e4,

o Property 2 of = G4: GCD(me, 32, M, .c32)=1 and GCD(meg2;edl, megg;%)zl

o Property 3 of = G4: {e3?, 32} Clcut(s;; head(e3?)) and {32, €32} C 1cut(tail(e32); dy).
This further implies that for anys;-to-d;path P, if there exists a vertex w € P satis-
fying tail(e3?) <w < head(e3?), then we must have {32 e3?} C P.

The following logic statements are well-defined if and only if (- G3)A (-~ G4) is

true. Recall the definition of €23 €23, €32, and €3? when (= G3) A (- G4) is true.

us € €y
e G5: Either €2 < €3 or €2 €32,
e G6: Any vertex w’ where tail(e?®) < w’ < head(e?®) and any vertex w” where
tail(e3?) <w” <head(e3?) are not reachable from each other. (That is, neither w’ <w”
nor w” <w'.)

It is worth noting that a statement being well-defined does not mean that it is

true. Any well-defined logic statement can be either true or false. For comparison, a

property of G3 is both well-defined and true whenever G3 is true.

M.2 General Necessity Proof Structure

The following “logic relationships” are proved in Appendix M.5, which will be
useful for the proof of the following Corollary M.2.1.
e N1: H2 = LNR AG1.
e N2: K1 = LNRAGI.
e N3: K2 = LNRAGI1.
e N4: (-G2)ANG3ANG4 = false.
e N5: G1A (- G2)A (—-G3)AG4 = false.
e N6: G1A(—G2)ANG3A(—G4) = false.
e N7: LNRA(-G3)A (- G4) A (- G5) = G6.
e N8 GIA(=G2)A (- G3)A (- G4) NG5 = false.
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e N9: (-G2)A (= G3)A (= G4) A (—G5) ANG6 = GO.

Corollary M.2.1.  Let h(x) be a set of (arbitrarily chosen) polynomials based on
the 9 channel gains m;; of the 3-unicast ANA network, and define X to be the logic
statement that h(x) is linearly independent. If we can prove that X = LNRA G1
and X AN GO = false, then the logic relationship X = LNR A G1 A G2 must hold.

Proof of Corollary M.2.1: Suppose X = LNRAG1 and X A GO = false. We
first see that N7 and N9 jointly imply

LNR A (- G2) A (- G3) A (= G4) A (- G5) = GO.

Combined with N8, we thus have

LNR A G1 A (-G2) A (~G3) A (-G4) = GO.

This, jointly with N4, N5, and N6, further imply

LNR A G1 A (- G2) = GO.

Together with the assumption that X A GO = false, we have X ALNR A G1A
(- G2) = false. Combining with the assumption that X = LNR A G1 then yields

XA (- G2) = false,

which equivalently implies that X = G2. The proof is thus complete. |

M.3 Proof of “LNRAG1ANG2 <« K1V H2VK2”

Thanks to Corollary M.2.1 and the logic relationships N1, N2, and N3, we only

need to show that (i) K1 A GO = false; (ii) H2 A GO = false; and (iii) K2 A GO = false.

We prove “K1 A GO = false” as follows.
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Proof. We prove an equivalent form: GO = (-K1). Suppose GO is true. Consider
k? (x) which contains 3 polynomials (see (6.10) when n=1):

kﬁl) (K) = {m11m23m31L, ma1mizmsi L, m21m13m313}- (M-l)

Since L = my3msamey, the first polynomial in kgl) (x) is equivalent to mqimazmss
mgymyzms;. Then kgl) (x) becomes linearly dependent by substituting R + L for

mi1maozmss (from GO being true). The proof is thus complete. [ |
We prove “H2 A GO = false” as follow.

Proof. We prove an equivalent form: GO = (—-H2). Suppose GO is true. Consider
hgn)(g) in (5.27). Substituting R + L for miymaosmss (from GO being true) and

L = mgimizmss to the expression of h§"’ (x), then we have
h{’(x) = { (R+ L)R", (R+ L)R"'L, -+, (R+L)L", R"L, R"'L* .-+, RL"}.

One can see that h§”) (x) becomes linearly dependent when n > 2. The proof is

thus complete. [ |
We prove “K2 A GO = false” as follow.

Proof. Similarly following the proof of “K1 A GO = false”, we further have

k" (x) = moymigma { (R + L)L"™', (R + L)L"*R,

- (R+L)R™, L", L"'R, --- |LR™*, R"},

which becomes linearly dependent when n>2. The proof is thus complete. [ |

M.4 Proofs of the properties of G3, G4, - G3, and —- G4

We prove Properties 1 and 2 of G3 as follows.
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Proof. Suppose G3 is true, that is, Sy N D3=(). Consider e}, the most downstream
edge of lcut(sy;dy) N leut(se;ds) and e}, the most upstream edge of lcut(sy;ds) N
lcut(se; ds). If either e =es, or e =eq, (or both), we must have e} < e} otherwise
it contradicts definitions (ii) and (iii) of the 3-unicast ANA network. Consider the
case in which both e} #e,, and e} #ey,. Recall the definitions of S, £ leut(sg;dy) N
Lcut(sy; ds)\{es, } and D32 1cut(sy; ds)Nlcut(sy; ds)\{eq, . We thus have e5 €S, and
e; € D3. By the assumption Sy N D3 = and Lemma 6.1.3, we must have e} < e} as
well.

From the construction of €5 and e, the channel gains m;3, mo;, and mes can be ex-
pressed as miz = Me, exMes M21 = Mey,iesMegiey, » AN Moz = Me,, i3 Megies Mey

j€dg ? i€dg

Moreover, we have both GCD( Me,, 3 mes2;e§me§;e§)zl and GCD( MegiesMesieq, 5 meé;edl)
=1 otherwise it violates that e} (resp. e}) is the most downstream (resp. upstream)
edge of S (resp. 53). The same argument also leads to GCD(m3, meg;eg)E 1 and

GCD(mgl, mes;eg)El. n

We prove Properties 1, 2, and 3 of = G3 as follows.

23

> and

Proof. Suppose = G3 is true, i.e., Sy N D3# (). Choose the most upstream e
most downstream €23 edges in S5 N Ds. Then, the channel gains mys, Mo, and mog
can be expressed as mqi3= M, 62828628 Me2350, 5 M1 = Me ) e23Me28;625 Me2sse, and
M3 = Me, ;2823625 Me2se, Moreover, we must have both GCD(meSI;e%S, mESQ;eis)E 1
and GCD(mezs,c,, , Mezs,e, )=1 otherwise it violates Lemma 6.1.3 and /or € (vesp. €;?)
being the most upstream (resp. downstream) edge among Sy N D3. For example, if
GCD( e, 23, Me,,23)7 1, then by Lemma 6.1.7 and the assumption €2’ € SoN D3 C
D3, there must exist an edge e € D3 such that e < e23. If such edge e is also in S,
then this e violates the construction that e2® is the most upstream edge of Sy N Ds.
If such edge e is not in Sy, then it contradicts the conclusion in Lemma 6.1.3.

We now prove Property 3 of = G3. Suppose that at least one of {23, €23} is not an

u v

1-edge cut separating s; and head(e??). Say €2* & lcut(s; head(e??)), then s; can reach

head(e2?) without using €2®. Since head(e?®) reaches d3, we can create ans;-to-dspath
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not using e2®. This contradicts the construction that e2* € S, N D3 C D3. Similarly,
we can also prove that €23 & lcut(s;; head(e??)) leads to a contradiction. Therefore,

we have proven {e2? e2*} C lcut(s;;head(e?®)). Symmetrically applying the above

u v

arguments, we can also prove that {e3, e?3} C lcut(tail(e??); d,).

Now consider ans;-to-d; path P such that there exists one vertex w € P sat-
isfying tail(e?®*) < w =< head(e??). If the path of interest P does not use e?* and

u

23 which contra-

u )

w = tail(e?®), then tail(e??) can follow P to d; without using e
dicts e € lcut(tail(e?);dy). If P does not use €2* and tail(e?®) < w =< head(e??),

23 which contradicts

u )

then s; can follow P to w and reach head(e?*) without using e
e? € 1cut(sy; head(e??)). By the similar arguments, we can also prove the case when
P does not use €2 leads to a contradiction. Therefore, we must have {e3, 2} C P.

u v

The proof is complete. u

By swapping the roles of s, and s3, and the roles of dy and d3, the above proofs
can also be used to prove Properties 1 and 2 of G4 and Properties 1, 2, and 3, of

- G4.

M.5 Proofs of N1 to N9
We prove N1 as follows.

Proof. Instead of proving directly, we prove H2 = H1 and use the existing result
of “LNR AG1 < H1” established in the proof of Proposition 6.3.1. H2 = H1 is
straightforward since hgl) (x) is a subset of the polynomials h§"’ (x) (multiplied by a
common factor) and whenever h§"> (x) is linearly independent, so is hgl) (x). The proof

is thus complete. [ |
We prove N2 as follows.

Proof. We prove an equivalent relationship: (-LNR)V (- G1) = (—K1). Consider
kgl) (x) as in (M.1). Suppose Gsana satisfies (- LNR) V (= G1), which means Gzana
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satisfies either L(x) = R(X) or myimaeg= magimyz Or mijymze= mg; myz. If L(X)=
R(x), then we notice that mayimizms L = moymizms R and kgl) (x) is thus linearly
dependent. If mq; mao3 = maimaz, then we notice mqymosmsi L = maoimizms; L.
Similarly if miymss = mgymyo, then we have miimasms, L = maoymisms R. The

proof is thus complete. u

Following similar arguments used in proving N2, i.e., K2 = K1, one can easily
prove N3.
We prove N4 as follows.

Proof. (- G2)AG3 A G4 implies that s; cannot reach d; on Gszana. This violates
the definition (iv) of the 3-unicast ANA network. |

We prove N5 as follow.

Proof. We prove an equivalent relationship: (- G2) A (- G3) AG4 = (= G1). Suppose
(- G2) A (= G3) AG4 is true. Then the most upstream edge of Sy N D3 is an 1-edge
cut separating s; and dy. Therefore we have EC({s1, s2};{d1,d3}) = 1 and thus by

Corollary 5.4.1, mi3mas=msgy;my3. This further implies that G1 is false. n

By swapping the roles of s, and s3, and the roles of dy and d3, the above N5 proof
can also be used to prove NG6.

We prove N7 as follows.

Proof. Suppose LNR A (= G3)A (- G4) A (- G5H) is true. From LNR being true,
any S, N Dy edge and any S3M D edge must be distinct, otherwise (if there exists an
edge e€ SoN S3N DyN Ds) it contradicts the assumption LINR by Proposition 6.2.1.

From G5 being false, we have either €23 = €32 or both €23 and €32 are not reachable

32
u

from each other. But €2*=¢3? cannot be true by the assumption LNR.
Now we prove G6, i.e., any vertex w’ where tail(e*) < w’ < head(e??) and any
vertex w” where tail(e3?) <w” < head(e3?) are not reachable from each other. Suppose

not and assume that some vertex w’ satisfying tail(e?*) < w’ < head(e?®) and some
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vertex w” satisfying tail(e3?) X w” <head(e??) are reachable from each other. Since s
can reach tail(e?®) or tail(e3?) and d; can be reached from head(e??) or head(e?) by
Property 1 of = G3 and — G4, we definitely have ans;-to-d;path P who uses both
w’ and w”. The reason is that if w’ < w”, then s; can first reach tail(e??), visit w’,
w”, and head(e??), and finally arrive at d;. The case when w” <w’ can be proven

by symmetry. By Property 3 of = G3, such path must use {e*,¢?*}. Similarly by

u U

Property 3 of =G4, such path must also use {32, e3?}. Together with the above

discussion that any S, N D3 edge and any S3N D, edge are distinct, this implies that

23 32

u’v’u’v

all four edges {e?3 321 are not only distinct but also used by a single path
P. However, this contradicts the assumption LNR A (= G5) that e2* and e are not

reachable from each other. [
We prove N8 as follows.

Proof. Suppose G1A (= G2)A (= G3)A (= G4) AG5 is true. Consider €2 and €32

the most upstream edges of Sy N D3 and S3 N Dy, respectively. Say we have 23 < 622.
Then — G2 implies that removing 633 will disconnect s; and d;. Therefore, 633 €SN
D3 also belongs to lcut(sy; dy). This further implies that we have EC({s1, so}; {d1, d3})
= 1 and thus G3ana satisfies mqi1maez=mi3mo;. However, this contradicts the assump-
tion that G1 is true. Similar arguments can be applied to show that the case when

e32 < e also contradicts G1. The proof of N8 is thus complete. [ |
We prove N9 as follows.

Proof. Suppose that (- G2) A (= G3) A (-~ G4) A (—G5) AG6 is true. Consider e
and €32 the most upstream edges of Sy N D3 and S5 N Dy, respectively. From
(= G5) AG6 being true, one can see that €2* and €3? are not only distinct but also
not reachable from each other. Thus by = G2 being true, {2, 32} constitutes an
edge cut separating s; and d;. Note from Property 1 of = G3 and — G4 that s; can
reach d; through either e or €32, Since e?* and e3? are not reachable from each other,
both have to be removed to disconnect s; and d; (removing only one of them is not

enough).
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From G6 being true, any vertex w’ where tail(e23) <w’ <head(e??) and any vertex
w” where tail(e3?) <w” < head(e3?) are not reachable from each other. Thus e (resp.

€32) cannot reach €32 (resp. €23). Moreover, €23 and e3? are not only distinct but also

not reachable from each other. This implies that 3 (resp. €3?) can only reach e
(resp. €32) if €23 #£ e (resp. €32 # €3?). Then the above discussions further that
imply {e?, e3?} is also an edge cut separating s; and d;.

Let m}, = M, ;623TMe23,623Me23se, which takes into account the overall path gain
from s; to d; for all paths that use both €23 and e?3. Similarly denote m}, =
Me,,e32Me3zesz Meszie, 1O be the overall path gain from s; to d; for all paths that
use both €3? and e€32. Then the discussions so far imply that the channel gain my;

consists of two polynomials: myy; = m/; +m{,. Then, it follows that

my1maegmga = (Ml + mi;) masmss

(mes ’ezsmezs 623m623 seq Mo3132

1

+ (mesl 32TMe32,6321Me32,¢, ) T12311032
+ (mesl;e?f Mee32,32Me32,¢, (m6837e32m632 32132, edQ)

(mes ;023T1023.023T1¢23 ¢

)
)
)

(meél 237M0e23,023Me23.c )(meéz 28028623123 ,¢ ) M3z
Jm
Y gy (M Mo, )
)

+ (mes ;e32 m632 632m632 edy Mos (mes37632m632 ;e32 m632 Edl)

= Mi3M32Ma1 + MiaMozms = L + R.

where the third and fourth equalities follow from the Property 1 of both = G3 and
—G4. The proof is thus complete. |
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N. GENERAL STRUCTURED PROOF FOR THE
SUFFICIENCY OF PROPOSITION 6.3.1

In this appendix, we provide Corollary N.2.1, which will be used to prove the graph-
theoretic sufficient direction of 3-unicast ANA network for arbitrary n >0 values. We

need the following additional logic statements to describe the general proof structure.

N.1 The second set of logic statements

Given a 3-unicast ANA network Gsana, recall the definitions L = mq3msomo; and
R = myamazms; (we drop the input argument x for simplicity). By the definition of
G3ana, any channel gains are non-trivial, and thus R and L are non-zero polynomials.
Let wE?(R, L) and wé")(R, L) to be some polynomials with respect to x, represented
by

YO(R,L)=Y oR"'L, WOR D)= BRI,
1=0 =0

with some set of coefficients {a;}i, and {8;}}_,, respectively. Basically, given a
value of n and the values of {;}i_, and {8;}7_, wE?(R, L) (resp. wé")(R, L)) repre-
sents a linear combination of {R", R*"'L, ... RL"™' L"}, the set of Vandermonde
polynomials

We need the following additional logic statements.
e EO: Let I3ana be a finite index set defined by Isana = {(4,7) : 4,5 €{1,2,3} and i #

j}. Consider two non-zero polynomial functions f : E}ISANM =T, and g : E]HSANM —
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[F,. Then given a Gsana of interest, there exists some coefficient values {a;}?, and

{B;}%—o such that
man f({miy 2 ¥ (i) € Toana) VI (R, L) = g({my; + ¥ (i) € Toana}) ¥ (R, L)

with (i) At least one of coefficients {a;}!, is non-zero; and (ii) At least one of
coefficients {3;}_, is non-zero.

