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Abstract—This work studies the capacity region when three
nodes{1, 2, 3} communicate with each other by sending packets
through unreliable wireless medium. For each time slot, with
some probabilities a packet sent by nodei may be received by
both of the other nodesj and k; received only by nodej (or
node k); or received by neither node. Interference is avoided
by enforcing that at most one node can transmit in each time
slot. We assume that nodei can always reach nodej, possibly
with the help of the third node k, for any i 6= j pairs (thus the
term fully-connected). One notable example of this model isany
CSMA-based Wi-Fi network with 3 nodes within the hearing
range of each other.

We consider the most general traffic demands possible in this
setting. Namely, there are six private-information flows with rates
(R1→2, R1→3, R2→1, R2→3, R3→1, R3→2), respectively, and three
common-information flows with rates (R1→23, R2→31, R3→12),
respectively. We characterize the9-dimensional Shannon capacity
region within a gap that is inversely proportional to the packet
size (bits). The gap can be attributed to exchanging reception
status (ACK/NACK) and can be further reduced to zero if we
allow such feedbacks to be transmitted via a separate control
channel. For normal-sized packets, say12000 bits, our results
effectively characterize the capacity region for many important
scenarios, e.g., wireless access-point networks with client-to-client
cooperative communications, and wireless2-way relay networks
with packet-level coding and processing. Technical contributions
of this work include a new converse for many-to-many network
communications and a new capacity-approaching scheme based
on simple linear network coding operations.

Index Terms—Packet Erasure Networks, Packet Erasure
Channels, Channel Capacity, Network Coding

I. I NTRODUCTION

One of the driving forces that enable high-rate, ubiquitous
network communications is the continuous development of
Network Information Theory (NIT), which characterizes how
much information one can possibly send through a network
reliably and thus provides guidance on how to design high-
performance (optimal or near optimal) practical network pro-
tocols. One notable example in the recent NIT development
is the emergence of Linear Network coding (LNC) as a
promising technique in modern communication networks. For
the single-multicast traffic, it is well known that LNC strictly
outperforms non-coding solutions and can achieve the capacity
for error-free networks[1] and random erasure networks
[2]. Recent wireless testbeds [3], [4] have also demonstrated
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Fig. 1: Illustrations of the3-node Packet Erasure Network in
this work: (a) There are nine co-existing flows possible in
general.

that LNC can provide substantial throughput gains over the
traditional 802.11 protocols in a practical environment.

Despite the above promising results, our NIT understanding
is still nascent for networks with general traffic patterns.
When there are only2 nodes in the network with two co-
existing information flows of opposite directions, Shannon
[5] provided the first inner and outer bound pair for this
simple scenario. The setting of Shannon’s work was later
generalized under the names of the3-terminal communication
channels [6] and the discrete memoryless network channel [7].
For arbitrary traffic patterns, the simple cut-set outer bound
[8, Section 15.10] is often used, which in general is not
tight. Despite the continuous development of the cut-set-based
bounding techniques, e.g., [9] for the deterministic networks
and [10] for general noisy networks, finding the capacity
region for networks of general topology and traffic patterns
is still an open problem.

There are at least two difficulties when finding the capacity
of network communications. Firstly, the information transfer
from node A to node B may alter the channel of another
transmission. For example, due to the lack of full-duplex
hardware, transmission from node B to node A may be
completely impossible when node A is sending information to
node B. Such a dependence among the point-to-point channels
within a network was succinctly characterized by the2-way
model in [5]. Secondly, if there are multiple co-existing flows
in a multi-hop network that go in different directions, then
each node sometimes has to assume different roles (say, being
a sender and/or being a relay) simultaneously. An optimal
solution thus needs to balance the roles of each node either
through scheduling [11], [12] or through ingenious ways of
coding and cooperation [7], [13]. Also see the discussion in
[6] for the very detailed case studies for a simple3-node
network. Due to the inherent hardness of the problem, the
network capacity region is known only for some scenarios,
most of which involve only1-hop transmissions, say broadcast
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channels or multiple access channels, and/or with all co-
existing flows in parallel directions (i.e., flows not forming
cycles). As will be seen later, our capacity results consider
multi-hop transmission with flows in arbitrary directions.

In this work, we study the3-node network, Fig. 1(a), with
the most general traffic requirements. Namely, there are six
co-existing private-information flows with rates(R1→2, R1→3,

R2→1, R2→3, R3→1, R3→2), respectively, in all possible di-
rections; and there are three co-existing common-information
flows with rates(R1→23, R2→31, R3→12), respectively, from
a node to the other two nodes. We are interested in char-
acterizing the corresponding 9-dimensional Shannon capacity
region. To simplify the analysis, we consider a simple but
non-trivial noisy channel model, the random packet erasure
network (PEN). That is, each node is associated with its own
broadcast packet erasure channel (PEC) such that each node
can choose a symbolX ∈ Fq from some finite fieldFq,
transmits the symbolX , and a random subset of the other two
nodes will receive the symbol, see Fig. 1(b). The symbolX

is sometimes called a packet of sizelog2(q) bits. We assume
time-sharing among all three nodes so that interference is fully
avoided. In this way, we can concentrate on the topological
effects and the broadcast-channel diversity gain within the
network.

Specifically, we consider one of the following two scenarios.
Scenario 1: Motivated by the throughput benefit of the causal
packet ACKnowledgment feedback for erasure networks [11],
[12], [14]–[24], in this scenario we assume that the reception
status is causally available to the entire network after each
packet transmission through a separate control channel for
free. Such assumption can be justified by the fact that the
length of ACK/NACK is 1 bit, much smaller than the size of
a regular packet.

Scenario 2: In this scenario we assume that there is no
inherent feedback mechanism. Any ACK/NACK signal, if
there is any, has to be sent through the regular forward
channels along with information messages. As a result, any
achievability scheme needs to balance the amount of informa-
tion and control messages. For example, suppose a particular
coding scheme chooses to divide the transmitted packetX

into the header and the payload. Then it needs to carefully
decide what the content of the control information would be
and how many bits the header should have to accommodate the
control information. The timeliness of delivering the control
messages is also critical since the control information, sent
through the forward erasure channel, may get lost as well.
Therefore, some critical control information may not arrive in
time. Such a setting in Scenario 2 is much closer to practice
as it considers the complexity/delay overhead of the coding
solution. In Scenario 2, we also assume that the3-node PEN
is fully-connected, i.e, nodei can always reach nodej, possibly
with the help of the third nodek, for any i 6= j pairs.
The formal definition of fully-connectedness is provided in
Definition 2 of Section III-B. Note thatthe fully-connectedness
is assumed only in Scenario 2. When the causal reception
status is available for free (Scenario 1), our results do not
need the fully-connectedness assumption.