Among {a;}i_, and {8;}7_, define iy (resp. ji) as the smallest i (resp. j) such
that oy # 0 (resp. f; # 0). Similarly, define ienq (resp. jena) as the largest i (resp. j)

such that o; # 0 (resp. B; # 0).! Then, we can rewrite the above equation as follows:

id a;myy f({m; 1V (i,5) € lsana}) R 'L = 9Z"d Bi g({mi; :V (i, 7) € Isana }) RV LY.
1=1st J=Jst (Nl)
e E1: Continue from the definition of EQ. The considered Gsana satisfies (N.1) with
(1) f({mi; : V(i,7) € Isana}) = mos; and (i) g({mi; : V (i, ) € Isana}) = mizmo.
Then, (N.1) reduces to

Yend Jend
Z a;miymos RV LY = Z ﬁjmlgmglR"_ij. (N.2)
i=ist J=jst
e E2: Continue from the definition of EO. The chosen coefficients {a; }i_y and {8;}7_,
which satisfy (N.1) in the given Gsana also satisfy (i) ay # 5 for some k€ {0, ...,n};
and (ii) either ap#0 or 3, #0 or oy # Bx_1 for some k€ {1,...,n}.
One can see that whether the above logic statements are true or false depends on
the polynomials m;; and on the {a;}i_, and {f3;}7_, values being considered.
The following logic statements are well-defined if and only if EO is true. Whether
the following logic statements are true depends on the values of iy, tend, Jst, and Jend.
o CO: 15 > Jst and Zend = Jond-

L] C]_: 'ést <jst-

'From definition, 0 <ig <ieng <n and 0 < jg < jeng < n.
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o C2: iy > jui.
o C3: iy =Jgt-
o C4: ieng <Jend-
® C5: Tend > Jend-
® C6: iend = Jend-
We also define the following statements for the further organization.

e D1: GCD(m'ymlml,, msy) =ms, for some integer 11> 0.

e D2: GCD(mZmizmi, maz) =mas for some integer Iy>0.

eD3: G (m11m13m32ml21, miaMmg1) =Mmiamg; for some integer I3 > 0.
o D4: GCD(myymbhymbymk, mismay) =mysme for some integer I, > 0.
e D5: GCD(myymiymimy;, may) =ms, for some integer 15 > 0.

e D6: G (m11m13m32ml261, Mag) =mag for some integer lg> 0.

N.2 General Sufficiency Proof Structure

We prove the following “logic relationships,” which will be used for the proof of
Corollary N.2.1.
e S1: D1 = D5.
e S2: D2 = D6.
e S3: EONE1AC1 = D4AD5.
e S4: EONE1NC2 = D1.
¢ S5 GINEOAE1AC3 = D4.
e S6: EONE1AC4 = D2ADS3.
e S7T: EONE1ACS5 = D3.
e S8 GINEOAE1AC6 = D2.
e S9: EONE1NCO = E2.
e S10: GINEOAELA(—-CO0) = (D1AD3)Vv(D2AD4)Vv (D3 AD4).
e S11: LNRAGIAEOAD1AD3 = false.
e S12: LNRAG1IAEOAD2AD4 = false.
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e S13: LNRAGIANG2AEOANELIANE2AD1AD2 = false.
e S14: LNRAG1AE0AD3AD4 = false.

The proofs of S1 to S10 are relegated to Appendix N.5. The proofs of S11 to
S14 are relegated to Appendices N.6, N.7, N.8& and N.9, respectively. Note that
the above S1 to S14 relationships greatly simplify the analysis of finding the graph-
theoretic conditions for the feasibility of the 3-unicast ANA network. This observation

is summarized in Corollary N.2.1.

Corollary N.2.1.  Let h(x) be a set of (arbitrarily chosen) polynomials based on
the 9 channel gains m;; of the 3-unicast ANA network, and define X to be the logic
statement that h(x) is linearly independent. Let G to be an arbitrary logic statement

in the 3-unicast ANA network. If we can prove that
(A) GA (-X)=EOANE1A (-CO0),

then the logic relationship LNRAG1AGA (- X) = false must also hold.

Also, if we can prove that
(B) GA(-X)=E0OANE1ACO,

then the logic relationship LNRAG1AG2AGA (-X) = false must also hold.

Proof of Corollary N.2.1: First, notice that S11, S12, and S14 jointly imply

LNRAGIAEO A{(D1AD3)Vv (D2AD4)Vv (D3AD4)} = false. (N.3)

Then, (N.3), jointly with S10 further imply

LNRAG1AE0 AE1A (—-CO) = false. (N.4)

Note that by definition CO is equivalent to C2 A C6. Then S4 and S8 jointly
imply
G1ANEO0 ANE1ACO= D1AD2. (N.5)
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Then, (N.5), S9, and S13 jointly imply
LNRAG1AG2AEO0 AE1ACO = false. (N.6)

Now we prove the result using (N.4) and (N.6). Suppose we can also prove (A)
GA(—-X)=EOAE1A(=CO0). Then, one can see that this, jointly with (N.4),
implies LNRAG1AGA (—=X) = false. Similarly, (B) GA(=X) = E0AE1ACO
and (N.6) jointly imply LNRAGLAG2AGA (—=X) = false. The proof is thus
complete. [ |

N.3 The insight on proving the sufficiency

To prove the sufficiency directions, we need to show that a set of polynomials is lin-
early independent given any 3-unicast ANA network, for example, “LNR A G = X”.
To that end, we prove the equivalent relationship “LNRAG A (= X) = false.” Fo-
cusing on the linear dependence condition — X, although there are many possible
cases, allows us to use the subgraph property (Proposition 2) to simplify the proof.
Further, we use the logic statements S3 to S10 to convert all the cases of the linear de-
pendence condition into the greatest common divisor statements D1 to D6, for which
the channel gain property (Proposition 3) further helps us to find the corresponding

graph-theoretic implication.

N.4 Proofs of “LNR AG1 = H1” and “LNRAG1A G2 = K1V H2VK2”

As discussed in Appendix N, we use Corollary N.2.1 to prove the sufficiency direc-
tions. We first show that (i) LNR A G1 A G2 = H2; and (ii) LNRAG1 A G2 = K2.
Then the remaining sufficiency directions “LNR A G1 = H1” and “LNR A G1 A G2
= K17 are derived using simple facts of “H2 = H1” and “K2 = K1”, respectively.
Note that H2 = H1 is straightforward since hgl) (x) is a subset of the polynomials
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hgn) (x) (multiplied by a common factor) and whenever hgn) (x) is linearly independent,
so is hgl) (x). Similarly, we have K2 = K1.
We prove “LNR AG1A G2 = H2” as follows.

Proof. By the definition of linear dependence, =~ H2 implies that there exist two sets
of coefficients {a;}", and {@»};‘:—(} such that

n n—1
Z aimllmgan_iLi = Z 5jm13m21Rn_ij. (N7)
=0 7=0

We will now argue that at least one of {a;}? , and at least one of {f; ;‘;& are
non-zero if L# R. The reason is as follows. For example, suppose that all {f; ;‘;& are
zero. By definition (iv) of the 3-unicast ANA network, any channel gain is non-trivial.
Thus mq1moes is a non-trivial polynomial. Then, (N.7) becomes Y  a;R" 'L = 0,
which implies that the set of (n+1) polynomials, h(x) = {R", R"'L, ..., RL™", L"},
is linearly dependent. By Proposition 5.4.1, the determinant of the Vandermonde
matrix [h(x®)]72! is thus zero, which implies L(x) = R(x). This contradicts the
assumption LNR. The fact that not all {o;}" , are zero can be proven similarly.

As a result, there exist two sets of coefficients {a;}, and {f3;}/=) with at least

one of each group being non-zero such that the following logic relationship holds:
LNR A (-H2) = E0AEL. (N.8)

Then, note that (N.8) implies

LNR A (- CO) A (~H2) = E0AE1 A (- C0),

and LNR A CO A (-H2) = E0AELA CO.

Applying Corollary N.2.1(A) (substituting G by LNR A (- C0) and X by H2,
respectively), the former implies LNR A G1 A (—CO0) A (—H2) = false. By Corol-
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lary N.2.1(B), the latter implies LNR A G1 A G2 A CO A (—H2) = false. These jointly

imply
LNR AG1AG2A (—-H2) = false,

which is equivalent to LNR A G1 A G2 = H2. The proof is thus complete. |
We prove ‘LNRAG1AG2 = K27 as follows.

Proof. We will only show the logic relationship “LNR A (-K2) = EOAE1” so that
the rest can be proved by Corollary N.2.1 as in the proof of “LNR A G1 A G2 = H2”.
Suppose = K2 is true. Then, there exists two sets of coefficients {a;}i, and {8;}7_,
such that . .
> aimymy R L =Y Bimagma R LI. (N.9)
i=1 =0
One can easily see that, similarly to the above proof, the assumption LNR results
in the not-being-all-zero condition on both {a;}i-; and {;}}_,, which in turn implies

that “LNR A (-K2) = EOAE1”. The proof is thus complete. |

N.5 Proofs of S1 to S10
We prove S1 as follows.

Proof. Suppose D1 is true, that is, Gsana satisfies GCD(mlfzmlzgméll, M32) = Ma3o
for some integer [; > 0. Then G3ana also satisfies GCD(mllmlfzmggméll, M32) = M32

obviously. Thus we have D5. |

By swapping the roles of s, and s3, and the roles of dy and d3, the proof for S1
can be applied symmetrically to the proof for S2.
We prove S3 as follows.

Proof. Suppose EOANE1AC1 is true. By EOAEL being true, Giana of interest
satisfies (N.2). By the definition of C1, we have iy < jg.
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By (N.2), we can divide Lt on both sides. Then we have

len jend
Zd Qymyymeg RV LTt = ]Z ﬁjmlgmglR"_ij_iS°.
i=ist J=jst
Since iy < jst, each term with non-zero f5; in the right-hand side (RHS) has L as
a common factor. Similarly, each term with non-zero «; on the left-hand side (LHS)
has L as a common factor except for the first term (since «;, # 0). Therefore the
first term v, m11mog R~ must contain L = mi3masamy; as a factor, which implies
GCD(mllm?z_i“m;‘gi“Jrlmgl—i“, M13M32Ma1) = Mi3M3zy May. Since iy < Jgp < N, we
have n — iy > 1. Hence, we have GCD(mllm'fzmggrlmlgl, M13M32Ma1) = M13M32M21
for some integer k>1. This observation implies the following two statements. Firstly,
GCD( mnmlfzmé%mgﬁ, m13Ma1) =mizmeo; when ly=k+1>2 and thus we have proven
D4. Secondly, GCD(mllmlfzmé%méﬂ, mss) = mae when [ =k 4+ 1> 2 and thus we

have proven D5. The proof is thus complete. [ |
We prove S4 as follows.

Proof. Suppose EOAE1 A C2 is true. Then G3ana of interest satisfies (N.2) and we
have ist >,jst-

We now divide L’ on both sides of (N.2), which leads to

id aim11m23Rn_iLi—j5t — chnd /Bjm13m21Rn_ij_jst'
i=ist J=jst
Each term with non-zero «; on the LHS has L as a common factor. Similarly,
each term with non-zero 3; on the RHS has L as a common factor except for the
first term (since f8;, #0). As a result, the first term j3;, migma; R+ must contain
L = my3msamy; as a factor. This implies that GCD( R™" ™7t mg,) = msp. Since
Jst < ist <m, we have n — ji > 1 and thus GCD( R¥, msy) = msy for some positive

integer k, which is equivalent to D1. The proof is thus complete. [ |

We prove S5 as follows.
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Proof. Suppose G1AEOAE1 A C3 is true. By EO A E1 being true, G3ana of interest
satisfies (N.2). Since iy = js;, we can divide Lt = L7t on both sides of (N.2), which

leads to

len jen
Zd agmymog RM L7 = jzd Bymazmoy R" L7+
i=ist J=jst

Note that if ig = jss =n meaning that ig = jst =eng = Jenda =N, then (N.2) reduces
to my1mas = myzme (since oy, # 0 and B;, #0). This contradicts the assumption
G1.

Thus for the following, we only consider the case when iy =ji <n — 1. Note that
each term with non-zero 3; on the RHS has a common factor m3mg;. Similarly, each
term with non-zero «; on the LHS has a common factor L = my3mgams; except for the
first term (i =1g). As a result, the first term oy mi3me3 R" ™"t must contain my3mo;

ko, k41

as a factor. Since ig, <n — 1, we have GCD(mymb,mimk,  mizma) = mizmy for

some integer k>1. Therefore, we have D4. [ |
We prove S6 as follows.

Proof. Suppose EOANE1ACA4 is true. By EOAE1L being true, Gsana of interest
satisfies (N.2). Since feng < Jend, We can divide R"Jend on both sides of (N.2). Then,

we have

iend jcnd
o o
E a;miymoz R L = E Bjmizmay R4 L7

i=ist J=dst

Each term with non-zero «; on the LHS has R as a common factor. Similarly,
each term with non-zero 8; on the RHS has R as a common factor except for the
last term (since §;,,#0). Thus, the last term 3, mizma; L7 must be divisible by
R = mjamasmg;, which implies that GCD(mfy ' mE,mA ™t migmasma;) = miamazma;
for some integer k= jend = tena + 1 >1. This observation has two implications. Firstly,

GCD(mllm%m?le;l, miamg1) = myamg; for some positive integer I3 = k + 1 and
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thus we have proven D3. Secondly, we also have GCD(m/2m2mi | mas) = mas for

some positive integer Iy = k + 1 and thus we have proven D2. The proof is thus

complete. [ |
We prove S7 as follows.

Proof. Suppose EOAE1ACS5 is true. By EOAE1 being true, Gsana of interest
satisfies (N.2). Since ienq > jend, We can divide R" % on both sides of (N.2). Then

we have

Ten jen
Zd QM Mag Rlend 1 = ]Zd BjmlgmglRicnd_ij.
i=ist J=jst
Each term on the RHS has R as a common factor. Similarly, each term on the
LHS has R as a common factor except for the last term (since o, #0). Thus, the
last term o, dmllmggLie"d must be divisible by R =mjsmogmg;, which implies that
GCD(my1 L¥, miams1) = miagma; for some integer k=ienq > jena + 1>1. This further

implies D3. |
We prove S8 as follows.

Proof. Suppose G1AEOAE1 A C6 is true. By EQO A E1 being true, G3ana of interest
satisfies (N.2). Since G5, ieng = Jend, is true, define t =1ienq = jena and m=min{ig, js }-

Then by dividing R"~* and L™ from both sides of (N.2), we have

t t
Z OéimllmggRt_iLi_m = Z ﬁjmlgmglRt_ij_m. (NlO)
Z':ist j:jst
Each term with non-zero «; on the LHS has a common factor me;. We first
consider the case of m < t. Then each term with non-zero 8; on the RHS has a
common factor R = miamaeszms; except the last term Bymizmoi L1™™. As a result,
k+1, K . k41 ) =

Brmaizme L™ must be divisible by mog, which implies that GCD(m7i3 ‘miyms;, mag

mag for some k=t — m>1. This implies D2.
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On the other hand, we argue that we cannot have m=t. If so, then ig = jst =tena =
Jena and (N.2) reduces to my3maes=mi3ms;. However, this contradicts the assumption

G1. The proof is thus complete. [ |
We prove S9 as follows.

Proof. Suppose EOAE1ACO is true. By EOAE1L being true, Giana of interest
satisfies (N.2) with not-being-all-zero coefficients {a;}7y and {3;}7_,. Our goal is to
prove that, when iy > ji; and ienq = Jena, we have E2: (i) ay, # B for some k€ {0, ..., n};
and (ii) either ap#0 or 5, #0 or ay # fx—1 for some ke{1,...,n}.

Note that (i) is obvious since iy > js. Note by definition that iy (resp. jg) is the
smallest ¢ (resp. j) among «; #0 (resp. (3; #0). Then, ig > jy implies that a;, =0
while f;, #0. Thus simply choosing k= js proves (i).

We now prove (ii). Suppose (ii) is false such that ag=0; 3, =0; and oy =1 for
all ke{l,...,n}. Since 3,=0, by definition, je,q must be less than or equal to n — 1.
Since we assumed %enq = Jend, this in turn implies that a,, =0. Then ,,_; must be zero
because 8, 1 =a,. Again this implies jo,q <n — 2. Applying iteratively, we have all
zero coefficients {a;}i_, and {3;}}_,. However, this contradicts the assumption EO
since we assumed that at least one of each coefficient group is non-zero. The proof of

S9 is thus complete. [ |
We prove S10 as follows.