The main contributions can be summarized as follows. We
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Fig. 2: Special examples of the3-node Packet Erasure Network
(PEN) considered in this work. The rectangle implies the
broadcast packet erasure channel (PEC).

first characterize the exact9-dimensional Shannon capacity
region for Scenario 1 when the causal ACK/NACK feedbacks
are immediately available for free through a separate control
channel. For the more practical setting of Scenario 2 where the
control messages have to be sent through the forward erasure
channel, the capacity for the fully-connected3-node PEN is
then characterized with a gap inversely proportional tolog2(q).
This gap is due to the need of exchanging the reception status
(ACK/NACK) within the network. The technical contributions
of this work include a new converse for many-to-many net-
work communications and a new capacity-approaching scheme
based on simple LNC operations.

It is worth noting that the considered3-node PEN contains
many important practical and theoretically interesting scenar-
ios as sub-cases.Example 1: If we set the broadcast PECs
of nodes2 and 3 to be always erasure (i.e., neither nodes
can transmit anything), then Fig. 1(b) collapses to Fig. 2(a),
the 2-receiver broadcast PEC scenario. The capacity region
(R1→2, R1→3, R1→23) derived in our Scenario 1 is identical
to the existing results in [14], [18].Example 2: Instead of
setting the PECs of nodes2 and3 to all erasure, we setR2→1,
R2→3, R3→1, R3→2, R2→31, R3→12 to be zeros. Namely, we
still allow nodes2 and3 to transmit but there is no information
message emanating from nodes2 and3. In this case, node2
can potentially be a relay that helps forwarding those node-1

packets destined for node3 and node3 can be a relay for
flow 1 → 2, see Fig. 2(b). This work then characterizes the
Shannon capacity1(R1→2, R1→3, R1→23) of a broadcast PEC
with receiver coordination.

Example 3: If we setR1→2, R2→1, R2→3, R3→2, R1→23,
R2→31, R3→12 to be zeros and prohibit any direct commu-
nication between nodes1 and 3, Fig. 1(b) now collapses to
Fig. 2(c), in which node2 is a two-way relay for unicast
flows 1 → 3 and 3 → 1. The results in this work thus
characterizes the Shannon capacity region(R1→3, R3→1) of
this two-way relay network Fig. 2(c), which is identical to
the existing result in [25].Example 4: If we additionally
allow direct communication between nodes1 and3, Fig. 1(b)

1In [11], the LNC capacity of Fig. 2(b) was characterized, butthe most
general Shannon capacity region was unknown in [11].
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now collapses to Fig. 2(d). Namely, when node1 is sending
packets to the relay node2, the packets might be overheard
directly by the destination node3. If indeed node3 overhears
the communication, then node1 could inform node2 oppor-
tunistically that there is no need to forward that packet to
node3 anymore. Such a scheme is calledopportunistic routing
and testbed implementation [4] has shown that opportunistic
routing can potentially improve the throughput by20x. The
results in this work thus characterize the Shannon capacity
region (R1→3, R3→1) of Fig. 2(d), which allows for the
possibility of both opportunistic routing and two-way-relay
coding. The Shannon capacity region computed by this work
again matches the existing result in [12].

In summary, most existing works on packet erasure net-
works have studied either≤ 2 co-existing flows [3], [4],
[11], [12], [14], [19] or all flows originating from the same
node [11], [16], [20], [21], [23], [26], [27]. By characterizing
the most general9-dimensional Shannon capacity region with
arbitrary flow directions, this work significantly improvesour
understanding for communications over the3-node PEN.

The rest of the paper is organized as follows. Section II
formulates the problem. The main results of this work are the
general9-dimensional Shannon capacity region and the cor-
responding capacity-approaching simple LNC scheme, which
are presented in Section III. Section IV applies our results
to some important practical scenarios, numerically evaluates
the capacity region, and compares them with some existing
suboptimal solutions. Section V provides the detailed intuition
and a new converse proof for the Shannon capacity outer
bound. The details of our simple LNC achievability scheme
are provided in Section VI. Finally, Section VII discusses some
interference models and Section VIII concludes the paper.

II. PROBLEM FORMULATION

A. Broadcast Packet Erasure Channels

For any positive integerK, a 1-to-K broadcast packet
erasure channel (PEC) is defined as to take an inputX from
a finite fieldFq with size q > 0 and output aK-dimensional
vector Y = (Y1, Y2, · · · , YK). We assume that the input is
either received perfectly or completely erased, i.e., eachoutput
Yk must be either the inputX or an erasure symbolε, where
Yk = ε means that thek-th receiver does not correctly receive
the inputX . As a result, the reception status can be described
by a K-dimensional binary vectorZ = (Z1, Z2, · · · , ZK)
where Zk = 1 and ε represents whether thek-th receiver
successfully received the inputX or not, respectively. Any
given PEC can then be described by its distribution of the
binary reception statusZ.

B. Memoryless3-node Packet Erasure Network

Consider a network of three nearby nodes labeled as
{1, 2, 3}, see Fig. 1(a). For the ease of exposition, we will use
(i, j, k) to represent one of three cyclically shifted tuples of
node indices{(1, 2, 3), (2, 3, 1), (3, 1, 2)}. The 3-node Packet
Erasure Network (PEN) is then defined as the collection of
three separate1-to-2 broadcast PECs, each from nodei to the
other two nodesj andk for all i ∈ {1, 2, 3}, see Fig. 1(b).

The channel behaviors of the3-node PEN can be described
by the following definitions. For any time slott, we use a
6-dimensionalchannel output vectorZ(t) to represent the
reception status of the entire network:

Z(t) = (Z1→2(t), Z1→3(t),Z2→1(t), Z2→3(t),

Z3→1(t), Z3→2(t)) ∈ {1, ε}6,

whereZi→h(t) = 1 and ε represents whether nodeh can
receive the transmission from nodei or not, respectively.
We assume that the3-node PEN is memoryless and sta-
tionary,2 i.e., we allow arbitrary joint distribution for the6
coordinates ofZ(t) but assume thatZ(t1) and Z(t2) are
independently and identically distributed for anyt1 6= t2. We
use pi→jk , Prob(Zi→j(t) = 1, Zi→k(t) = 1) to denote
the probability that the packet transmitted from nodei is
successfully received by both nodesj and k; and usepi→jk

to denote the probabilityProb(Zi→j(t) = 1, Zi→k(t) = ε)
that node-i packet is successfully received by nodej but not
by nodek. Probabilitypi→jk is defined symmetrically. Define
pi→j∨k , pi→jk + pi→jk + pi→jk as the probability that at
least one of nodesj and k receives the packet, and define
pi→j , pi→jk +pi→jk (resp.pi→k , pi→jk + pi→jk) as the
marginal reception probability from nodei to nodej (resp.
nodek). We also assume that the random process{Z(t) : ∀t}
is independent of any information messages.