Proof. Suppose GLIAEQ0AE1A (= CO0) is true. By EOAE1 being true, Gzana of
interest satisfies (N.2) with some values of iy, jst, fend, and jenq. Investigating their
relationships, there are total 9 possible cases that Gzana can satisfy (N.2): (1) is < st
and Zeng < Jend; (11) st < Jst and dend > Jenda; (ill) st < Jst and denq = Jend; (iV) st > Jst
and dend < Jend; (V) @st > Jst and tend > Jends (Vi) dse > Jst and dend = Jend; (Vil) st = Jit
and deng < Jend; (Vili) st = Jst and deng > Jend; and (i) isy = Jst and fend = Jend-

Note that CO is equivalent to (vi). Since we assumed that CO is false, Gsana can
satisfy (N.2) with all the possible cases except (vi). We also note that (i) is equivalent
to C1 A C4, (ii) is equivalent to C1 A C5, etc. By applying S3 and S6, we have
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e EONEL1A (i) = (D4AD5) A (D2AD3).
By similarly applying S3 to S8, we have the following relationships:
e EONE1 A (ii) = (D4 AD5) AD3.
e GIANEOAE1A (iii) = (D4AD5) AD2.
e EOAELA (iv) = D1 A (D2AD3).
e EOAELA(v) = D1ADS3.
e GINEOAELA (vil) = D4 A (D2AD3).
e G1ANEOAE1A (vili)) = D4 AD3.
e GINEOAE1A (ix) = D4 AD2.
Then, the above relationships jointly imply GLAEOAE1A (= C0) = (D1 AD3)
vV (D2AD4) Vv (D3 AD4). The proof of S10 is thus complete. |

N.6 Proof of S11
N.6.1 The third set of logic statements

To prove S11, we need the third set of logic statements.
e G7: There exists an edge ¢ such that both the following conditions are satisfied:
(i) € can reach d; but cannot reach any of dy and ds; and (ii) € can be reached from
s1 but not from any of s, nor ss.
o G8: S3#£() and Dy#0.
The following logic statements are well-defined if and only if G4 A GS8 is true.
Recall the definition of €5 and e when G4 is true.
e G9: {e},e5} C leut(sa; ds).
e G10: ¢} € lcut(ss; dy).
e G11: ¢} € lcut(sy;dy).
o G12: ¢} € leut(sy; ds).
e G13: ¢} € leut(sy;dy).
The following logic statements are well-defined if and only if = G4 is true. Recall

the definition of €32 and €3? when — G4 is true.
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o G14: 32 ¢ 1lcut(sy;dy).

e G15: Let ¢, denote the most downstream edge among lcut(s;; di)Nlcut(sy; tail(e3?)).
Also let €, denote the most upstream edge among lcut(sy;dy) N leut(head(e?); dy).
Then we have (a) head(é,) < tail(e3?) and head(e3?) < tail(é,); there exists as;-to-d;
path Pj, through é, and €, satisfying the following two conditions: (b) P is vertex-
disjoint from anyss-to-dspath; and (c) there exists an edge é € P}, where €, <é<é,

32 632 )

u v

that is not reachable from any of {e

N.6.2 The skeleton of proving S11

We prove the following relationships, which jointly prove S11. The proofs for the
following statements are relegated to Appendix N.6.3.
e R1: D1 = GS8.
e R2: G4NG8AD1 = G9.
e R3: G4ANG8ANGIAD3 = (G10VG11)A(G12V G13).
e R4: GANGB8AGIAN (- G10) AG11AEOQ = false.
e R5: GAANGB8AGIN (- G12) AG13AEOD = false.
e R6: G4AANG8ANGINGI10ANG12 = (-LNR).
e R7: G1A(~G4) = G14.
e R8: (-G4)AG14 = G15.
e R9: (-G4)AG14AD3 = GT7.
e R10: G7NEQ0 = false.
One can easily verify that jointly R4 to R6 imply

LNRAG4AG8AGIAEOA (G10V G11) A (G12V G13) = false.  (N.11)
Together with R3, (N.11) reduces to

LNRAG4ANG8AGIAEOAD3 = false. (N.12)
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Jointly with R1 and R2, (N.12) further reduces to
LNRAG4ANE0AD1 AD3 = false. (N.13)
In addition, R7, R9, and R10 jointly imply
G1A(—-G4) NEOAD3 = false. (N.14)

One can easily verify that jointly (N.13) and (N.14) imply S11. The skeleton of

the proof of S11 is complete.

N.6.3 Proofs of R1 to R10
We prove R1 as follows.

Proof. Suppose D1 is true. By Corollary 5.4.2, any channel gain cannot have the
other channel gain as a factor. Therefore, ms, must be reducible. Furthermore we
must have GCD( my2, msy)# 1 since myy is the only channel gain in the LHS of D1
that reaches ds. (See the proof of Lemma 6.2.1 for detailed discussion). Similarly, we

must have GCD( 3y, maz)#Z1. Lemma 6.1.7 then implies S3#0) and Dy 0. [
We prove R2 as follows.

Proof. Suppose G4 AG8 AD1 is true. From G4 A G8 being true, by definition, e}
(resp. e3) is the most downstream (resp. upstream) edge of S3 (resp. Ds) and e} < e3.
For the following, we will prove that {e}, €3} C lcut(sy;ds).

We now consider Mese3, & part of mso. From D1 and Property 2 of G4, we have
!
GCD(m213> meg‘;e;) = me.}‘;ega (N15)

for some positive integer [;. This implies that Meses 1S & factor of mo3. By Proposi-

tion 5.4.3, we have {e}, e} C lcut(sy; d3). The proof is thus complete. [
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We prove R3 as follows.

Proof. Suppose G4 A G8 AGI A D3 is true. Therefore, the €} (resp. €}) defined in
the properties of G4 must also be the most downstream (resp. upstream) edge of
S (resp. D). Moreover, since {e}, e5} C leut(sg; ds), we can express maz as Mo =
Me,, se3Megse3Megseq, - For the following, we will prove that ef € leut(s1; di)Ulcut(s; dy).

We use the following observation: For any edge e’ € lcut(ss;ds) that is in the
upstream of e}, there must exist a path from s; to tail(e}) that does not use such ¢’
Otherwise, €’ € lcut(ss; ds) is also a 1-edge cut separating s; and dy, which contradicts
that e} is the most upstream edge of Ds.

We now consider m.;. a factor of m3;. From D3 and Property 2 of G4, we

€dy

have GCD( myym‘yms, Mesieq, ) = Megse, - By Proposition 5.4.3, we must have e} €

edl edl .

leut(sy;dy) U leut(sy;ds) U leut(sa;dy). We also note that by the observation in
the beginning of this proof, there exists a path from s; to tail(el) not using ej.
Furthermore, e5 € lcut(sq;ds) implies that e} can reach ds. These jointly shows
that there exists a path from s; through e} to ds without using e}, which means
es & lcut(sy;ds). Therefore, € belongs to lcut(sy;dy) U leut(se;dy). The proof
of €5 € leut(sy;dy) U leut(sy;ds) can be derived similarly. The proof R3 is thus

complete. [ |
We prove R4 as follows.

Proof. Assume G4ANG8AGIA (- G10) AG11AEQ is true. Recall that €} is the
most downstream edge in Ss and e} is the most upstream edge in D,. For the
following we construct 8 path segments that interconnects s; to ss, d; to ds, and two
edges e; and e3.

e P: a path from s to tail(e}) without using ej. This is always possible due to
Properties 1 and 2 of G4.

e P»: a path from s, to tail(e}). This is always possible due to G8 and G9 being

true.
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Fig. N.1. The subgraph G’ of the 3-unicast ANA network Gsana induced by the
union of the 8 paths plus two edges e} and e} in the proof of R4.

e P5: a path from s; to tail(ef). This is always possible due to G4 and G8 being
true.
e P,: a path from s, to d; without using ej. This is always possible due to G10 being
false.
e P5: a path from head(e}) to d; without using ej. This is always possible due to
Properties 1 and 2 of G4.
e FPs: a path from head(e}) to tail(e). This is always possible due to Property 1 of
G4.
e P;: a path from head(e}) to ds. This is always possible due to G4 and G8 being
true.
e Ps: a path from head(e}) to d3. This is always possible due to G8 and G9 being
true.

Fig. N.1 illustrates the relative topology of these 8 paths. We now consider the
subgraph G’ induced by the 8 paths and two edges e} and €. One can easily check
that s; can reach d; for any ¢ # j. In particular, s; can reach dy through Pie}Pr; s

can reach ds through Pye5Ps; s, can reach d; through either Py, or PhejPs; so can
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reach ds through Pye;FPse;Ps; s3 can reach dy through PsejPs; and sz can reach dy
through Pse;Psel Pr.

We first show the following topological relationships: P; is vertex-disjoint with
Py, P3, and P, respectively, in the induced subgraph G’. From G9, {P;, P} must
be vertex-disjoint paths otherwise s, can reach ds without using e} € lcut(sq;ds).
Similarly from the fact that e} € Ss, {P;, Ps} must be vertex-disjoint paths. Also
notice that by G11, e; is a l-edge cut separating s; and d; in the original graph.
Therefore anys;-to-d;path in the subgraph must use e} as well. But by definition,
both P, and P, do not use ej and s; can reach d; if they share a vertex. This thus
implies that {P;, P,} are vertex-disjoint paths.

The above topological relationships further imply that s; cannot reach d; in the
induced subgraph G’. The reason is as follows. We first note that P; is the only path
segment that s; can use to reach other destinations, and anys;-to-d;path, if exists,
must use path segment P; in the very beginning. Since P; ends at tail(e}), using path
segment P; alone is not possible to reach d;. Therefore, if as;-to-d;path exists, then
at some point, it must use one of the other 7 path segments P, to Ps. On the other
hand, we also note that e} € lcut(sy;d;) and the path segments Ps to Py are in the
downstream of ej. Therefore, for anys;-to-d;path, if it uses any of the vertices of P
to Ps, it must first go through tail(e}), the end point of path segments P, and Ps. As
a result, we only need to consider the scenario in which one of {P,, P3, Py} is used
by thes;-to-dypath when this path switches from P; to a new path segment. But we
have already showed that P, and {P,, P, P,} are vertex-disjoint with each other. As
a result, nos;-to-dipath can exist. Thus s; cannot reach d; on the induced graph G’.

By EO being true and Proposition 5.4.2, any subgraph who contains the source
and destination edges (hence G’) must satisfy EO. Note that we already showed
there is nos;-to-dypath on G’. Recalling (N.1), its LHS becomes zero. Thus, we have
g({mi; : Y (i,7) € Isana}) wé")(R, L) = 0 with at least one non-zero coefficient f;.
But note also that any channel gain m;; where i # j is non-trivial on G’. Thus R,

L, and g({ms; : V(i,7) € Isana}) are all non-zero polynomials. Therefore, G’ must
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satisfy wé")(R, L) = 0 with at least one non-zero coefficient §; and this further implies
that the set of polynomials {R", R"'L,--- , RL"!, L"} is linearly dependent on G'.
Since this is the Vandermonde form, it is equivalent to that L =R holds on G'.

For the following, we further show that in the induced graph G’, the following
three statements are true: (a) Sy N S3=0; (b) S; N S2=0; and (c) S; N S3=0, which
implies by Proposition 6.2.1 that G’ must have L R. We thus have a contradiction.

(a) Sy N S3=0 on G’: Suppose there is an edge e € S, N S3 on G'. Since e € S,
such e must belong to P, and anyss-to-dspath. Since both e € P, and e} ¢ P, belong
to leut(sq; d3), we have either e <e} or e>ej. We first note that e must not be in the
downstream of e;. Otherwise, so can use P to reach e without using e; and finally to
ds (since e € Sy), which contradicts the assumption of G9 that ef € lcut(ss; d3). As a
result, e < e} and any path from s, to tail(e}) must use e. This in turn implies that
P uses e. We now argue that P; must also use e. The reason is that thess-to-dypath
Pse3Ps must use e since e € S3 and e <ej. Then these jointly contradict that e € Ss
since s can follow P, switch to P, through e, and reach d; without using ej.

(b) S; N So=0 on G': Suppose there is an edge e € S; N Sy. Since e €Sy, by the
same arguments as used in proving (a), we know that e <e; and e must be used by
both P» and P,. We then note that e must also be used by thes;-to-dspath P;e;Ps
since e € S;. This in turn implies that P, must use e since e < e} < e3. However,
these jointly contradict the fact Py and { P, P3, P,} being vertex-disjoint, which were
proved previously. The proof of (b) is complete.

(c) S1 N S3=0 on G': Suppose there is an edge e € S; N S3. We then note that
e must be used by thes;-to-dspath Pje}Ps since e €S5,. Then e must be either e or
used by P3 since e} is the most downstream edge of S3. Therefore, P, must use e
(since e} <e}). In addition, since by our construction P; does not use e, it is P; who
uses e. However, P, and P are vertex-disjoint with each other, which contradicts

what we just derived e€ P; N P5. The proof of (c) is complete. |

We prove R5 as follows.
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Proof. We notice that R5 is a symmetric version of R4 by simultaneously reversing
the roles of sources and destinations and relabeling flow 2 by flow 3, i.e., we swap the
roles of the following three pairs: (s1,d;), (s2,d3), and (s3,d2). We can then reuse

the proof of R4. |
We prove R6 as follows.

Proof. Assume G4 A GS8 is true and recall that e} is the most downstream edge in
S3 and e} is the most upstream edge in Dy. From G9A G10A G12 being true, we
further have e} € lcut(se;dy) N leut(se; ds) and ej € leut(sy;ds) N leut(se; ds). This
implies that €% (resp. e3) belongs to SyNS3 (resp. DyNDs3). We thus have = LNR. by
Proposition 6.2.1. [ ]

We prove R7 as follows.

Proof. We prove an equivalent relationship: (- G4)A (- G14) = (- G1). From G4
being false, we have €2 € S3N Dy C leut(ss;dy) N leut(sy;dy) N leut(ss; dy). From
G14 being false, we have €32 € lcut(sy;dy). As a result, €32 is a 1-edge cut separating
{s1,s3} and {d;, d2}. This implies mi3mss=miasms; and thus = G1. The proof of R7

is thus complete. [ |
We prove RS8 as follows.

Proof. Suppose that (- G4) AG14 is true. From Property 3 of =G4, anys;-to-d;
path who uses a vertex w where tail(e3?) <w < head(e3?) must use both €32 and 3.
Since we have €32 ¢ 1lcut(sy; d;) from G14, there must exist as;-to-d;path not using
€32, Then, these jointly imply that there exists as;-to-d;path which does not use any
vertex in-between tail(e3?) and head(e3?). Fix arbitrarily one such path as Pj;.

If the chosen Py, shares a vertex with any path segment from ss to tail(e3?), then
s3 can reach d; without using €%, contradicting e? € S3 N Dy C lcut(ss;dy). By

the similar argument, P}, should not share a vertex with any path segment from
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head(e3?) to do. Then jointly with the above discussion, we can conclude that Py, is
vertex-disjoint with anyss-to-dspath. We thus have proven (b) of G15.

Now consider €, (we have at least the sj-source edge ey, ) and €, (we have at least
the dj-destination edge ey, ) defined in G15. By definition, é, < €3? and €3? < é,,
and the chosen P;; must use both é, and ¢&,. Thus if head(é,) = tail(e3?), then
this contradicts the above discussion since tail(e}?) € Py,. Therefore, it must be
head(é,) < tail(e3?). Similarly, it must also be head(e??) < tail(¢,). Thus we have
proven (a) of G15.

We now prove (c) of G15. We prove this by contradiction. Fix arbitrarily one
edge e € P where €, <e <¢, and assume that this edge e is reachable from either

32 3

e32 or €32 or both. We first prove that whenever e2?2

> reaches e, then e must be in the

downstream of e€32. The reason is as follows. If €3? reaches e, then e € P}, should not

reach e3? because it will be located in-between e3? and €32, and this contradicts the

v

32

% are not reachable from each other is also

above discussion. The case when e are e
not possible because s; can first reach e through e3? and follow P;, to d; without

using €22, which contradicts the Property 3 of = G4. Thus, if €3? < e, then it must

32

v o)

be €3 <e. By the similar argument, we can show that if e <e2?, it must be e <32

Therefore, only two cases are possible when e is reachable from either €32 or 32 or

both: either e < e3? or €32 < e. Extending this result to every edges of P}, from ¢,

32.

u )

to €,, we can group them into two: edges in the upstream of e’*; and edges in the
downstream of €32, Since é, <e3? <e3? <¢é,, this further implies that the chosen P}
must be disconnected. This, however, contradicts the construction Pj;. Therefore,
there must exist an edge € € P;; where ¢, <e < ¢, that is not reachable from any of

{e3? e3?}. We thus have proven (c) of G15. The proof of R8 is complete. [ |

u v

We prove R9 as follows.