Assume synchronized time-slotted transmissions. To model
interference, we assume that only one node can successfully
transmit at each time slott ∈ {1, · · · , n}. If two or more
nodes happen to transmit in the same time slot, then both
transmissions will fail. More specifically, we define the fol-
lowing scheduling decisionbinary variableσi(t) for any node
i ∈ {1, 2, 3}. Namely,σi(t) = 1 represents that nodei decides
to transmit at timet andσi(t) = 0 represents not transmitting.
Any transmission is completely destroyed if there are two or
more nodes transmitting simultaneously. For example, suppose
node i decides to transmit a packetXi(t) ∈ Fq in time t

(thus σi(t) = 1). Then, only whenσj(t) = σk(t) = 0 can
nodei transmit without any interference. Moreover, only when
Zi→h(t) = 1 will node h 6= i receiveYi→h(t) = Xi(t).
In all other cases, nodeh receives an erasureYi→h(t) = ε.
We summarize this interference and erasure model by the
following definition.

Yi→h(t) =







Xi(t)
if σi(t) = 1, σj(t) = σk(t) = 0,

andZi→h(t) = 1
ε otherwise

(1)

C. Joint Scheduling and Network Coding Scheme Under Sce-
nario 2

Over the 3-node PEN described above, we consider the
following 9-dimensional traffic flows:6 private-information
flows with rates (R1→2, R1→3, R2→1, R2→3, R3→1, R3→2),
respectively; and3 common-information flows with rates
(R1→23, R2→31, R3→12), respectively. Namely,R1→23 repre-
sents the rate of the common-information message from node

2The 3-node PEN is a special case of the discrete memoryless network
channel [7].



4

1 to both nodes2 and3. We use~Ri∗ , (Ri→j , Ri→k, Ri→jk)
to denote the rates of all three3 flows originated from node
i, for all i ∈ {1, 2, 3}. We use a9-dimensional rate vector
~R , (~R1∗, ~R2∗, ~R3∗) to denote the rates of all possible flow
directions.

Within a total budget ofn time slots, nodei would like to
sendnRi→h packets (private-information messages), denoted
by a row vectorWi→h, to nodeh 6= i, and would like to send
nRi→jk packets (common-information messages), denoted by
a row vectorWi→jk, to the other two nodes simultaneously.
Namely, the unit of the rate vector~R is packets per time slot,
where each information message packet haslog2(q) bits and
is chosen independently and uniformly randomly from a finite
field Fq with sizeq > 1.

For the ease of exposition, we defineWi∗ , Wi→j∪Wi→k

∪Wi→jk as the collection of all messages originated from
node i. Similarly, we defineW∗i , Wj→i ∪ Wj→ki ∪
Wk→i ∪Wk→ij as the collection of all messages destined to
nodei. Sometimes we slightly abuse the above notation and
defineW{i,j}∗ , Wi∗ ∪ Wj∗ as the collection of messages
originated from either nodei or nodej. Similar “collection-
based” notation can also be applied to the received symbols
and we can thus defineY∗i(t) , {Yj→i(t), Yk→i(t)} and
Yi∗(t) , {Yi→j(t), Yi→k(t)} as the collection of all symbols
received and transmitted by nodei during timet, respectively.
For simplicity, we also use brackets[·]t1 to denote the collection
from time1 to t. For example,[Y∗i,Z]

t−1
1 is shorthand for the

collection{Yj→i(τ), Yk→i(τ),Z(τ) : ∀τ ∈ {1, · · · , t− 1}}.
Recall that two scenarios were discussed in Section I. That

is, causal ACK/NACK feedback can be transmitted for free in
Scenario 1 but has to go through the forward channel when in
Scenario 2. We first focus on the detailed formulation under
Scenario 2.

Given the rate vector~R, a joint scheduling and network
coding scheme is described by3n binary scheduling functions:
∀ t∈{1, · · · , n} and∀ i∈{1, 2, 3},

σi(t) = f
(t)
SCH, i([Y∗i]

t−1
1 ) (2)

plus3n encoding functions:∀ t∈{1, · · · , n} and∀ i∈{1, 2, 3},

Xi(t) = f
(t)
i (Wi∗, [Y∗i]

t−1
1 ), (3)

plus 3 decoding functions:∀ i ∈ {1, 2, 3},

Ŵ∗i = gi(Wi∗, [Y∗i]
n
1 ). (4)

To refrain from using the timing-channel3 techniques [28],
we also require the following equality

I([σ1, σ2, σ3]
n
1 ; W{1,2,3}∗) = 0, (5)

whereI(· ; ·) is the mutual information andW{1,2,3}∗ , W1∗

∪W2∗∪W3∗ is all the9-flow information messages as defined
earlier.

Intuitively, at every timet, each node decides whether to
transmit or not based on what it has received in the past,

3We believe that the use of timing channel techniques will notalter the
capacity region much when the packet size is large. One justification is that
the rate of the timing channel is at most 3 bits per slot, whichis negligible
compared to a normal packet size of12000 bits.

see (2). Note that the received symbols[Y∗i]
t−1
1 may contain

both the message information and the control information.
(5) ensures that the “timing” of the transmissionσi(t) cannot
be used to carry4 the message information. Once each node
decides whether to transmit or not, it encodesXi(t) based on
its information messages and what it has received from other
nodes in the past, see (3). In the end of timen, each node
decodes its desired packets based on its information messages
and what it has received, see (4).

We can now define the capacity region.

Definition 1. Fix the distribution ofZ(t) and finite fieldFq.
A 9-dimensional rate vector~R is achievable if for anyǫ >

0 there exists a joint scheduling and network code scheme
with sufficiently largen such thatProb(Ŵ∗i 6= W∗i) < ǫ

for all i ∈ {1, 2, 3}. The capacity region is the closure of all
achievable~R.