Proof. Suppose (—G4) AG14 AD3 is true. From R8, G15 must also be true, and
we will use thes;-to-dypath Py, the two edges €, and €,, and the edge € € P}, defined
in G15. For the following, we will prove that the specified é satisfies G7. Since
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é€ Pyjy, we only need to prove that é cannot be reached by any of {ss, s3} and cannot
reach any of {ds, ds}.

We first claim that € cannot be reached from s3. Suppose not. Then we can
consider a newss-to-dipath: s3 can reach € and follow P} to d;. Since € is not reachable
from any of {e3? e¥} by (c) of G15, this new s3-to-d; path must not use any of
{32 ¢32}. However, this contradicts the construction {e?2, €32} C Sy0D, C leut(ss; dy).
We thus have proven the first claim that ¢ cannot be reached from s3. Symmetrically,
we can also prove that € cannot reach d».

What remains to be proven is that € cannot be reached from s, and cannot reach
ds. Since D3 is true, there exists a positive integer l3 satisfying

l3

GCD(mHmlgméfzmm, miagmsy) = migms;. Consider Me, 32, @ part of myy, and

Mesze, , a part of mg. By Property 1 of =G4, we have
I3 13 _
GCD( m11Mq3Maq, m6s1;632m6%2;dd1) = m681;632me%2;dd1.

Recall the definition of €, (resp. €,) being the most downstream (resp. upstream)
edge among lcut(sy;tail(e3?)) N leut(sy;dy) (resp. lcut(head(e??);d;) N leut(sy;dy)).
Then we can further factorize Me, 32 = Me, 6, Me, ez aNd Mes2e o = Mei2e, Mé ey, s
respectively. Since both €, and €, separate s; and d;, we can express mj; as mi; =
Me,, 38, MeE 8, MEyseq, - Then one can see that the middle part of myy, ie., me, .6, ,
must be co-prime to both mg .32 and mes2,, otherwise it violates the construc-
tion of €, (resp. é,) being the most downstream (resp. upstream) edge among

lcut(sy;tail(e3?)) N lcut(sy;dy) (resp. lcut(head(e?);d;) N lcut(sy;dy)). The above

equation thus reduces to
GCD( m13m21, Me,,;e321Me32, 511) = Meg,,;e32Me32:¢,, - (N.16)

Using (N.16) and the previous constructions, we first prove that € cannot reach ds.
Since head(é, ) <tail(e3?) by (a) of G15, we must have 0 < EC(head(é,); tail(e3?)) < co.

By Proposition 5.4.3, mg, sz is either irreducible or the product of irreducibles corre-
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sponding to the consecutive edges among é,, lcut(head(é,); tail(e3?)), and €32. Con-
sider the following edge set E,={é,} U lcut(head(é,); tail(e3?)) U {32}, the collection
of 1cut(head(é,); tail(€3?)) and two edges €, and €32, Note that in the proof of R8, Py
was chosen arbitrarily such that é, € Pj; and €32 & P}, but there was no consideration
for the 1-edge cuts from head(é,) to tail(e3?) if non-empty. In other words, when s;
follow the chosen Py, it is obvious that it first meets €, but it is not sure when it
starts to deviate not to use €32 if we have non-empty lcut(head(é,); tail(e3?)). Let e¥
denote the most downstream edge of £, N Py (we have at least é,) and let e} denote
the most upstream edge of E,\P;; (we have at least €?). From the constructions

of P and E,, the defined edges e} € P} and ef € Py, are edges of £, such that
32.

€y X €] < ey X e Meyen 18 irreducible; and mg, .32 contain Mev ey aS & factor. By

doing this way, we can clearly specify the location (in-between €% € P}, and e} & Pj;)
when P}, starts to deviate not to use €32,

For the following, we first argue that GCD( 13, meu,cy) Z 1. Suppose not then
we have GCD(ma1, Mev,en) = Meuyey from (N.16). By Proposition 5.4.3, we have
{e}, ey} Clcut(sy; dy). However from the above construction, e} € lcut(sg; dy) implies
that sy can first reach e} € P}, and then follow Pj| to d; without using e} since
el < ey and ey ¢ Pf. This contradicts ey € lcut(ss;d;) that we just established.
This thus proves that GCD(my3, meu,ey) Z 1. Since meuu is irreducible, again by
Proposition 5.4.3, we further have {e}, e} } Clcut(sy;ds).

We now argue that € cannot reach dz. Suppose not and assume that there exists a

path segment @ from € to d3. Since é € P}, is not reachable from any of {e3?, e3?} by

u G
(c) of G15, it is obvious that € must be in the downstream of e¥ € P}, since e} < e
from the above construction. Then when s; follow Py to é (through e}) and switch
to () to reach ds, it will not use e} unless € < el and ey € ), but € cannot be in the
upstream of €% since €% <e3? from the above construction. Therefore, thiss;-to-dspath

P éQ will not use e and thus contradicts e} € lcut(sy;ds) that we just established.

As a result, € cannot reach ds.
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The proof that € cannot be reached from s, can be derived symmetrically. In
particular, we can apply the above proof arguments (€ cannot reach ds) by symmet-
rically using the following: the edge set F, = {e3?} U lcut(head(e?);tail(é,)) U {é,}
and denote e} (resp. €}) be the most downstream (resp. upstream) edge of E,\ P
(resp. E, N Pjy) such that {e}, ey} Clcut(sy;dy) from (N.16).

Therefore we have proven that € cannot be reached from s; and cannot reach ds.

The proof of R9 is thus complete. |
We prove R10 as follows.

Proof. We prove an equivalent relationship: G7=-(—EO0). Suppose G7 is true and
consider the edge € defined in G7. Consider ans;-to-d;path P;; that uses ¢ and an
edge e € Pj; that is immediate downstream of € along this path, i.e., head(é)=tail(e).
Such edge e always exists since € cannot be the d;-destination edge ey, . (Recall that
¢ cannot be reached by ss.) We now observe that since G7 is true, such e cannot
reach any of {ds,ds} (otherwise € can reach one of {ds,d3}). Now consider a local
kernel x;z. from € to e. Then, one can see that by the facts that € cannot be reached
by any of {s9,s3} and e cannot reach any of {ds,ds}, any channel gain m;; where
1#j cannot depend on xz. On the other hand, the channel gain polynomial m;; has
degree 1 in x4, since both € and e are used by a path Py;.

Since any channel gain m,;; where i# j is non-trivial on a given Gsana, the above
discussion implies that f({m;; : V (4,5) € Isana}), g({mi; : V (i,75) €Isana}), R, and L
become all non-zero polynomials, any of which does not depend on .. Thus recalling
(N.1), its RHS does not depend on zz. However, the LHS of (N.1) has a common
factor my; and thus has degree 1 in xz. This implies that G3zana does not satisfy
(N.1) if we have at least one non-zero coefficient «; and f;, respectively. This thus

implies = EO. [ |
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N.7 Proof of S12

If we swap the roles of sources and destinations, then the proof of S11 in Ap-
pendix N.6 can be directly applied to show S12. More specifically, note that D1
(resp. D3) are converted back and forth from D2 (resp. D4) by such (s, d )-swapping.
Also, one can easily verify that LNR, G1, and EO remain the same after the index
swapping. Thus we can see that S11 becomes S12 after reverting flow indices. The

proofs of S11 in Appendix N.6 can thus be used to prove S12.

N.8 Proof of S13
N.8.1 The fourth set of logic statements

To prove S13, we need the fourth set of logic statements.
e G16: There exists a subgraph G’ C G3ana such that in G’ both the following
conditions are true: (i) s; can reach d; for all i j; and (ii) s; can reach d;.
e G17: Continue from the definition of G16. The considered subgraph G’ also
contains an edge € such that both the following conditions are satisfied: (i) € can
reach d; but cannot reach any of {ds, ds}; (ii) € can be reached from s; but not from
any of {sq,ss}.
e G18: Continue from the definition of G16. There exists a subgraph G” C G’ such
that (i) s; can reach d; for all i# j; and (ii) s; can reach d;. Moreover, the considered
subgraph G” also satisfies (iii) mq1me3 = myzmay; and (iv) L#R.
e G19: Continue from the definition of G16. There exists a subgraph G” C G’ such
that (i) s; can reach d; for all i# j; and (ii) s; can reach d;. Moreover, the considered
subgraph G” also satisfies (iii) m3mgy = myamay; and (iv) L#R.
e G20: Sy#( and Ds#0.

The following logic statements are well-defined if and only if G3 A G20 is true.
Recall the definition of €5 and e} when G3 is true.

o G21: {e}, €5} C leut(ss; da).
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The following logic statements are well-defined if and only if (= G3) A (= G4) is

true. Recall the definition of €23, 23, ¢32

and e** when (- G3) A (= G4) is true.

u ) v Y Tu )

e G22: There exists a path P} from s; to d; who does not use any vertex in-between

tail(e23) and head(e??), and any vertex in-between tail(e3?) and head(e3?).

o G23:
o G24:
o G25:
o G26:

N.8.2

e <e32,
e32 <2,
e32 <23,

23 _ 32
€, =€y,

The skeleton of proving S13

We prove the following relationships, which jointly prove S13. The proofs for the

following statements are relegated to Appendix N.8.3.

e R11:
e R12:
e R13:
e R14:
e R15:
e R16:
e R17:
e R18:
e R19:
e R20:
e R21:
o R22:
e R23:
e R24:
e R25:

D1 = G8 (identical to R1).

G4 A G8AD1 = G9 (identical to R2).

LNRAGANG8AGIAD2 = false.

D2 = G20.

G3AG20AD2 = G21.

LNRAG3ANG20AG21 AD1 = false.

LNRAG2A(=G3)A(—=G4)A (- G5) = GT.

G16 AG17 AEO0 = false.

G16 A (G18V G19) AEOAE1AE2 = false.

G1A(=G3)A(-G4) A (- G22) AG23 = G16 A G18.

LNRA (- G3)A(-G4) AG22A G231 G25 = G16 A G17.
LNRA(-G3)A(-G4) NG22ANG23 AN (- G25) = G16 A (G17V G18).
GIAN(-G3)AN(-G4) AN (- G22) N G24 = G16 A G19.

LNRA (- G3)A(~G4) AG22 A G24 A G26 = G16 A G17.
LNRA(-G3)A(—G4) NG22ANG24 N (- G26) = G16 A (G17V G19).
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One can easily verify that jointly R11 to R13 imply
LNR A G4 AD1 AD2 = false. (N.17)
Similarly, R14 to R16 jointly imply
LNR A G3 AD1AD2 = false. (N.18)
Thus, (N.17) and (N.18) together imply
LNR A (G3V G4) AD1 AD2 = false. (N.19)
Now recall R10, i.e., G7 A EQ = false. Then, jointly R10 and R17 imply
LNRAG2A (-G3) A (=G4) A (= G5) A EO = false. (N.20)
One can easily verify that jointly R18 and R19 imply
G16 A (G17V G18V G19) A EO A E1 A E2 = false. (N.21)

One can see that jointly (N.21), R20, R21, and R22 imply

LNRAGIA(-G3)A(—-G4) A G23 ANEO A E1 AE2 = false. (N.22)

By similar arguments as used in deriving (N.22), jointly (N.21), R23, R24, and
R25 imply

LNRAGIA(-G3)A(—-G4) A G24 ANEO A E1 AE2 = false. (N.23)
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Since by definition (- G3) A (- G4) NG5 = (- G3) A (- G4) A (G23V G24),
jointly (N.22) and (N.23) imply

LNRAGIA(-G3)A(-G4) NG5 ANEO0OAELAE2 = false. (N.24)

By similar arguments as used in deriving (N.22), (N.24) and (N.20) further imply

LNRAG1IAG2A (—-G3)A(—-G4) AEOAEL AE2 = false. (N.25)

Finally, one can easily verify that jointly (N.19) and (N.25) imply that we have
LNRAGIANG2AEONELIANE2AD1 AD2 = false, which proves S13. The skele-
ton of the proof of S13 is complete.

N.8.3 Proofs of R11 to R25

Since R11 and R12 is identical to R1 and R2, respectively, see Appendix N.6.3
for their proofs.

We prove R13 as follows.

Proof. We prove an equivalent relationship: G4 A G8 AG9AD2 = - LNR. Sup-
pose GANAG8AGY is true. The e} (resp. e}) defined in the properties of G4 must
be the most downstream (resp. upstream) edge of S (resp. D), both of which
belongs to lcut(sg;ds).

For the following, we will prove that there exists an edge in-between {es,, 5, } and
e3 who belongs to S, N S5. We will also prove that there exists an edge in-between e
and {eq,, €4, } who belongs to Do D3. By Proposition 6.2.1 we thus have LINR. being
false.

Define a node u=tail(e}). Since e} € lcut(sq; d3), u is reachable from s,. Since e} €
S, u is also reachable form s3. Consider the set of edges {lcut(sg;u) N leut(ss;u)}U
{e%} and choose ¢” as the most upstream one (we have at least e}). Let ¢’ denote the

most downstream edge of lcut(ss;tail(e”)) (we have at least the so-source edge ey, ).
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Since we choose €’ to be the most downstream one, by Proposition 5.4.3 the channel
gain mes..» must be irreducible.

Moreover, since e € lcut(se;ds), both ¢ and ¢” must be in lcut(sy;ds). The
reason is that by e} € lcut(sq; ds) any path from sy to ds must use €}, which in turn
implies that any path from sy to ds must use €¢” since e” separates so and tail(ej).
Therefore €¢” € lcut(sg; d3). Similarly, anyss-to-dspath must use e”, which means any
so-to-dzpath must use €’ as well since e’ € lcut(sy;tail(e”)). As a result, the channel
gain mgg contains me..» as a factor.

Since D2 is true, it implies that m...» must be a factor of one of the following
three channel gains mi3, mgs, and my;. We first argue that m./..» is not a factor of
mg2. The reason is that if m...» is a factor of mgs, then €’ € lcut(ss; da), which means
that € € lcut(ss;tail(e})). Since ¢ is also in lcut(sq;tail(e})), this contradicts the
construction that €” is the most upstream edge of lcut(sy; tail(e})) N lecut(ss; tail(el)).

Now we argue that GCD(my3, me.er) = 1. Suppose not. Then since mer.er is
irreducible, Proposition 5.4.3 implies that {¢’, "} are 1-edge cuts separating s; and
ds. Also from Property 1 of G4, there always exists a path segment from s; to €
without using e}. Since e} € lcut(sy;ds), eb can reach ds and we thus have as;-to-ds
path without using e§. However by the assumption that ¢’ € lcut(sy;ds), this chosen
path must use ¢/. As a result, s, can first reach ¢’ and then reach dz through the chosen
path without using e}, which contradicts the assumption G9, i.e., e} € lcut(ss; d3).

From the above discussion m...» must be a factor of my;, which by Proposi-
tion 5.4.3 implies that {€’, "} also belong to lcut(sy;dy). Since by our construction
" satisfies €” € Sy N lcut(sy; ds), we have thus proved that ¢’ € Sy N S3. The proof
for the existence of an edge satisfying D, N D3 can be followed symmetrically. The

proof of R12 is thus complete. |

By swapping the roles of sy and sz, and the roles of dy and ds, the proofs of
R11 to R13 can also be used to prove R14 to R16, respectively. More specifically,
D1 and D2 are converted back and forth from each other when swapping the flow

indices. The same thing happens between G3 and G4; between G20 and G8; and
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between G21 and G9. Moreover, LNR remains the same after the index swapping.
The above proofs can thus be used to prove R14 to R16.
We prove R17 as follows.

Proof. Suppose LNRAG2A (- G3) A (- G4) A (- G5) is true. Recall the definitions
of 23, €32 €23 and e3? from Properties of both = G3 and = G4. Since LNR A (= G3) A (- G4)
is true, we have G6 if we recall N7. Together with = G5, €2* and €3? are distinct
and not reachable from each other. Thus from G2 being true, there must exist a

si-to-dypath who does not use any of {€2* €32}. Combined with Property 3 of = G3

u U

23 632 .

v v

and — G4, this further implies that suchs;-to-dipath does not use any of {e
Fix one suchs;-to-d;path as Pj.