D. Comparison between Scenarios 1 and 2

The previous formulation focuses on Scenario 2. The dif-
ference between Scenarios 1 and 2 is that the former allows
the use of causal ACK/NACK feedbacks for free. As a result,
for Scenario 1, we simply need to insert thecausalnetwork-
wide channel status information[Z]t−1

1 in the input arguments
of (2) and (3), respectively; and insert theoverall network-
wide channels status information[Z]n1 in the input argument
of (4). The formulation of Scenario 1 thus becomes as follows:
∀ t∈{1, · · · , n} and∀ i∈{1, 2, 3},

σi(t) = f
(t)

SCH, i([Y∗i,Z]
t−1
1 ), (6)

Xi(t) = f
(t)

i (Wi∗, [Y∗i,Z]
t−1
1 ), (7)

Ŵ∗i = gi(Wi∗, [Y∗i,Z]
n
1 ), (8)

while we still impose no-timing channel information (5).
Obviously, with more information to use, the capacity region
under Scenario 1 is a superset of that of Scenario 2, which
is why we use overlines in the above function descriptions.
Following this observation, we will outer bound the (larger)
capacity of Scenario 1 and inner bound the (smaller) capacity
of Scenario 2 in the subsequent sections.

Without loss of generality, we can further replace the dis-
tributed scheduling computation in (6) (each nodei computes
its own scheduling) by the following centralized scheduling
function

σ(t) = f
(t)

SCH([Z]
t−1
1 ) ∈ {1, 2, 3}, (9)

4For example, one (not necessarily optimal) way to encode is to divide
a packetXi(t) into the header and the payload. The messagesWi∗ will
be embedded in the payload while the header contains controlinformation
such as ACK. If this is indeed the way we encode, then (5) requires that
transmit decision depend only on the control information inthe header, not the
messages in the payload. Note that the control information does not necessarily
need to be ACK. For example, a scheme may choose to transmit the current
queue lengths instead of ACK and uses only the queue lengths to decide
whether a node should transmit or not. If that is the case, thescheme will
then put the queue lengths of other nodes in the header of the packets sent to
nodei, those[Y∗i]

t−1
1 packets. Nodei will decide whether to transmit or not

based only on the queue length information it receives. Since the evolution
of the queue lengths are independent from the message symbols, the mutual
information condition (5) will hold naturally.
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that takes the values in the set of three nodes{1, 2, 3}. That
is, σ(t) = i implies that only nodei is scheduled to transmit
in time t.

To prove why we can replace (6) by (9) without loss of
generality, we first introduce the following lemma.

Lemma1. Without loss of generality, we can replace (6) by
the following form:

σi(t) = f
(t)

SCH, i([Z]
t−1
1 ), (10)

which is still a binary scheduling function but the input
argument[Y∗i]

t−1
1 in (6) is removed.

The proof of Lemma 1 is relegated to Appendix A. The
intuition behind the proof is to show that since the information
equality (5) must hold, knowing the past reception status
[Z]t−1

1 is sufficient for the scheduling purpose.
Lemma 1 ensures that we can replace the scheduling deci-

sion (6) of each individual nodei by (10). We then observe that
every nodei makes its scheduling decision based on the same
input argument[Z]t−1

1 , which, in Scenario 1, is available to all
three nodes for free via a separate control channel. Therefore,
it is as if there is a centralized scheduler in Scenario 1 and
the centralized scheduler will never induce any scheduling
conflict. As a result, we can further replace the individual
scheduler (10) by a centralized global scheduling function(9)
whereσ(t) = i implies that nodei is the only scheduled node
in time t.

In summary, under Scenario 1, the joint network coding and
scheduling solution is described by (7), (8), and (9). Here we
do not impose (5) anymore since the centralized scheduler (9)
satisfies (5) naturally.

III. M AIN RESULTS

The main results can be summarized as follows. We will
first provide the capacity outer bound of the3-node PEN
of Scenario 1 in Section III-A. The capacity-achieving LNC
scheme of Scenario 1 and the similar capacity-approaching
inner bound of Scenario 2 are provided in Section III-B.

A. Capacity outer bound of3-node Packet Erasure Network

Proposition1. For any fixedFq, a 9-dimensional~R is achiev-
able under Scenario 1 only if there exist3 non-negative
variabless(i) for all i ∈ {1, 2, 3} such that jointly they satisfy
the following three groups of linear conditions:

• Group 1, termed thetime-sharing condition, has 1 inequality:
∑

∀ i∈{1,2,3}

s(i) ≤ 1. (11)

• Group 2, termed thebroadcast cut-set condition, has 3
inequalities: For alli ∈ {1, 2, 3},

Ri→j +Ri→k +Ri→jk ≤ s(i) · pi→j∨k. (12)

• Group 3, termed the3-way multiple-access cut-set condition,
has 3 inequalities: For alli ∈ {1, 2, 3},

Rj→i +Rj→ki +Rk→i +Rk→ij ≤ s(j) · pj→i + s(k) · pk→i

−
(

pj→i

pj→k∨i

Rj→k +
pk→i

pk→i∨j

Rk→j

)

. (13)

Proposition 1 considers arbitrary, possibly non-linear ways
of designing the encoding/decoding and scheduling functions
in (7), (8), and (9), and is derived by entropy-based analysis.
Proposition 1 can also be viewed as strict generalization of
the results of the simpler settings [16], [20].

The brief intuitions behind (11) to (13) are as follows. Each
variables(i) counts the expected frequency (normalized over
the time budgetn) that nodei is scheduled for successful
transmissions. As a result, (11) holds naturally. (12) is a
simple cut-set condition for broadcasting from nodei. One
main contribution of this work is the derivation of the new
3-way multiple-access outer bound in (13). The LHS of (13)
contains all the information destined for nodei. The term
s(j)pj→i+s(k)pk→i on the RHS of (13) is the amount of time
slots that either nodej or nodek can communicate with node
i. As a result, it resembles a multiple-access cut condition of
a typical cut-set argument [8, Section 15.10]. What is special
in our setting is that, since nodej may have some private-
information for nodek and vice versa, sending those private-
information has a penalty on the multiple access channel from
nodes{j, k} to node i. The last term on the RHS of (13)
quantifies such penalty that is inevitable regardless of what
kind of coding schemes being used. The proof of Proposition 1
and the detailed discussions are relegated to Section V.

Remark: In addition to having a new penalty term on
the RHS of (13), the3-way multiple-access cut-set condition
(13) is surprising, not because it upper bounds thecombined
information-flow ratefrom nodes{j, k} entering nodei but
because, unlike the traditional multiple-access upper bounds,
we do not need to upper bound the individual rate from node
j (resp.k) to nodei.

More specifically, a traditional multi-access channel capac-
ity result will also upper bound the rateRj→i + Rj→ki by
considering the cut from nodej to nodei (ignoring nodek
completely). If we follow the above logic and write down
naively the “cut condition” from nodej to i, then we will
have

Rj→i +Rj→ki ≤ s(j) · pj→i −
pj→i

pj→k∨i

Rj→k. (14)

whereRj→i +Rj→ki is the rate from nodesj to i, s(j) ·pj→i

is the successful time slots, andpj→i

pj→k∨i
Rj→k is the penalty

term. One might expect that (14) is also a legitimate outer
bound. It turns out that (14) is not an outer bound and one
can find some LNC solution that contradicts (14).

The reason why (14) is false is as follows. TheWj→i

packets may not necessarily go directly from nodej to nodei
and it is possible that nodek can also help relay those packets.
As a result, how frequently nodek is scheduled can also affect
the number ofWj→i packets that one can hope to deliver from
nodej to nodei. Since (14) does not involves(k), it does not
consider the possibility of nodek relaying the packets for
nodej. In contrast, our outer bound (13) indeed captures such
a subtle but critical phenomenon by grouping allRj→i, Rk→i,
Rj→ki, Rk→ij , Rj→k, andRk→j as a whole and upper bounds
it with the (weighted) sum of scheduling frequencies of nodes
j andk.



6

B. A Capacity Approaching LNC Scheme

Scenario 2 requires the network to be fully-connected,
which is defined as follows.

Definition 2. In Scenario 2, we assume the3-node PEN
is fully-connected in the sense that the given channel
reception probabilities satisfy eitherpi1→i2 > 0 or
min(pi1→i3 , pi3→i2) > 0 for all distinct i1, i2, i3 ∈ {1, 2, 3}.

Namely, nodei1 must be able to communicate with node
i2 either through the direct communication (i.e.,pi1→i2 > 0)
or through relaying (i.e.,min(pi1→i3 , pi3→i2) > 0). Note that
in Scenario 2, the control messages have to be sent through
the regular forward channel as well. The fully-connectedness
assumption guarantees that feedback/control informationcan
be sent successfully from one node to any other node, either
directly or through the help of another node.

We also need the following new math operator.

Definition 3. For any 2 non-negative valuesa and b, the
operator nzmin{a, b}, standing for non-zero minimum, is
defined as:

nzmin{a, b} =

{

max(a, b) if min(a, b) = 0,

min(a, b) if min(a, b) 6= 0.

Intuitively, nzmin{a, b} is the minimum of the strictly positive
entries.

Proposition2. For any fixedFq, a 9-dimensional~R is LNC-
achievable in Scenario 2 if there exist15 non-negative vari-
ablest(i)[u] and{t(i)[c, l]}4l=1 for all i ∈ {1, 2, 3} such that jointly
they satisfy the following three groups of linear conditions:

• Group 1, termed thetime-sharing condition, has 1 inequality:
∑

∀ i∈{1,2,3}

t
(i)
[u] + t

(i)
[c,1] + t

(i)
[c,2] + t

(i)
[c,3] + t

(i)
[c,4] ≤ 1− tFB, (15)

wheretFB is a constant defined as

tFB ,
∑

∀ i∈{1,2,3}

3

log2(q) · nzmin{pi→j , pi→k}
. (16)

• Group 2 has 3 inequalities: For all(i, j, k) ∈ {(1, 2, 3),
(2, 3, 1), (3, 1, 2)},

Ri→j +Ri→k +Ri→jk < t
(i)
[u] · pi→j∨k. (17)

• Group 3 has 6 inequalities: For all(i, j, k) ∈ {(1, 2, 3),
(2, 3, 1), (3, 1, 2)},
(

Ri→j +Ri→jk

) pi→jk

pi→j∨k

<
(

t
(i)
[c,1] + t

(i)
[c,3]

)

· pi→j

+
(

t
(k)
[c,2] + t

(k)
[c,3]

)

· pk→j ,

(18)

(

Ri→k +Ri→jk

) pi→jk

pi→j∨k

<
(

t
(i)
[c,1] + t

(i)
[c,4]

)

· pi→k+

+
(

t
(j)
[c,2] + t

(j)
[c,4]

)

· pj→k.

(19)

Proposition3. Continue from Proposition 2. If we focus on
Scenario 1 instead, then the rate vector~R is LNC-achievable
if there exist15 non-negative variablest(i)[u] and{t(i)[c, l]}4l=1 for
all i ∈ {1, 2, 3} such that (15), (17) to (19) hold while we set
tFB = 0 in (16).

In short, the constant termtFB in (16) quantifies the
overhead of sending the ACK/NACK feedbacks through the
forward erasure channel in Scenario 2 and can be set to0 in
Scenario 1.

Since both the outer bound and the achievable regions can
be computed by an LP solver, one can numerically verify
that for all possible channel parameters, the rate regions of
Propositions 1 and 3 of Scenario 1 always match. We can
actually prove this observation by analyzing the underlying
linear algebraic structures of the two LP problems.

Proposition 4. The outer bound in Proposition 1
and the closure of the achievable region in
Proposition 3 match for all possible channel parameters
{pi→jk, pi→jk, pi→jk : ∀(i, j, k)}. They thus describe the
corresponding9-dimensional Shannon capacity region under
Scenario 1.

From the above discussions, one can see that even for the
more practical Scenario 2, in which there is no dedicated
feedback control channels, Proposition 2 is indeed capacity-
approaching when the3-node PEN is fully-connected. The
gap to the outer bound is inversely proportional tolog2(q)
and diminishes to zero if the packet sizelog2(q) (bits) is
large enough. In real life, the actual payload of each packet
is roughly 104 bits and the gap is thus negligible unless the
reception probabilitiespi→j or pi→k is extremely small.

The proof of Proposition 3, i.e., an achievability scheme for
the simpler case of publicly available feedback (Scenario 1),
is provided in Section VI. When causal feedback is not freely
available (Scenario 2), Proposition 2 needs a scheme that
handles when and how to send the control information through
the forward erasure channel. Such a scheme is provided and
analyzed in Appendix B. This scheme can be viewed as a strict
generalization for the simpler scheme in Section VI. The proof
of Proposition 4 is relegated to Appendix E.