We will now show that there exists an edge in P} satisfying G7. To that end,
we will show that if an edge e € P}; can be reached from sy, then it must be in the
downstream of €23. We first argue that e?* and e are reachable from each other. The
reason is that we now have ass-to-dipath by first going from s, to e € P}, and then

use Pj; to dy. Since €2 € lcut(sp;d;) by definition, such path must use €?*. As a

3

result, we either have €23 <e or e <e?3. (e=¢e?? is not possible since €2* ¢ Py.) We

23

-2 and

then prove that e <e?® is not possible. The reason is that P}, does not use e
thus s; must not reach e through Pj; due to Property 3 of =G3. As a result, we
must have e?* < e. By symmetric arguments, any e € P}, that can be reached from
reach s3 must be in the downstream of €3 and any e € P, that can reach dj (resp.
d>) must be in the upstream of €23 (resp. €32).

For the following, we prove that there exists an edge € € P}y that cannot reach
any of {dy,ds}, and that cannot be reached from any of {sq,s3}. Since é € Py, this
will imply G7. Let € denote the most downstream edge of Pf, that can reach at
least one of {dy,d3} (we have at least the sj-source edge e, ). Among all the edges
in P} that are downstream of ¢, let ¢” denote the most upstream one that can be

reached by at least one of {sy, s3} (we have at least the d;-destination edge eg4, ). In

the next paragraph, we argue that e” is not the immediate downstream edge of €',
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i.e., head(e’) <tail(e”). This conclusion directly implies that we have at least one edge
¢ that satisfies G7 (which is in-between €’ and €”).

Without loss of generality, assume that head(e’) = tail(¢”) and €’ can reach ds.
Then, by our previous arguments, €’ is an upstream edge of 2. Consider two cases:
Case 1: Suppose €’ is reachable from sz, then by our previous arguments, e” is a
downstream edge of €32. However, this implies that we can go from head(e’) through
€32 t0 €32 and then back to tail(¢”) =head(e’), which contradicts the assumption that
G is acyclic. Consider the Case 2: €” is reachable from s,. Then by our previous
arguments, ¢’ is a downstream edge of €23. Then we can go from e to e, then to
tail(e”) = head(e’) and then to €32. This contradicts the assumption of =G5. The

proof of R17 is thus complete. [ |
We prove R18 as follows.

Proof. Suppose G16 A G17 AEOQ is true. From EO being true, Gzana satisfies (N.1)
with at least two non-zero coefficients «; and ;. From G16 being true, the considered
subgraph G’ has the non-trivial channel gain polynomials m;; for all ¢ # j and my;.
By Proposition 5.4.2, G’ also satisfies (N.1) with the same set of non-zero coefficients
a; and f;.

From G17 being true, consider the defined edge € € G’ that cannot reach any of
{ds,d3} (but reaches d;) and cannot be reached by any of {s,, s3} (but reached from
s1). This chosen € must not be the sj-source edge e, otherwise (é=ey,) € will reach
dy or d3 and thus contradict the assumption G17.

Choose an edge e € G’ such that e;, < e and head(e) = tail(¢). This is always
possible because s; can reach € and e, <€ on G’. Then, this chosen edge e should
not be reached from sy or s;3 otherwise sy or s3 can reach é and this contradicts the
assumption G17. Now consider a local kernel z.; from e to €. Then, one can quickly
see that the channel gains moy, mo3, M3y, and mg, must not have z.; as a variable
since e is not reachable from s, nor s3. Also m;s and m;3 must not have z.; as a

variable since é doe not reach any of {ds, ds}.
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This further implies that the RHS of (N.1) does not depend on z.;. However, the
LHS of (N.1) has a common factor mj; and thus has degree 1 in x.;. This contradicts

the above discussion that G’ also satisfies (N.1). |
We prove R19 as follows.

Proof. Equivalently, we prove the following two relationships: G16 A G18 AEO AE1
ANE2 = false; and G16 NA\G19ANEOAE1AE2 = false.

We first prove the former. Suppose that G16 A G18 AEOAE1 AE2 is true. From
EO0 A E1 A E2 being true, there exists some coefficient values {a;}i, and {3;}}_, such

that Gsana of interest satisfies
mimas Y (R, L) = mizma @b};‘) (R, L), (N.26)

with (i) At least one of «; is non-zero; (ii) At least one of 3, is non-zero; (iii) oy, # By, for
some k€{0,...,n}; and (iv) either ag#0 or (3, 7#0 or oy # f_1 for some k€ {1, ...,n}.

From the assumption that G16 is true, consider a subgraph G’ which has the non-
trivial channel gain polynomials m;; for all ¢ j and my;. Thus by Proposition 5.4.2,
G’ also satisfies (N.26) with the same coefficient values.

Now from G18 being true, we will prove the first relationship, i.e., G16 A G18 A EO
ANE1AE2 = false. Since G18 is true, there exists a subgraph G” C G’ which also
has the non-trivial channel gains m,; for all i # j and m;;. Thus again by Propo-
sition 5.4.2, G” satisfies (N.26) with the same coefficients. Since G” also satisfies

mi1Maz = My3may, by (N.26), we know that G” satisfies
VIR, L) = v (R, L), (N.27)

Note that by (iii), the coefficient values were chosen such that ay # Sy for some
k € {0,...,n}. Then (N.27) further implies that G” satisfies > ,_, v R"*LF = 0
with at least one non-zero 7. Equivalently, this means that the set of polynomials

{R" R*'L ...  RL"' L"} is linearly dependent. Since this is the Vandermonde
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form, it is equivalent to that L = R holds on G”. However, this contradicts the
assumption G18 that G” satisfies L# R.

To prove the second relationship, i.e., G1I6 AG19ANEOAE1 AE2 = false, we
assume G19 is true. Since G19 is true, there exists a subgraph G” C G’ which
also has the non-trivial channel gains m,; for all i # j and my;. Thus again by
Proposition 5.4.2, G” satisfies (N.26) with the same coefficients. Moreover, G” satisfies

mi1mss = myamay, which together with (N.26) imply that G” also satisfies
RYJV(R, L) = L (R, L), (N.28)

where we first multiply mss on both sides of (N.26).
Expanding (N.28), we have

RY( (R, L) — LS (R, L) = agR™ + > (g — B ) R*FFLE + B, L7+

k=t (N.29)

n+1

_ Z ,ykRn—l—l—kLk -0
k=0
By (iv), the coefficient values were chosen such that either oy # 0 or 3, # 0
or oy # Pr—1 for some k € {1,...,n}. Then (N.29) further implies that G” satisfies
ZZ;’é Y R"1FLF = (0 with some non-zero 7;. Equivalently, this means that the
set of polynomials {R"™ R"L, ... RL"™ L""'} is linearly dependent, and thus G”
satisfies L= R. This contradicts the assumption G19 that L= R holds on G”. The

proof of R19 is thus complete. |
We prove R20 as follows.

Proof. Suppose G1A (= G3)A(=G4) A (= G22) AG23 is true. Recall the defini-
tions of €23, €32 €23 and €3* when (= G3) A (= G4) is true. From Property 1 of both

u v )

- G3 and ~ G4, we know that s; can reach e (resp. €3?) and then use e (resp.

e32) to arrive at d;. Note that - G22 being true implies that everys;-to-d;path must

use a vertex w in-between tail(e??) and head(e?*) or in-between tail(e3?) and head(e?)
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or both. Combined with Property 3 of both = G3 and — G4, this further implies that

everys;-to-dypath must use {2, e?} or {€3?, 3*} or both.

u ’l)

23 ~ 632.

From G23 being true, we have e; For the following we prove that (i)

head(e??) < tail(e3?); and (ii) there exists a path segment from head(e??) to d; which
is vertex-disjoint with any vertex in-between tail(e3?) and head(e3?). First we note
that €23 is not an l-edge cut separating s; and tail(e??). The reason is that if e?* €
Lcut(sy; tail(e3?)), then €23 must be an 1-edge cut separating s; and d; since anys;-to-d;

path must use {e2?, €2} or {€32, €32} or both. However, since e2* € S,N D3, this implies

u ’U
e? € leut({sy, sa};{d1,ds}). This contradicts the assumption G1. We now consider
23 232 or €32 < e? or not reachable from each other.

all the possible cases: either e or e

23

We first show that the last case is not possible. The reason is that suppose e;” and

32 are not reachable from each other, then s; can first reach €23, then reach e3? to d;

23 This contradicts Property 3 of = G3. Similarly, the second case

without using e;
is not possible because when €32 <e?3, we can find a path from s; to €32 to €23 to d;
not using €23 since €23 ¢ lcut(sy; tail(e3?)). This also contradicts Property 3 of = G3.
We thus have shown e? < €32, Now we still need to show that e?* and e3? are not
immediate neighbors: head(e??) < tail(e?). Suppose not, i.e., head(e?*) = tail(e3?).
Then by Property 3 of =G3, we know that any path from head(e??) =tail(e3?) to d;
must use both €2? and e32. By the conclusion in the first paragraph of this proof,

we know that this implies {32, €32} C lcut(sy; dy). However, this further implies that

{e3% €32} Clcut({s1, s3};{d, d2}), which contradicts G1. The proof of (i) is complete.
We now prove (ii). Suppose that every path from head(e?®) to d; has at least
one vertex w that satisfies tail(e3?) < w =< head(e3?). Then by Property 3 of = G3,

23

every si-to-d; path that uses e? 32

must use both €3 and e?. By the findings in the
first paragraph of this proof, this also implies that anys;-to-d;path must use both 3?2
and e3?. However, this further implies that {e3?, e3*} C leut({sy, s3};{d1,ds}). This
contradicts G1. We have thus proven (ii).

Using the assumptions and the above discussions, we construct the following 11

path segments.
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Fig. N.2. The subgraph G’ of the 3-unicast ANA network Gsana induced by the
union of the 11 paths in the proof of R20.

e Pp: a path from s to tail(e?3). This is always possible due to G3 being false.

e P»: apath from s, to tail(e2?), which is edge-disjoint with P;. This is always possible
due to G3 being false.

e P3: a path starting from e?* and ending at e23. This is always possible due to G3
being false.

e P;: a path from head(e??) to tail(e?®). This is always possible since we showed (i)
in the above discussion.

e P5: a path starting from e3? and ending at e3?. This is always possible due to G4
being false.

e Ps: a path from head(e??) to d;. This is always possible due to G4 being false.

e P;: a path from head(e??) to dy, which is edge-disjoint with Ps;. This is always
possible due to G4 being false and Property 2 of = G4.

e Ps: a path from s3 to tail(e3?). This is always possible due to G4 being false.

e Py: a path from head(e??) to ds. This is always possible due to G3 being false.

e Pjy: a path from head(e?®) to dy, which is vertex-disjoint with P5. This is always

possible since we showed (ii) in the above discussion.
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e Py;: a path from head(e??) to di, which is edge-disjoint with Py. This is always
possible due to G3 being false.

Fig. N.2 illustrates the relative topology of these 11 paths. We now consider the
subgraph G’ induced by the above 11 path segments. First, one can see that s; can
reach d; for all © # j. In particular, s; can reach dy through Py P3P,PsP;; s; can
reach ds through P, P3Py; sy can reach dy through either P, P3Py PsFPs or P, P3Py or
Py P3Pyy; so can reach ds through P, P3Py; s3 can reach d; through Py PsFPs; and s3
can reach dy through PsP5;P;. Moreover, s; can reach dy through either P, P3Py PsPs
or Py P3P,y or Py P3P;;. Thus we showed G16.

For the following, we will prove that mqy;mse3 = mi3ms; and L # R hold in the
above G'. Note that {P;, P, P3, Pjo} must be vertex-disjoint with Py, otherwise s3
can reach d, without using Ps and this contradicts {e32, e32} € S3 N Dy C lcut(ss; dy).
Since Py is vertex-disjoint from {P;, P}, one can easily see that removing P3 separates
{s1,s2} and {d;,d3}. Thus G’ satisfies mi3ma3 = mqzma;.

To show that L # R holds on G’, we make the following arguments. First, we
show that G’ satisfies S, N S3=0. Note that any S, edge can exist only as one of four
cases: (1) Py; (ii) P3; (iii) an edge that Py, Py, Py, and P;; share; and (iv) an edge
that Ps, Py, P, and P;; share. Note also that any S5 edge can exist only as one of
three cases: (i) Ps; (ii) Ps; and (iii) an edge that Ps and Pr shares. But since Py and
P> were chosen to be edge-disjoint with each other from the above construction, any
S5 edge can exist on either Py or Ps. However, Ps was chosen to be vertex-disjoint
with Pjg from the above construction and we also showed that Py is vertex-disjoint
with {P,, Ps, Pyo}. Thus, S; N Ss=0 on G'.

Second, we show that G’ satisfies D; N Dy=0. Note that any D; edge can exist
on an edge that all Py, P, and P;; share since Py cannot share an edge with any of
its upstream paths (in particular P,, Ps, Py, and Ps); P5 cannot share an edge with
Pyg due to vertex-disjointness; and Py cannot share edge with {P,, Ps, Pjo} otherwise
there will be anss-to-dipath not using P5. Note also that any D, edge can exist on (i)

an edge that both Py and Py share; (ii) Ps; and (iii) P;. However, P; was chosen to
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be edge-disjoint with Py, and P5 was chosen to be vertex-disjoint with Pyy. Moreover,
we already showed that Py is vertex-disjoint with Pyo. Thus, D; N Dy=0 on G'.

Third, we show that G’ satisfies D; N Ds={). Note that any D; edge can exist on
an edge that Ps, Py and Pj; share. Note also that any D3 edge can exist on (i) Ps;
and (ii) Py. However, all Ps, Pg and Py; are the downstream paths of P;. Moreover,
P, was chosen to be edge-disjoint with Pj; by our construction. Thus, D; N D=
on G'.

Hence, the above discussions, together with Proposition 6.2.1, implies that the
considered G’ satisfies L Z R. Thus we have proven G18 being true. The proof is
thus complete. |

We prove R21 as follows.

Proof. Suppose LNR A (- G3) A (- G4) A G22 A G23 A G25 is true. Recall the def-

initions of €23, 32, ¢2* and e** when (= G3) A (- G4) is true. From Property 1 of

u ? u Y v )

both = G3 and =G4, s; reaches €2* and e32

u u )

respectively. From G22 being true,
there exists as;-to-d;path P;; who does not use any vertex in-between tail(e??) and
head(e??), and any vertex in-between tail(e3?) and head(e??).

Note that G23 A G25 implies €2 < 32 < €23, For the following, we prove that

2

e3? < €2, Note that by our construction e3? < €32, As a result, we have €2* <

e32 <32 <23, To that end, we consider all the possible cases between €32 and e23:

32 ,23. 23 _ ,32. 32 _ 23,
e;-<ey’; or e’ <eys; or eyt =e

v v

or they are not reachable from each other. We first
show that the third case is not possible. The reason is that if e3?=¢23, then we have
SoNS5N Dy 0537& (), which contradicts the assumption LINR. The last case in which

e32 and e?* are not reachable from each other is also not possible. The reason is that

23

by our construction, there is always ans;-to-d;path through e?* €32 and e3? without

using €2®. Note that by Property 3 of = G3, suchs;-to-djpath must use €23, which is

32

a contradiction. We also claim that the second case, 3 < €32,

is not possible. The
reason is that if €2* < €3?) then together with the assumption G23 A G25 we have

e < e3? < e < e We also note that €3 must be an l-edge cut separating s
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23

=2 and

and tail(e??), otherwise s; can reach tail(e??) without using €32 and then use e
32 to arrive at dy. This contradicts the construction €22 € S3 N Dy C lcut(sy; ds).
Since €2® € Sy N Dy is also an 1-edge cut separating s; and ds, this in turn implies
that €32 € lcut(si;ds). Symmetrically following this argument, we can also prove
that e2* € lcut(ss;d;). Since €32 € S3N D, and €2 € S;N D3, these further imply
that €2 € S;NS3N D, and €2 € S;N D, N D, which contradicts the assumption
LNR by Proposition 6.2.1. We have thus established €3 <e?* and together with the
assumption G23 A G25, we have €23 < ¢e3? <32 <e23.

Using the assumptions and the above discussions, we construct the following 7
path segments.
e Pi: a path from s to tail(e23). This is always possible due to G3 being false.
e P,: a path from s, to tail(e2®) which is edge-disjoint with P;. This is always possible
due to G3 being false and Property 2 of - G3.