C. Comments On The Finite Size And The Fully-Connected-
ness Assumption

We note that when the finite field sizeFq is small, the gap
between the outer bound in Proposition 1 and the inner bound
in Proposition 2 can still be substantial. We believe that inthe
smallFq regime, the inner bound can be further improved. The
reason is that, as will be seen in Appendix B, the bound in
Proposition 2 is obtained by analyzing a scheme that transmits
the feedback information in a very crude way. Namely, it first
converts the feedback information into a binary vector and
then send the entire vector to all nodes. This provides more
than enough information for each node. Although the penalty
of such scheme is negligible whenq is large, a better design
could significantly reduce the amount of information necessary
for smallq value. For example, whenq is extremely small, say
q = 2, then each packet contains onlylog2(q) = 1 bit. Then
after sending each packet (each bit), our scheme will then
spend a roughly equal amount of time slots to send feedback
(also 1 bit) for the 1-bit packet. In the end, roughly half of
its resources is on sending feedback information, which is
clearly suboptimal since even without feedback we can achieve
a substantial throughput rate simply by using traditional MDS
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codes. The (near-) optimal code design for smallq is beyond
the scope of this work.

We close this section by discussing some degenerate sce-
narios and the related fully-connectedness assumption. We
first consider Scenario 1, which does not require the fully-
connected assumption. It is possible that in Scenario 1, we
havepi→j∨k = 0 for some(i, j, k), which implies that (18)
and (19) being undefined. However, whenpi→j∨k = 0, it is
simply impossible to send any messages out of nodei. As a
result, we can replace the (undefined) (18) and (19) by a hard
conditionRi→j = Ri→k = Ri→jk = 0. Proposition 4 still
holds after such a simple revision.

We now consider Scenario 2. We note that Proposition 2
holds only when the network is fully-connected. Actually,
when the network is not fully-connected, the denominator
of (16) may be zero and (16) becomes undefined. When
the network isnot fully-connected, it is an interesting open
problem what the actual capacity region is going to be.
Specifically, the outer bound (Proposition 1) still holds even
when the network is not fully-connected. However, there are
reasons to believe that the outer bound is not tight anymore.
For example, supposep2→3∨1 = 0, i.e., the PEC from node2
is completely erasure, there is no dedicated control channel,
and any feedback has to be sent through the forward channel,
i.e., Scenario 2 but being not fully-connected. In this example,
node2 is completely “in the dark”. Note that being in the dark
does not mean that we cannot send messages to node2. For
example, we can use an MDS code to send messages from
nodes1 to node2. When the MDS code rate is slightly lower
than the success probabilityp1→2, then node2 can receive the
correct messages with high probability without sending any
ACK. However, when node2 is in the dark, neither node1
nor node3 can be made aware of the reception status of node
2. Therefore, the classic network coding techniques in [16] do
not apply in this scenario. How to characterize the Shannon
capacity region when some node is in the dark is beyond the
scope of this work and will be actively investigated in the
future.

Remark: The above “asymmetric” feedback scenario is
theoretically interesting. In practice, the PEC is usuallyused
to model network communications, for which ACK is often
required for any transmission and also necessary for the
purpose of channel estimation. Therefore, ifp2→3∨1 = 0
and node2 is in the dark, then nodes1 and 3 will give up
communicating to node2 immediately due to the lack of any
ACK feedback. The aforementioned MDS code approach will
not be used when node2 cannot acknowledge the transmission
in any way.

IV. SPECIAL EXAMPLES AND NUMERICAL EVALUATION

In the following, we apply Propositions 1 and 3 to the four
special examples discussed in Section I. We also numerically
evaluate the 9-dimensional capacity region for some specific
channel parameter values.

A. Example 1: The Simplest1-to-2 Broadcast PEC

Consider the simplest setting of a1-to-2 broadcast PEC
with 2 private-information flows of ratesR1→2 and R1→3,

and1 common-information flow of rateR1→23. See Fig. 2(a)
for illustration. In this scenario, we assume that only
node 1 can transmit and nodes2 and 3 can only listen
and send ACK/NACK feedback after each packet trans-
mission. This simple 1-to-2 broadcast PEC can be viewed
as a special example of the general problem by setting
p2→3∨1 = p3→1∨2 = 0, and by hardwiring the unused rates
{R2→1, R2→3, R3→1, R3→2} and {R2→31, R3→12} to zeros.
One can thus use Proposition 1 to compute the3-dimensional
capacity region(R1→2, R1→3, R1→23) of the1-to-2 broadcast
PEC. More explicitly, by settings(1) = 1 ands(2) = s(3) = 0,
(13) with i = 2 leads to the following (20) and (13) withi = 3

leads to the following (21):

R1→2 +R1→23 ≤ p1→2 −
p1→2

p1→2∨3

R1→3, (20)

R1→3 +R1→23 ≤ p1→3 −
p1→3

p1→2∨3

R1→2. (21)

As expected, the capacity region(R1→2, R1→3, R1→23)
described by (20) and (21) is identical to the existing1-to-
2 broadcast PEC capacity results in [14].

B. Example 2: The1-to-2 Broadcast PEC With Receiver
Coordination

Another special example is the1-to-2 broadcast PEC with
receiver coordination, see Fig. 2(b). In this scenario, node 1

still likes to communicate and send3 flows to nodes2 and
3 with rates(R1→2, R1→3, R1→23). However, we allow nodes
2 and 3 to communicate with each other with the constraint
that whenever node2 (or node3) transmits, node1 has to
remain silent. The communication between nodes2 and3 can
be used either to relay some overheard packets to the intended
destination, or to send carefully designed coded packets that
can further enhance the throughput.

Similar to the previous example, such a scenario is a
special case of the general problem by settingp2→1 =
p3→1 = 0, and by hardwiring{R2→1, R2→3, R3→1, R3→2}
and{R2→31, R3→12} to zeros. We can again use Proposition 1
to compute the capacity region(R1→2, R1→3, R1→23) of the
1-to-2 broadcast PEC with receiver coordination:

∑

∀ i∈{1,2,3}

s(i) ≤ 1, (22)

R1→2 +R1→3 +R1→23 ≤ s(1) · p1→2∨3, (23)

R1→2 +R1→23 +
p1→2

p1→2∨3

R1→3 ≤ s(3) · p3→2 + s(1) · p1→2,

(24)

R1→3 +R1→23 +
p1→3

p1→2∨3

R1→2 ≤ s(1) · p1→3 + s(2) · p2→3,

(25)

where (22) follows from (11); (23) follows from (12); and (24)
and (25) follow from (13).

Compared to the existing work [11], our results have char-
acterized the more general Shannon capacity region insteadof
linear capacity region while also considering the possibility of
co-existing common-information rateR1→23.
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C. Example 3: The Two-way Relay PEC

Another example is the two-way relay PEC as described
in Fig. 2(c). Namely, nodes1 and 3 want to communi-
cate with each other with rates(R1→3, R3→1), respectively.
The communication must be achieved via a relaying node
2. Such a scenario is a special case of the general prob-
lem by simply hardwiring{R1→2, R2→1, R2→3, R3→2} and
{R1→23, R2→31, R3→12} to zeros. We can again use Proposi-
tion 1 to compute the capacity region(R1→3, R3→1):

∑

∀ i∈{1,2,3}

s(i) ≤ 1, (26)

R1→3 ≤ s(1) · p1→2, R3→1 ≤ s(3) · p3→2, (27)

R1→3 ≤ s(2) · p2→3, R3→1 ≤ s(2) · p2→1, (28)

where (26) and (27) follow from (11) and (12), respectively,
and (28) follows from (13). One can easily verify that the
capacity region described by (26) to (28) matches the existing
results in [25].

D. Example 4: The Two-way Relay PEC with Opportunistic
Routing

For the same setting as inExample 3but allowing the direct
communications between node1 and node3, see Fig. 2(d), we
can also use Proposition 1 to compute the two-way relay PEC
capacity region(R1→3, R3→1) with opportunistic routing:

∑

∀ i∈{1,2,3}

s(i) ≤ 1, (29)

R1→3 ≤ s(1)p1→2∨3, R3→1 ≤ s(3)p3→1∨2, (30)

R1→3 ≤ s(1)p1→3 + s(2)p2→3, (31)

R3→1 ≤ s(2)p2→1 + s(3)p3→1. (32)

One can verify that the capacity region described by (29) to
(32) matches the existing results in [12].

E. Numerical Evaluation

Consider a3-node network with marginal channel success
probabilities p1→2 = 0.35, p1→3 = 0.8, p2→1 = 0.6,
p2→3 = 0.5, p3→1 = 0.3, and p3→2 = 0.75, respectively,
and we assume that all the erasure events are independent.
That is, pi→j∨k = 1 − (1 − pi→j)(1 − pi→k). To illustrate

the9-dimensional capacity region, we further assume that the
following 3 flows are of the same rateR1→2 = R1→3 =
R1→23 = Ra and the other6 flows are of rateR2→1 =
R2→3 = R3→1 = R3→2 = R2→31 = R3→12 = Rb. We will
use Proposition 1 to find the largestRa andRb value for this
example scenario.

Fig. 3 compares the Shannon capacity region of(Ra, Rb)
with different achievability schemes. The smallest rate region
is achieved by simply performing uncoded direct transmission.
The second achievability scheme combines the broadcast chan-
nel LNC in [14] with time-sharing among all three nodes. The
third scheme performs two-way relay channel (TWRC) coding
in node1 for those3 → 2 and 2 → 3 flows while allowing
node2 to relay the node1’s packets destined for node3 and
vice versa. The fourth scheme is derived from our achievability
scheme in the proof of Proposition 3 except when we impose
the restriction that the scheme can only use LNC choices that
were known previously. Namely, we allow all three nodes to
perform the broadcast-based LNC and/or TWRC-based LNC
operations (coding choices [c,1] and [c,2] in Stage 2) but
not the hybrid operations (coding choices [c,3] and [c,4])
proposed in this work. One can see that the result is strictly
suboptimal. It shows that the proposed hybrid operations are
critical for achieving the Shannon capacity in Propositions 1
and 3. The detailed rate region description of each sub-optimal
achievability scheme is described in Appendix C.

V. PROOF OFPROPOSITION1

We now prove the capacity outer bound in Proposition 1.
Given any reception probabilities and anyǫ > 0, consider a
joint network coding and scheduling scheme (7), (8), and (9)
that can send9 flows with rates~R in n time slots with the
overall error probability no larger thanǫ. Based on the given
scheme, defines(i) as the normalized expected number of time
slots for which nodei is scheduled. That is,

s(i) ,
1

n
E

{

n
∑

t=1

1{σ(t)=i}

}

, (33)

where1{·} is the indicator function. By the above definition,
the computed scheduling frequencies{s(1), s(2), s(3)} must
satisfy the time-sharing condition (11).

We will now prove (12) and (13) of Proposition 1. To that
end, we assume that the logarithm of the mutual information
and the entropy is of baseq, the order of the underlying finite
field Fq. For the case when the logarithm of the entropy is
base-2, we will distinguish it by usingH2(·).

A. Proof of the broadcast cut-set condition (12)

The inequality (12) can be proven by proving the following
two inequalities separately:

I(Wi∗ ; [Y∗j ,Y∗k]
n
1 |W{j,k}∗, [Z]

n
1 )

≥ n

(

Ri→j +Ri→k +Ri→jk − 2ǫ− H2(2ǫ)

n log2 q

)

, (12A)

I(Wi∗ ; [Y∗j ,Y∗k]
n
1 |W{j,k}∗, [Z]

n
1 ) ≤ ns(i)pi→j∨k. (12B)
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Intuitively, (12A) follows from the Fano’s inequality and
(12B) follows from a simple cut condition. By choosingǫ → 0,
we have proven (12).

Firstly, (12A) can be derived as follows:

I(Wi∗ ; [Y∗j ,Y∗k]
n
1 |W{j,k}∗, [Z]

n
1 )

= I(Wi∗ ; W{j,k}∗, [Y∗j ,Y∗k,Z]
n
1 ) (34)

≥ n(Ri→j +Ri→k +Ri→jk)(1− 2ǫ)− H2(2ǫ)

log2 q
, (35)

where (34) follows from the definition of mutual information
and the fact thatWi∗, W{j,k}∗, and [Z]n1 are independent of
each other. To derive (35), we observe that the messagesWi∗

can be decoded from[Y∗j,Y∗k,Z]
n
1 andW{j,k}∗ , Wj∗ ∪

Wk∗, see (8) for nodesj andk, with error probability being at
most2ǫ by the union bound. As a result, by Fano’s inequality,
we have (35).