23

u )

using €3? and €32, and ending at €23. This is always

v o)

e P5: a path starting from e
possible from the above discussion.
e P;: a path from head(e??) to d;. This is always possible due to G3 being false.
e P5: a path from head(e?®) to ds which is edge-disjoint with P;. This is always
possible due to G3 being false and Property 2 of = G3.
e P;: a path from s3 to tail(e3?). This is always possible due to G4 being false.
e P;: a path from head(e??) to dy. This is always possible due to G4 being false.
We now consider the subgraph G’ induced by the above 7 path segments and Py;.
First, one can easily check that s; can reach d; for all ¢ # j. In particular, s; can
reach dy through P Pye3? P;; 51 can reach dz through Py P3Ps; s can reach d; through
Py P3Py; so can reach ds through P, PsPs; s3 can reach d; through Pse3? PsPy; and s3
can reach dy through Pse3? Pye3? P;. Moreover, s; can reach d; through either P} or
P P;P,;. As a result, G16 must hold.
We now prove G17. To that end, we will show that there exists an edge € € P}
that cannot reach any of {ds,d3}, and cannot be reached from any of {ss, s3}. Note

from G22 being true that P} was chosen to be vertex-disjoint with P;. Note that
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P}, must also be vertex-disjoint with P, (resp. FPg) otherwise sy (resp. s3) can reach
d; without using Py (resp. €32P3¢3?). Similarly, P, must also be vertex-disjoint with
Ps (resp. P;) otherwise s; can reach ds (resp. do) without using Ps (resp. €32 Psed?).
Hence, among 7 path segments constructed above, the only path segments that can
share a vertex with P}, are P, and P,. Without loss of generality, we also assume
that P, is chosen such that it overlaps with Pj| in the beginning but then “branches
out”. That is, let u* denote the most downstream vertex among those who are used
by both P, and P;, and we can then replace P, by s; Pju*Pitail(e2?). Note that the
new construction still satisfies the requirement that P, and P, are edge-disjoint since
Py is vertex-disjoint with P,. Similarly, we also assume that P, is chosen such that
it does not overlap with Py in the beginning but then “merges” with P, whenever
Py shares a vertex v* with Pj{ for the first time. The new construction of Py, i.e.,
head(e2?) Pyv* Py dy is still edge-disjoint from P5. Then in the considered subgraph G/,
in order for an edge e € P}, to reach dy or d3, we must have head(e) <u*. Similarly,
in order for an edge e € P} to be reached from s, or s3, this edge e must satisfy
v* <tail(e). If there does not exist such an edge é € Py satisfying G17, then it means
that u* =v*. This, however, contradicts the assumption that G is acyclic because
now we can walk from u* through P, P3P, back to v* =u*. Therefore, we thus have

G17. The proof of R21 is thus complete. [ |
We prove R22 as follows.

Proof. Suppose LNR A (= G3) A (—G4) A G22 AN G23 A (= G25) is true. Recall the
definitions of €23, €32 €23, and €3* when (= G3) A (= G4) is true. From Property 1

of both = G3 and — G4, s; reaches €2* and e3?

u u )

respectively. From G22 being true,
there exists as;-to-djpath P;; who does not use any vertex in-between tail(e?*) and
head(e??), and any vertex in-between tail(e3?) and head(e3?).

Note that G23 implies e?* < €32, For the following, we prove that head(e??) <
tail(e2?). To that end, we consider all the possible cases by = G25 being true: either

23 — 32 or not reachable from each other. We first show that the second

v T Yu

23 _ 32
e’ <ey) ore
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case is not possible. The reason is that if €23 =32, then we have SN S5M Dy N D30,
which contradicts the assumption LINR. The third case in which ¢?* and e3? are not
reachable from each other is also not possible. The reason is that by our construction,

there is always ans;-to-dpath through €2?, €32 and e3? without using 3. Note that by

Property 3 of = G3, suchs;-to-d;path must use €23, which is a contradiction. We have

thus established e?* <e??. We still need to show that e?* and e’ are not immediate

neighbors since we are proving head(e??) < tail(e3?). We prove this by contradiction.

Suppose not, i.e., w=head(e?*) =tail(e3?). Since €3 € S3ND, C lcut(s; dy), anys;-to-dy

path must use its tail w. By Property 3 of = G3 we have €2* € lcut(sy;w). This in

turn implies that €23 is also an 1-edge cut separating s; and do. By symmetry, we can

also prove €32 € 1cut(sq; d;). Jointly the above argument implies that 23 € §;NS,ND;

and €32 € S35 Dy N Dy, which contradicts the assumption LNR by Proposition 6.2.1.
Based on the above discussions, we construct the following 9 path segments.

e Pi: a path from s to tail(e23). This is always possible due to G3 being false.

e P: a path from s, to tail(e2?) which is edge-disjoint with P;. This is always possible

due to G3 being false and Property 2 of - G3.

e P3: a path starting from e?* and ending at e23. This is always possible due to G3

being false.

e P;: a path from head(e??) to tail(e3?). This is always possible from the above

discussion.

e P5: a path starting from e3? and ending at e3?. This is always possible due to G4

being false.

e Ps: a path from head(e??) to d;. This is always possible due to G4 being false.

e P;: a path from head(e??) to do which is edge-disjoint with P;. This is always

possible due to G4 being false and Property 2 of = G4.

e Ps: a path from s3 to tail(e3?). This is always possible due to G4 being false.

e Py: a path from head(e??) to ds. This is always possible due to G3 being false.
From G22 being true, P}, was chosen to be vertex-disjoint with {Ps, Ps}. Note

that Pj, must also be vertex-disjoint with P, (resp. Ps) otherwise sy (resp. s3) can
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reach d; without using P (resp. Ps). Similarly, P}, must also be vertex-disjoint with
P; (resp. Py) otherwise s; can reach dy (resp. d3) without using Ps (resp. P;). Hence,
among 9 path segments constructed above, the only path segments that can share a
vertex with Py are P, P, and F;.

We now consider the subgraph G’ induced by the above 9 path segments and P;;.
First, one can easily check that s; can reach d; for all ¢ j. In particular, s; can reach
dy through P, P3P, PsP7; s; can reach dz through Py P3Py; so can reach d; through
Py P3P, PsPs; so can reach ds through P, P3Py; s3 can reach dy through PsPsFPgs; and
sg can reach dy through PsP;P;. Moreover, s; can reach d; through either Py or
P, P; Py PsFPs. Thus we showed G16.

Case 1: P} is also vertex-disjoint with P,. In this case, we will prove that G17
is satisfied. Namely, we claim that there exists an edge € € P}, that cannot reach any
of {ds, ds}, and cannot be reached from any of {s, s3}. Note that only path segments
that P}, can share a vertex with are P, and Fs. Without loss of generality, we assume
that P, is chosen such that it overlaps with P} in the beginning but then “branches
out”. That is, let u* denote the most downstream vertex among those who are used
by both P, and P}, and we can then replace P, by s, Pju*Pitail(e2?). Note that the
new construction still satisfies the requirement that P, and P, are edge-disjoint since
Py, is vertex-disjoint with P,. Similarly, we also assume that Fs is chosen such that
it does not overlap with Pj| in the beginning but then “merges” with Pj| whenever
Ps shares a vertex v* with Py for the first time. The new construction of F, i.e,
head(e3?) Psv* Py dy, is still edge-disjoint from P;. Then in the considered subgraph G/,
in order for an edge e € P}, to reach dy or d3, we must have head(e) <u*. Similarly,
in order for an edge e € P}y to be reached from s, or s3, this edge e must satisfy
v* =<tail(e). If there does not exist such an edge é € P; satisfying G17, then it means
that u* = v*. This, however, contradicts the assumption that G is acyclic because
now we can walk from u* through P, P;P,P5;FPs back to v* =u*. Therefore, we thus

have G17 for Case 1.
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Case 2: PJ| shares a vertex with P;. In this case, we will prove that G18 is
true. Since P is vertex-disjoint with {Ps, Ps}, P, must share a vertex w with
P, where head(e??) < w < tail(e3?). Choose the most downstream vertex among
those who are used by both P}, and P, and denote it as w’. Then, denote the path
segment head(e??) Pyw' P} d, by Pyg. Note that we do not introduce new paths but
only introduce a new notation as shorthand for a combination of some existing path
segments. We observe that there may be some edge overlap between P, and Py since
both starts from head(e??). Let 1w denote the most downstream vertex that is used
by both Py and Py. We then replace Py by wPyds, i.e., we truncate Py so that Py is
now edge-disjoint from P;.

Since the path segment w’Pjod; originally comes from P}, w’'Pjod; is also vertex-
disjoint with {P,, P3, Ps, Pr, Ps, Py}. In addition, Py must be vertex-disjoint with
{Py, P5, P53, Pio}, otherwise s3 can reach d; without using Ps.

Now we consider the another subgraph G” C G’ induced by the path segments P
to Pg, the redefined Py, and newly constructed Pjg, i.e., when compared to G’, we
replace Py by Pjg. One can easily verify that s; can reach d; for all i # j, and s; can
reach d; on this new subgraph G”. Using the above topological relationships between
these constructed path segments, we will further show that the induced G” satisfies
my1Meg = myz3mg; and LFZ R.

Since Py is vertex-disjoint from {P;, P»}, one can see that removing P; separates
{s1,s2} and {d;,d3}. Thus, the considered G” also satisfies mq1ma3 = my3ma;.

To prove L# R, we first show that G” satisfies SN Ss=0. Note that any S, edge
can exist only as one of three cases: (i) P»; (ii) Ps; (iii) an edge that Py and Py, share,
whose head is in the upstream of or equal to @, i.e., {e€ PyN Py : head(e) <w} (may
or may not be empty); and (iv) an edge that Ps, Py, and Py share. Note also that
any Ss3 edge can exist only as on of three cases: (i) Py; (ii) Ps; and (iii) an edge that
Ps and P; share. But since Ps and P; were chosen to be edge-disjoint from the above
construction, any S3 edge can exist on either Ps or P;. We then notice that P is

vertex-disjoint with { Py, Ps, Pio}. Also, Ps was chosen to be vertex-disjoint with Py
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and both P, and Pj3 are in the upstream of Ps. The above arguments show that no
edge can be simultaneously in S, and S5. We thus have S, N S5=0 on G”.

Second, we show that G” satisfies D1 N Da=1{. Note that any D; edge can exist
only an edge that both Ps and Py share since any of {Ps, Ps} does not share an
edge with any of {P,, Ps, Pig}. Note also that any D, edge can exist only as one of
three cases: (i) an edge that both P, and P share; (ii) Ps; and (iii) P;. However, P;
was chosen to be edge-disjoint with Py, and we have shown that P; is vertex-disjoint
with Pjy. Moreover, we already showed that Py is vertex-disjoint with P;g. Thus,
D, N Dy=0 on G".

Third, we show that G” satisfies D; N D= (). Note that any D; edge can exist
only on an edge that both Pjy and Ps share. Note also that any D5 edge can exist
only as one of three cases: (i) a P5 edge; (ii) a P, edge whose head is in the upstream
of or equal to w, i.e., {e€ P, : head(e) 2w} (may or may not be empty); and (iii) Py.
However, P is in the downstream of P; and P;. Moreover, Py is edge-disjoint with
P}, and thus edge-disjoint with w’Pjpd;. As a result, no edge can be simultaneously
in D; and D3. Thus D; N Ds=() on G".

Hence, the above discussions, together with Proposition 6.2.1, implies that the

considered G” satisfies L# R. We thus have proven G18 being true for Case 2. H

By swapping the roles of s; and sz, and the roles of dy and d3, the proofs of
R20 to R22 can also be used to prove R23 to R25, respectively. More specifically,
G3 and G4 are converted back and forth from each other when swapping the flow
indices. The same thing happens between G23 and G24; between G25 and G26;
and between G18 and G19. Moreover, LNR, G1, G16, G17, and G22 remain the
same after the index swapping. Thus the above proofs of R20 to R22 can thus be
used to prove R23 to R25.
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N.9 Proof of S14
N.9.1 The fifth set of logic statements

To prove S14, we need the fifth set of logic statements.
e G27: S, N D=0.
e G28: S;N D1=0.
e G29: DyN S;=0.
e G30: D3N S;=0.
e G31: S;#0 and D;#0 for all i€ {1,2,3}.

Several implications can be made when G27 is true. We term those implications
the properties of G27. Several properties of G27 are listed as follows, for which their
proofs are provided in Appendix N.9.3.

Consider the case in which G27 is true. Use e} to denote the most downstream
edge in lcut(sy; dy)Nlcut(se; ds). Since the source edge ey, belongs to both lcut(se; dy)
and lcut(sy;ds), such e} always exists. Similarly, use e} to denote the most upstream
edge in lcut(sy;dy) N leut(ss;dy). The properties of G27 can now be described as
follows.

o Property 1 of G27: e; <ej and the channel gains ms;, mas, and ms; can be ex-
pressed as mg; = My o3 Megser Megieq, s 23 = MeyiesMeseq, and msg; = Me, et Messey, -

o Property 2 of G27: GCD( Mey, ety mesz;egme*;ef)z 1, GCD( mes;exmes

2

1, GCD(mgl, meg;e»f)zl, and GCD(mgg, me;;ef)z 1.

seay s Medseq, )Z

On the other hand, when G27 is false, we can also derive several implications,
which are termed the properties of = G27.

Consider the case in which G27 is false. Use €2! (resp. €2!) to denote the most
upstream (resp. the most downstream) edge in Sy N D;. By definition, it must be
e2l <e?!. We now describe the following properties of = G27.

o Property 1 of = G27: The channel gains ms;, mog, and ms; can be expressed as
M1 = My, 6212121 Mg, M3 =M, 121 Me21,21M21c, o AN g1 =M, o21Me21,c21

771612}1;%1 .
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¢ Property 2 of - G27: GCD(mesz;eil, mesg;eg})zl and GCD(megl;edl, megl;edg)zl.

Symmetrically, we define the following properties of G28 and — G28.

Consider the case in which G28 is true. Use e} to denote the most downstream
edge in lcut(ss;dy) N leut(ss;dy), and use e} to denote the most upstream edge in
lcut(sg; dy) N lcut(ss; dy). We now describe the following properties of G28.

o Property 1 of G28: e <e] and the channel gains ms;, msq, and mg; can be ex-
pressed as mg; = Me,,e3Metier Mes, M32 = MesesMesiey, s and mo; = Me,,e1Met,

edl ) edl .

o Property 2 of G28: GCD(me,,.cr, Me,,;esMeyer ) =1, GCD( MesietMesieq, s meg;%)z
1, GCD(ma1, Meser)=1, and GCD(mgz, Mmes,er) =1.

Consider the case in which G28 is false. Use €2 (resp. €3!) to denote the most
upstream (resp. the most downstream) edge in Sz N D;. By definition, it must be
e3l <e3!. We now describe the following properties of — G28.

o Property 1 of = G28: The channel gains mgs;, mgs, and ms; can be expressed as
M31 = M 31 Mt it Meslie, s M32 =M 681 M3l 31 M55, 5 AN Mgy =M e81Mes1 1
Me3tiey, -

o Property 2 of - G28: GCD(me,, .31, Me,,c31)=1 and GCD( Medtiey megl;%)zl.

N.9.2 The skeleton of proving S14

We prove the following relationships, which jointly prove S14.
e R26: D3 AD4 = G31.
e R27: LNR A (- G27) A (- G28) A (- G29) A (- G30) = false.
e R28: D3AD4ANG27 AN G28 = false.
e R29: LNRAGIAEOAD3AD4A (- G27) AG28 = false.
e R30: LNRAG1AEOAD3AD4AG27 A (- G28) = false.
e R31: D3AD4AG29 A G30 = false.
e R32: LNRAGIAEOAD3AD4A (- G29) AG30 = false.
e R33: LNRAG1AEO0OAD3AD4AG29 A (- G30) = false.
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One can see that R28 and R31 imply, respectively,

LNR A G1AE0AD3AD4AG27 A G28 = false, (N.30)

LNRAGIAE0OAD3AD4AG29 A G30 = false. (N.31)

Also R27 implies

LNRAGI1AEOAD3AD4A (-G27) A (- G28) A (- G29) A (—-G30) = false.
(N.32)

R29, R30, R32, R33, (N.30), (N.31), and (N.32) jointly imply

LNR AG1AEO0OAD3AD4 = false,

which proves S14. The proofs of R26 and R27 are relegated to Appendix N.9.4. The
proofs of R28, R29, and R30 are provided in Appendices N.9.5, N.9.6, and N.9.7,
respectively.

The logic relationships R31 to R33 are the symmetric versions of R28 to R30.
Specifically, if we swap the roles of sources and destinations, then the resulting graph
is still a 3-unicast ANA network; D3 is now converted to D4; D4 is converted to
D3; G27 is converted to G29; and G28 is converted to G30. Therefore, the proof
of R28 can serve as a proof of R31. Further, after swapping the roles of sources and
destinations, the LNR condition (see (6.3)) remains the same; G1 remains the same
(see (6.4)); and EO remains the same. Therefore, the proof of R29 (resp. R30) can
serve as a proof of R32 (resp. R33).

N.9.3 Proofs of the properties of G27, G28, = G27, and — G28

We prove Properties 1 and 2 of G27 as follows.
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Proof. By swapping the roles of s; and s3, and the roles of d; and ds, the proof of the
properties of G3 in Appendix M.4 can be used to prove the properties of G27. W

We prove Properties 1 and 2 of = G27 as follows.

Proof. By swapping the roles of s; and sz, and the roles of d; and ds, the proof of
Properties 1 and 2 of = G3 in Appendix M.4 can be used to prove the properties of
- G2T7. [ |

By swapping the roles of s, and s3, and the roles of dy and d3, the above proofs

can also be used to prove Properties 1 and 2 of G28 and Properties 1 and 2 of = G28.

N.9.4 Proofs of R26 and R27
We prove R26 as follows.

Proof. Suppose D3 A D4 is true. By Corollary 5.4.2, we know that any channel gain
cannot have any other channel gain as a factor. Since D3 A D4 is true, any one of
the four channel gains mqs, ms;, my3, and mo; must be reducible.

Since D4 is true, we must also have for some positive integer I, such that
GCD( mumlfzmé‘gméﬁ, m21) = Mao. (NB?))

We first note that meo3 is the only channel gain starting from s, out of the four
channel gains {mj;, M2, Ma3, m31 }. Therefore, we must have GCD( mas3, ma;) #Z 1 since
“we need to cover the factor of my; that emits from s,.” Lemma 6.1.7 then implies

that Sy#0.

Further, D4 implies GCD(mllmlf‘zmé‘gméﬁ, mi3) = my3 for some positive integer
l4, which, by similar arguments, implies GCD( mq3, m13)#Z 1. Lemma 6.1.7 then implies
that Ds# (). By similar arguments but focusing on D3 instead, we can also prove

that §3§£@ and Eg#@
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We also notice that out of the four channel gains {mj, mi2, ma3, mg1 }, both mq;
and mqo are the only channel gains starting from s;. By D4, we thus have for some

positive integer [, such that
GCD(mHmle, mlg) §é 1. (N34>

Similarly, by D3 and D4, we have for some positive integers I, and [, such that

GCD(mngll, m21) §é 1, (N35>
GCD(mllml123, m12) 7_é ]_, (N36)
GCD(mums, ma) # 1. (N.37)

For the following, we will prove S;# (. Consider the following subcases: Subcase 1:
If GCD(mya, my3)#1, then by Lemma 6.1.7, S1#£(). Subcase 2: If GCD(mya, my3)=1,
then (N.34) and (N.36) jointly imply both GCD( my1, my3)#1 and GCD('myy, my2)# 1.
Then by first applying Lemma 6.1.7 and then applying Lemma 6.1.6, we have S, ().
The proof of D1#( can be derived similarly by focusing on (N.35) and (N.37). The
proof of R26 is complete. [ |

We prove R27 as follows.

Proof. We prove an equivalent relationship: (- G27) A (- G28) A (- G29) A (- G30)
= = LNR. Suppose (- G27) A (- G28) A (- G29) A (- G30) is true. By Lemma 6.1.4,
we know that (= G27) A (= G28) is equivalent to Sy N S3#£(. Similarly, (= G29) A
(= G30) is equivalent to DyNDs#(). By Proposition 6.2.1, we have L=R. The proof

is thus complete. |



270

N.9.5 Proof of R28
The additional set of logic statements

To prove R28, we need an additional set of logic statements. The following logic
statements are well-defined if and only if G27 A G28 is true. Recall the definition of
e5, €3, and e} in Appendix N.9 when G27 A G28 is true.

o G32: es#es and GCD (M, e5Megiers Me,yiezMesier) = 1.
e G33: GCD(my1, Mmeger) =1.
e G34: GCD(myy1, Mmeger) =1

The following logic statements are well-defined if and only if G27 A G28 A G31
is true.

o G35: {e}, ei} Cleut(sy;da).
e G36: {e}, i} Cleut(sy;ds).

The skeleton of proving R28

We prove the following logic relationships, which jointly proves R28.
e R34: G27/NG28 = G32.
e R35: D4NG27TNG28ANG31ANG33 = G35.
e R36: D3NG27NG28NG31NG34 = G36.
e R37: G27TNG28 A (- G33) A (- G34) = false.
e R38: G27NG28 A G31 A (—~G33) AG36 = false.
e R39: G27NG28AG31 A (—~G34) AG35 = false.
e R40: G27NG28 N G31 A G35/ G36 = false.
Specifically, R35 and R39 jointly imply that

D3 AD4 AN G27 AN G28 A G31 A G33 A (—G34) = false.
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Moreover, R36 and R38 jointly imply that
D3AD4ANG27 A G28 N G31 A (- G33) A G34 = false.
Furthermore, R35, R36, and R40 jointly imply that
D3AD4ANG27 AN G28 AN G31 A G33 A G34 = false.
Finally, R37 implies that
D3AD4AG27TANG28 AG31 A (- G33) A (—G34) = false.

The above four relationships jointly imply D3 AD4 A G27 A G28 A G31 = false.
By R26 in Appendix N.9, i.e., D3 A D4 = G31, we thus have D3 A D4 A G27 A G28
= false. The proof of R28 is thus complete. The detailed proofs of R34 to R40 are

provided in the next subsection.

The proofs of R34 to R40
We prove R34 as follows.

Proof. Suppose G27 A G28 is true. Since €] is the most upstream 1-edge cut separat-
ing d; from {ss, s3}, there must exist two edge-disjoint paths connecting {ss, s3} and
tail(e}). By Property 1 of G27 and G28, one path must use e} and the other must
use e5. Due to the edge-disjointness, e} #ej;. Since we have two edge-disjoint paths

from sy (resp. s3) to tail(e}), we also have GCD(meSQ;e;meg;e»{, mess;e;;me;;e{)zl. [ |
We prove R35 as follows.

Proof. Suppose D4 A G27 A G28 AN G31 A G33 is true. By the Properties of G27
and G28 and by G31, ¢} (resp. e}) is the most downstream edge of Sy (resp.

S3). And both e} and e} are in the upstream of e} where e} is the most upstream
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edge of D;. Consider Meser, & factor of ms;. From Property 2 of G27, we have
GCD( mag, meg;e»{) =1. In addition, since G27 A G28 = (32 as established in R34,
we have GCD(msy, mey,er) = 1. Together with the assumption that D4 is true, we
have for some positive integer [, such that

GCD(mllml1427 me*;e’{) = meg;e’l‘- (N38)

2

Since we assume that G33 is true, (N.38) further implies GCD(m!,, Meyier) =
Meyer. By Proposition 5.4.3, we must have G35: {e, ]} Clcut(sy;dz). The proof is
thus complete. u

R36 is a symmetric version of R35 and can be proved by relabeling (s, ds) as
(s3,ds), and relabeling (s3,d3) as (sg,ds) in the proof of R35.

We prove R37 as follows.

Proof. Suppose G27 AN G28 A (- G33) A (- G34) is true. Since G27 A G28 is true,
we have two edge-disjoint paths Psztan(e;) through e} and PSSta“(eI) through e} if we
recall R34. Consider mg;..«, a factor of my;, and Meser, @ factor of ms;. Since
—G33 is true, there is an irreducible factor of me;..« that is also a factor of my;.
Since that factor is also a factor of ms;, by Proposition 5.4.3 and Property 1 of G27,
there must exist at least one edge ¢’ satisfying (i) e} <€ <ej; (ii) € € Dy19y; and
(iii) €' € Pyytail(er). Similarly, = G34 implies that there exists at least one edge e”
satisfying (i) e < ¢€” <ef; (i) " € 51;{1,3}; and (iii) ¢” € Pyuaiier)- Then the above
observation implies that €' € Py,taiier) N leut(si;di) and €” € Pyggaiier) N Leut(sy; dp).
Since Pyytaiier) and Pagrailer) are edge-disjoint paths, it must be e’ #¢”. But both ¢’
and ¢’ are 1-edge cuts separating s; and d;. Thus ¢ and ¢” must be reachable from
each other: either ¢/ < ¢e” or ¢’ < ¢/. However, both cases are impossible because
one in the upstream can always follow the corresponding Piyaiter) OF Pagtail(er) Path
to e} without using the one in the downstream. For example, if ¢/ <¢”; then s; can

first reach €’ and follow P,¢ier) to arrive at tail(e]) without using e”. Since €] €D,
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reaches dy, this contradicts e” € lcut(sy;dp). Since neither case can be true, the proof

is thus complete. |
We prove R38 as follows.

Proof. Suppose G27NG28 AG31 A (—~G33) AG36 is true. By the Properties of
G27 and G28 and by G31, €} (resp. e}) is the most downstream edge of Sy (resp.
S3). And both €3 and e} are in the upstream of e where e} is the most upstream edge
of D;. Since e} is the most upstream D; edge, there exist three edge-disjoint paths
Piyuai(er)s Psguail(er); and Pread(er)a,-  Fix any arbitrary construction of these paths.
Obviously, Ps,iler) uses e3 and Pypiier) uses e3.

Since —G33 is true, there is an irreducible factor of Mey et that is also a factor of
my;. Since that factor is also a factor of ms;, by Proposition 5.4.3, there must exist
an edge e satisfying (i) e <e<ej; (ii) e € leut(sy;dy)Nlcut(sq; dy). By (i), (ii), and
the construction e} €D, C lcut(sg; dy), the pre-defined path Pi,tail(er) must use such
e.

Since G36 is true, e} is reachable from s; and e] reaches to ds. Choose arbi-
trarily one path Py wie;) from s; to tail(e3) and one path Phead(er)a; from head(e7)
to d3. We argue that P tail(ez) must be vertex-disjoint with Piait(er)- Suppose not
and let v denote a vertex shared by Pslta“(eg) and PSQta“(eI). Then there is as;-to-ds
path P tail(e3)V Psytail(er) €1 Phead(e7)ds without using e;. This contradicts the assumption
G36 since G36 implies e; € lcut(sy; dz). However, if Py i) is vertex-disjoint with
P32tai|(e>1«), then there is ans;-to-d;path Pslta;|(6§) egPsgta“(eT)e’{Phead(ef)dl not using the
edge e defined in the previous paragraph since e € Piyuaitery and Pyyraiier) 18 edge-
disjoint with Pagtail(er)- This also contradicts (ii). Since neither case can be true, the

proof of R38 is thus complete. [ |

R39 is a symmetric version of R38 and can be proved by swapping the roles of
sy and sz, and the roles of dy and ds in the proof of R38.

We prove R40 as follows.
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Proof. Suppose G27 AN G28 A G31 A G35 A G36 is true. By the Properties of G27
and G28 and by G31, e} (resp. e}) is the most downstream edge of Sy (resp. Ss).
Also e3<e} and e < e} where e} is the most upstream D; edge.

By G36, there exists a path from s; to e}. Since e} € S, there exists a path from e;
to dy without using e]. As a result, there exists a path from s; to dy through e} without
using ej. This contradicts the assumption G35 since G35 implies e} € lcut(sy; da).

The proof is thus complete. [ |

N.9.6 Proof of R29
The additional set of logic statements

To prove R29, we need some additional sets of logic statements. The following
logic statements are well-defined if and only if G28 is true. Recall the definition of
e; and e} when G28 is true.

o G37: ¢} € leut(sy; dy).

o G38: e € lcut
o G39: €] € lcut
o G40: e} € lcut(sy;ds
o G41: e; € lcut

The following logic statements are well-defined if and only if (- G27) A G28 is
true. Recall the definition of €2!, €', e, and e} when (= G27) A G28 is true.

o G42: ¢} = 2L
e G43: Let ¢’ be the most downstream edge of lcut(sy;ds) Nlcut(sy;tail(e;)) and
also let €” be the most upstream edge of lcut(si;ds) N lcut(head(ef);ds). Then, €

and €” simultaneously satisfy the following two conditions: (i) both ¢’ and €¢” belong

to leut(sy;ds); and (ii) €” € leut(head(e2!); tail(eq,)) and €’ <eg, .
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The skeleton of proving R29

We prove the following relationships, which jointly proves R29.

e R41:
e R42:
e R43:
e R44:
e R45:
e R46:
o R4T7:

(- G27) A G28 = G42.

D3A(—-G27) ANG28AG31 = (G37V G38) A (G39V G40).
G1AG28AG31AG3T = - GA41.

D3 A (- G27) AG28AG31AG37 A (- G41) = G43.
G1AEOAD3A (- G27) AG28 AG31AG37 = false.

(- G27)NG28ANG31 A (- G37) ANG38NG39 = false.
LNRAD4A (- G27) AG28 AG31A (- G37) AG38 A G40 = false.

One can easily verify that jointly R46 and R47 imply

LNRAD4A (- G27) AG28 A G31 A (- G37) A G38 A (G39 V G40) = false.

From the above logic relationship and by R42, we have

LNR AD3AD4A (- G27) A G28 A G31 A (- G37) A G38 = false.

From the above logic relationship and by R45, we have

LNRAG1AE0AD3AD4A (- G27) A G28 A G31 A (G37 v G38) = false.

By applying R42 and R26, we have LNR AG1AEO0OAD3AD4A (- G27) A G28
= false, which proves R29. The detailed proofs for R41 to R47 are provided in the

next subsection.

The proofs of R41 to R47

We prove R41 as follows.

Proof. Suppose (- G27) A G28 is true. By = G27 being true and its Property 1, we

2
have e

! (resp. €2!), the most upstream (resp. downstream) edge of Sy N D;. Since
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- G27 implies that D,#0, by Property 1 of G28, we also have e}, the most upstream
D, edge.

Since D, ﬂgg% (), we can partition the non-empty D, by El\gg and D;NS,. By
the (s, d )-symmetric version of Lemma 6.1.3, if D1\ Sy#0, then any D;\S, edge must
be in the downstream of e2' € D; NSy CS,. Thus, €', the most upstream D; N S
edge, must also be the most upstream edge of D;. Therefore, e} = e2'. The proof is

thus complete. |
We prove R42 as follows.

Proof. Suppose D3 A (= G27) AG28 A G31 is true. Since (- G27) AG28 AG31 is
true, e} (resp. e}) is the most downstream (resp. upstream) edge of S (resp. D)
and e; <ej. By R41, G42 is also true and thus e} is also the most upstream edge of
SN Dy.

Consider me;..x, a factor of mgz;. From Property 2 of G28, GCD(msg, meg;e;)E 1.
By G42 being true and Property 2 of = G27, we also have GCD( Me,, ety Mey, e Messer )=
1, which implies that GCD(ma1, me;.e;) =1. Then since D3 is true, we have for some

positive integer [ such that
GCD(myym'3, Mesier) =Mes et -

Proposition 5.4.3 then implies that both e} and e} must be in lcut(s;;d;) U
lcut(sy; ds). This is equivalent to (G37V G38) A (G39 V G40) being true. The proof
of R42 is complete. u

We prove R43 as follows.

Proof. We prove an equivalent form: G28 AG31 AG37AG41 = - G1. Suppose
G28 A G31 A G37 A GA41 is true. Since G28 A G31 is true, we have e} being the most
downstream edge of S3. Therefore e} € lcut(ss;dy) N leut(ss;dy). Since G37 A G41

is also true, e} belongs to lcut(sy;dy) N leut(sy;ds) as well. As a result,

EC({s1,s3};{d1,d2}) = 1, which, by Corollary 5.4.2 implies = G1. [
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We prove R44 as follows.

Proof. Suppose that D3 A (- G27) AG28 AG31 A G37 A (—G41) is true, which by
RA41 implies that G42 is true as well. Since G28 A G31 is true, e} (resp. e}) is the
most downstream (resp. upstream) edge of S3 (resp. D) and e <e}. Recall the def-
inition in G43 that ¢’ is the most downstream edge of lcut(sy; ds) N lecut(sy;tail(el))
and €” is the most upstream edge of lcut(si;ds) N lcut(head(e}); ds). By the con-
structions of €’ and e”, we must have e;, <€’ <ef <e” <ey,. Then, we claim that the
above construction together with = G41 implies EC(head(€’); tail(¢”)) >2. The reason
is that if EC(head(¢); tail(e”)) =1, then we can find an 1-edge cut separating head(e’)
and tail(e”) and by = G41 such edge cut must not be e5. Hence, such edge cut is
either an upstream or a downstream edge of e;. However, either case is impossible,
because the edge cut being in the upstream of e} will contradict that ¢’ is the most
downstream one during its construction. Similarly, the edge cut being in downstream
of e} will contradict the construction of e”. The conclusion EC(head(¢’); tail(e”)) >2
further implies me,.» is irreducible.

Further, because e} is the most downstream Ss edge and e”, by construction,
satisfies €” € lcut(ss;dz), €’ must not belong to lcut(ss;d;), which in turn implies
e ¢ 1cut(head(ef); dy). Since G37 is true, s; can reach ej. Therefore, there exists an
s1-to-dypath using e} but not using €”. As a result, ¢” & lcut(sy;d;). Together with
merer being irreducible, we thus have GCD(myy, me..v)=1 by Proposition 5.4.3.

Now we argue that GCD(ma;, me.er)=1. Suppose not. Since me ..~ is irreducible,
we must have e’ being an l-edge cut separating s, and d;. Since e} is the most
upstream D, edge, by Property 2 of G28, there exists as,-to-d;path Py; not using
e5. By the construction of €/, s; reaches €. Choose arbitrarily a path Ps . from s
to €. Then, the followings;-to-dipath Ps, € Py does not use e}, which contradicts
G37. As a result, we must have GCD(may, men) =1.

Now we argue that GCD(ms2, me.ev)=1. Suppose not. Since me ..~ is irreducible,
both ¢’ and €” must belong to lcut(ss;dy) and there is no 1-edge cut of lcut(ss;ds)

that is strictly being downstream to ¢ and being upstream to e¢”. This, however,
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contradicts the above construction that e’ < e} <e” and e € S3 C leut(sz;da). As a
result, we must have GCD(mga, meren) =1.
Together with the assumption that D3 is true and the fact that m. ..~ is a factor

of m12, we have for some positive integer [l such that
GCD(ml2 mr H) = Mot .11
13> e’;e - ee’

Proposition 5.4.3 then implies {€’, "} C lcut(sy; d3), which shows the first half of
G43.

Therefore, anys;-to-dspath must use e”. Since e} <e” and s; can reach e}, any path
from head(e}) to ds must use ¢”. Note that when we establish GCD(myy, me.er)=1in
the beginning of this proof, we also proved that ¢” & lcut(sy;d;). Thus, there exists a
path from head(e}) to d; not using €”. Then such path must use e?! because e?! is also

an l-edge cut separating head(e}) and d; by the facts that e2! € S, N Dy C lcut(ss; dy);

21.

v )

e; <2l sy reaches e5. Moreover, since e2! € S;ND; C leut(sy; d3), head(e?!) can reach
ds. In sum, we have shown that (i) any path from head(e}) to d3 must use €”; (ii)
there exists a path from e} to e2! not using e”; (iii) head(e?!) can reach dz. Jointly
(i) to (iii) imply that any path from head(e?!) to dz must use €”. As a result, we
have €” € lcut(head(e?');d3). Also ¢” must not be the ds-destination edge ey, since
by construction €” < eg4,, €4, # €a,, and |Out(ds)| = 0. This further implies that e”
must not be the do-destination edge eg, since €’ <eg4, and |Out(d2)|=0. We have thus

proven the second half of G43: ¢” € 1cut(head(e?!); tail(eq,)) and €” < e4,. The proof
of R44 is complete. u

We prove R45 as follows.

Proof. Suppose GLAEOAD3A (—-G27) AG28 A G31 A G37 is true. By R41, R43,
and R44, we know that G42, - G41, and G43 are true as well. For the following
we construct 10 path segments that interconnects s; to s3, d; to dsz, and three edges

e’ €3, and ej.
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e P;: a path starting from e;, and ending at ¢’. This is always possible due to G43
being true.
e P, a path from s, to tail(e]) without using ei. This is always possible due to the
properties of G28.
e P;: a path from s3 to tail(e}). This is always possible due to G28 and G31 being
true. We also impose that P is edge-disjoint with P,. Again, this is always possible
due to Property 2 of G28.
e P;: a path from head(€’) to tail(e”). This is always possible due to G43 being true.
We also impose the condition that e ¢ P,. Again this is always possible since - G41
being true, which implies that one can always find a path from s; to dy not using ej
but uses both e’ and €” (due to the construction of ¢ and e” of G43).
e P;: a path from head(e}) to tail(e}). We also impose the condition that Ps is edge-
disjoint with P,. The construction of such Ps is always possible due to the Properties
of G28.
e Ps: a path from head(e}) to d;. This is always possible due to (- G27) A G28 being
true. We also impose the condition that e’ & Ps. Again this is always possible. The
reason is that e} is the most downstream S5 edge and thus there are two edge-disjoint
paths connecting head(e}) and {d;,d>}. By our construction e” must be in the latter
path while we can choose FPs to be part of the first path.
e P;: a path from head(e}) to tail(e”), which is edge-disjoint with {Ps, e}, Ps}. This
is always possible due to the property of e} and the construction of G43.
e P a path from head(e”) to dy, which is edge-disjoint with {Ps, e}, Ps}. This is
always possible due to the property of e and the construction of G43.
e Py: a path from head(e7) to tail(¢”). This is always possible due to G43 being true
(in particular the (ii) condition of G43).
e Pjp: a path from head(e”) to ds. This is always possible due to G43 being true (in
particular the (ii) condition of G43).

Fig. N.3 illustrates the relative topology of these 10 paths. We now consider the

!

subgraph G’ induced by the 10 paths plus the three edges €”, e}, and ej. One can
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Fig. N.3. The subgraph G’ of the 3-unicast ANA network Gsana induced by 10 paths
and three edges €, e}, and e} in the proof of R45.

easily check that s; can reach d; for all ¢# j. In particular, s; can reach dy through
Py Pye" Ps; s1 can reach ds through P Pye” Pyg; so can reach dy through Pei FPy; so can
reach ds through Pyej Poe” Pyo; s3 can reach d; through PselPse; Ps; and s3 can reach
dy through either PselPseiPye” Py or PseiPre” Py, Furthermore, topologically, the 6
paths P5 to Py are all in the downstream of ej.

For the following we argue that s; cannot reach d; in the induced subgraph G'.
To that end, we first notice that by G37, e} € lcut(s;;dy) in the original graph.
Therefore anys;-to-d;path in the subgraph must use e as well. Since P; to Py, are
in the downstream of e3, we only need to consider P; to Pj.

By definition, Ps reaches e. We now like to show that e & P, and {P,, P3} are
vertex-disjoint paths. The first statement is done by our construction. Suppose P, and
Py share a common vertex v (v can possibly be tail(e})), then there exists ass-to-dipath
PsvPye; Ps not using e5. This contradicts G28 (specifically e € S3C leut(ss; dy)). The
above arguments show that the first time a path enters/touches part of P; (including
tail(e})) must be along either P, or P, (cannot be along P,). As aresult, when deciding
whether there exists ans;-to-d;path using ej, we only need to consider whether P,

(and/or Py) can share a vertex with Ps. To that end, we will prove that (i) e} & Py; (ii)
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{Py, P;} are vertex-disjoint paths; (iii) e} & Py; and (iv) {Ps, P4} are vertex-disjoint
paths. Once (i) to (iv) are true, then there is nos;-to-d;path in the subgraph G'.

We now notice that (i) is true since e’ < e%; (iii) is true due to our construction;
(ii) is true otherwise let v denote the shared vertex and there will exist ass-to-dspath
Psv P, Pye” Py without using e, which contradicts G28 (e} € S5 C leut(ss; do)); and by
the same reason, (iv) is true otherwise let v denote the shared vertex and there will
exist ass-to-depath PsvPye” Py without using e}. We have thus proven that there is
nos;-to-dypath in G’.

Since EO is true, G3ana must satisfy (N.1) with at least one non-zero coefficients
a; and f3;, respectively. Applying Proposition 5.4.2 implies that the subgraph G’ must
satisfy (N.1) with the same coefficient values. Note that there is no path from s; to
d; on G’ but any channel gain m,; for all i # j is non-trivial on G’. Recalling the
expression of (N.1), its LHS becomes zero since it contains the zero polynomial my;
as a factor. We have g({my; : V (i,7) € Isana}) wé")(R, L) =0 and thus wé")(R, L) =
0 with at least one non-zero coefficients ;. This further implies that the set of
polynomials {R", R*'L,--- , RL"™' L"} is linearly dependent on G’. Since this is
the Vandermonde form, it is equivalent to that L = R holds on G’. However for the
following, we will show that (a) Dy N Dy=0; (b) S; N S3=0; and (c) Sy N Sz=1
on G’, which implies by Proposition 6.2.1 that G’ indeed satisfies L # R. This is a
contradiction and thus proves R45.

(a) Dy N Dy=10 on G': Note that any D; edge can exist on (i) €}; and (ii) Fs.
Note also that any D, edge can exist on (i) €”; and (ii) Ps. But from the above
constructions, Ps was chosen not to use €”. In addition, Py was chosen to be edge-
disjoint with {e}, Ps}. Moreover, e} <¢e”. Thus, we must have D; N Dy=0 on G'.

(b) S1NS3=0 on G': Note that any S; edge can exist on (i) Py; (ii) Py; (iii) ”; and
(iv) an edge that Py and Py shares. Note also that any S3 can exist on (i) Ps; and
(ii) €. But €} is in the upstream of €”, Py, and Pyy. Also, e} is in the downstream of

¢/, ending edge of P;. In addition, P, was chosen not to use e%. Moreover, we already
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showed that { Py, P3} are vertex-disjoint paths; and { Ps, P,} are vertex-disjoint paths.
Thus, we must have S; N S5=0 on G'.

(c) Sy N S3=0 on G": Note that any S, edge can exist on (i) P; (ii) e}; (iii) an
edge that P and Py shares; and (iv) an edge that P and Py share. Note also that
any S3 edge can exist on (i) Ps; and (ii) e5. However, e} is in the upstream of e, Ps,
Py, and Pyy. In addition, P, was chosen not to use e;. Moreover, we already showed

that {P,, P3} are vertex-disjoint paths. Thus, we must have S, N S3=0 on G’ [ |
We prove R46 as follows.

Proof. Suppose that (- G27) AG28 AG31 A (- G37) AG38 A G39 is true. By R41,
GA42 is true as well. Since G28 A G31 is true, e} (resp. e}) is the most downstream
(resp. upstream) edge of Sz (resp. D;). From (- G37) A G38 A G39 being true, we
also have e} € lcut(sy;ds)\lcut(sy;dy) and e € leut(sy;dy).

Since G42 is true, we have e} =e2! is in S,. Any arbitrarysy-to-dspath Pa3 thus
must use ef. Since e} & lcut(sy;dy) and ef € leut(sy;dy), there exists ans;-to-d;path
(011 using e} but not using ej. Then, we can create as;-to-dspath ()q11e] P23 not using

e}, which contradicts e} € lcut(sy; ds). The proof of R46 is complete. [
We prove R47 as follows.

Proof. Suppose that LNRAD4 A (- G27) AG28 AG31 A (- G37) AG38 A G40 is
true. Since G28 A G31 is true, e} (resp. e}) is the most downstream (resp. upstream)
edge of Ss (resp. D;). Since (- G27) AG28 implies G42, et also belongs to Sy,
which implies that e} € lcut(sq;ds). Since G40 is true, we have e} € lcut(sy;ds).
Jointly the above arguments imply e € D; N D3. Also, G38 being true implies
e € S5 N leut(sy;ds). Since LNR is true and D, N D3# (), by Proposition 6.2.1 we
must have S; N S3=0, which implies that e cannot belong to lcut(sy; ds).

Let a node u be the tail of the edge ei. Since e} € lcut(sy;d3), u is reachable
from s;. Since e} € S3, u is also reachable form s3. Consider the collection of edges,

lcut(sy;u) M leut(ss;u) (may be empty), all edges of which are in the upstream of
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e} if non-empty. Note that (lcut(si;u) N lcut(ss;u)) U {ef} is always non-empty
(since it contains at least e}). Then, we use ¢” to denote the most upstream edge
of (Lcut(sy;u) N lcut(sg;u)) U {es}. Let € denote the most downstream edge among
all edges in lcut(sy;tail(e”)). Such choice is always possible since lcut(sy;tail(e”))
contains at least one edge (the sj-source edge e, ) and thus we have ey, <e' <e” <el.
Since we choose €’ to be the most downstream one, by Proposition 5.4.3 the channel
gain m..» must be irreducible. Moreover, since €} € lcut(s;;ds), any path from s
to ds; must use €. Consequently since e’ € lcut(si;u) U {e}}, any path from s; to
d3 must also use ¢”. Consequently since €' € Lcut(sy;tail(e”)), any path from s; to ds
must also use ¢’. As a result, {¢/, "} C lcut(sy;ds). Therefore me..» is a factor of
mis.

Now we argue that GCD(ms;, me,.v)=1. Suppose not. Since me..» is irreducible,
by Proposition 5.4.3 we must have €' € lcut(ss;d;). Note that ¢ = e,, cannot be
a l-edge cut separating s3 and d; from the definitions (i) and (ii) of the 3-unicast
ANA network. Thus, we only need to consider the case when e,, <€’ since ey, <€’
from the construction of €’. Since e} € lcut(ss;dy) and € < e} is an 1-edge cut sep-
arating s; and d;, we must have ¢’ € lcut(ss;u). Note that the most downstream
lcut(sy; tail(e”)) edge €' also belongs to lcut(sy;u) from our construction. There-
fore, jointly, this contradicts the construction that e” is the most upstream edge of
(Lcut(sy;u)Nlcut(sg;u))U{es} since € <e”.

Now we argue that GCD(mag, me.ev)=1. Suppose not. Since me ..~ is irreducible,
we must have € € lcut(se;d;) and thus e;, < €. Choose arbitrarily a path from
s; to €. Since we have already established e} < e} and e} is the most upstream
edge of Dy, there exists a path Pyail(er) from sy to tail(e]) not using e}. Since e}
is also in Ds, head(e}) can reach ds. Note that the chosen path Py, tail(ery must use
¢’ since €' € lcut(sy;ds). As a result, s; can reach ds by going to €’ first, and then
following Pi,tail(e;) to €7, and then going to d3, without using e3. This contradicts the

assumption that e} € lcut(sy;ds).
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Now we argue that GCD(mia, meer) = 1. Suppose not. Since merer is irre-
ducible, we must have e” € lcut(sy;ds). Since we have established = G41 (i.e.,
ey & leut(sy;dy)), we only need to consider the case when e¢” < ej. Then by con-
struction there exists as;-to-dapath Pio going through e” but not ej. However, since
by construction e” is reachable from ss3, there exists a path from sz to €” first and
then use Pjy to arrive at dy. Such ass-to-dypath does not use ej, which contradicts
the assumption that e} € S5 C leut(ss; do).

Now we argue that GCD(myy, me..r)=1. Suppose not. Since me ..~ is irreducible,
we must have e’ € leut(sy;dy). Since = G37 is true (i.e., €} & lcut(sy;dy)), we only
need to consider the case when e” < e}. Then by construction there exists as;-to-dipath
Py going through €” but not €. However, since by construction e” is reachable from
s3, there exists a path from s3 to €” first and then use Pj; to arrive at d;. Such ass-to-d;
path does not use €%, which contradicts the assumption that e € S3 C lcut(ss; dy).

The four statements in the previous paragraphs shows that
GCD( mM11M12M923M31, m6/;611> =1.

This, however, contradicts the assumption that D4 is true since we have shown

that mes..» is a factor of my3. The proof of R47 is thus complete. [

N.9.7 Proof of R30

If we swap the roles of s; and s3, and the roles of dy and d3, then the proof of
R29 in Appendix N.9.6 can be directly applied to show R30. More specifically, note
that both D3 and D4 are converted back and forth from each other when swapping
the flow indices. Similarly, the index swapping also converts G27 to G28 and vice
versa. Since LNR, G1, and EO remain the same after swapping the flow indices, we
can see that R29 becomes R30 after swapping the flow indices. The proofs of R29
in Appendix N.9.6 can thus be used to prove R30.
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