Secondly, (12B) can be derived as follows:

I(Wi∗ ; [Y∗j ,Y∗k]
n
1 |W{j,k}∗, [Z]

n
1 )

≤ H([Y∗j,Y∗k]
n
1 |W{j,k}∗, [Z]

n
1 ) (36)

=

n
∑

t=1

H(Y∗j(t),Y∗k(t) | [Y∗j ,Y∗k]
t−1
1 ,W{j,k}∗, [Z]

t
1)

(37)

=

n
∑

t=1

H(Y∗j(t),Y∗k(t) |

[Y∗j ,Y∗k]
t−1
1 ,W{j,k}∗, [Z]

t
1, Xj(t), Xk(t)) (38)

=

n
∑

t=1

H(Yi→j(t), Yi→k(t) |

[Y∗j ,Y∗k]
t−1
1 ,W{j,k}∗, [Z]

t
1, Xj(t), Xk(t)) (39)

≤
n
∑

t=1

E

{

1{σ(t)=i} ◦ 1{Zi→j(t)=1 or Zi→k(t)=1}

}

(40)

=

n
∑

t=1

E

{

1{σ(t)=i}

}

E

{

1{Zi→j(t)=1 or Zi→k(t)=1}

}

(41)

= pi→j∨kE

{

n
∑

t=1

1{σ(t)=i}

}

= ns(i)pi→j∨k, (42)

where (36) follows from the definition of mutual informa-
tion; (37) follows from the chain rule and from the fact
that the future channel outputs[Z]nt+1 are independent of
Y∗j(t),Y∗k(t); (38) follows from the fact that the transmitted
symbolXj(t) (resp.Xk(t)) is a function of the past received
symbols[Y∗j ]

t−1
1 (resp.[Y∗k]

t−1
1 ), the information messages

Wj∗ (resp.Wk∗), and the past channel outputs[Z]t−1
1 , see (7);

(39) follows from the fact that the received symbolYk→j(t) in
Y∗j(t) (resp.Yj→k(t) in Y∗k(t)) can be uniquely computed
from the values of the current inputXk(t) (resp. Xj(t)),
the current channel outputZ(t), and the current scheduling
decisionσ(t), which depends only on the past channel outputs
[Z]t−1

1 , see (9); (40) follows from that only whenσ(t) = i

with Zi→j(t) = 1 or Zi→k(t) = 1, we will have a non-zero
value of the entropy and it is upper bounded by1 since the
base of the logarithm isq; (41) follows from the fact that since
the scheduling decisionσ(t) depends only on the past channel

outputs[Z]t−1
1 , see (9), the random variablesσ(t) andZ(t)

are independent; and (42) follows from the definition (33).

B. Proof of the3-way multiple-access cut-set condition (13)

We now prove (13) by proving the following two inequali-
ties:

I(W{j,k}∗ ; [Y∗i]
n
1 |Wi∗, [Z]

n
1 )

≥ n

(

Rj→i +Rk→i +Rj→ki +Rk→ij +
pj→i

pj→k∨i

Rj→k

+
pk→i

pk→i∨j

Rk→j − 6ǫ− 3H2(ǫ)

n log2 q

)

, (13A)

I(W{j,k}∗ ; [Y∗i]
n
1 |Wi∗, [Z]

n
1 ) ≤ n(s(j)pj→i + s(k)pk→i).

(13B)

Intuitively, (13B) follows a simple cut condition. By choos-
ing ǫ → 0, we have proven (13).

We now provide the detailed derivation of (13A) and (13B).
Firstly, the inequality (13B) can be derived in a similar way
as (12B). Specifically, we have

I(W{j,k}∗ ; [Y∗i]
n
1 |Wi∗, [Z]

n
1 )

≤ H([Y∗i]
n
1 |Wi∗, [Z]

n
1 ) (43)

=
n
∑

t=1

H(Yj→i(t), Yk→i(t) | [Y∗i]
t−1
1 ,Wi∗, [Z]

t
1), (44)

≤ n(s(j)pj→i + s(k)pk→i), (45)

where (43) follows from the definition of mutual information;
(44) follows from the chain rule and the fact that the future
channel outputs[Z]nt+1 are independent ofYj→i(t), Yk→i(t);
and (45) follows from similar arguments as used in (40) to
(42).

We now prove (13A). For the ease of exposition, we only
prove for the case when the node indices are fixed to(i, j, k) =
(1, 2, 3). Then (13A) becomes

I(W{2,3}∗ ; [Y∗1]
n
1 |W1∗, [Z]

n
1 )

≥ n

(

R2→1 +R3→1 +R2→31 +R3→12 +
p2→1

p2→3∨1

R2→3

+
p3→1

p3→1∨2

R3→2 − 6ǫ− 3H2(ǫ)

n log2 q

)

.

The cases of other node indices(i, j, k) ∈ {(2, 3, 1),
(3, 1, 2)} can be proven by symmetry.

Consider the following claims, whose proofs are relegated
to Appendix D.
Claim 1. The following is true:

I(W{2,3}∗ ; [Y∗1]
n
1 |W1∗, [Z]

n
1 )

=

n
∑

t=1

I(W{2,3}∗ ; Y∗1(t) | [Y∗1,Z]
t−1
1 ,W1∗,Z(t)).

(46)

Claim 2. Define

W
2→3

, W{1,3}∗ ∪W2→1 ∪W2→31, (47)

That is,W
2→3

is the collection of all the9-flow information
messages exceptW2→3. This is why we use the overline in
the subscript. Symmetrically, define

W
3→2

, W{1,2}∗ ∪W3→1 ∪W3→12. (48)
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Then, the following is true:∀ t∈{1, · · · , n},

I(W{2,3}∗ ; Y∗1(t) | [Y∗1,Z]
t−1
1 ,W1∗,Z(t))

≥ I(W∗1 ; Y∗1(t) | [Y∗1,Z]
t−1
1 ,W1∗,Z(t))

+
p2→1

p2→3∨1

I(W2→3 ; Y2∗(t) | [Y2∗,Z]
t−1
1 ,W

2→3
,Z(t))

+
p3→1

p3→1∨2

I(W3→2 ; Y3∗(t) | [Y3∗,Z]
t−1
1 ,W

3→2
,Z(t)).

(49)

Claim 3. The followings are true:
n
∑

t=1

I(W∗1 ; Y∗1(t) | [Y∗1,Z]
t−1
1 ,W1∗,Z(t))

= I(W∗1 ; W1∗, [Y∗1,Z]
n
1 ),

(50)

n
∑

t=1

I(W2→3 ; Y2∗(t) | [Y2∗,Z]
t−1
1 ,W

2→3
,Z(t))

≥ I(W2→3 ; W3∗, [Y∗3,Z]
n
1 ),

(51)

n
∑

t=1

I(W3→2 ; Y3∗(t) | [Y3∗,Z]
t−1
1 ,W

3→2
,Z(t))

≥ I(W3→2 ; W2∗, [Y∗2,Z]
n
1 ).

(52)

By the above Claims 1 to 3 we have

I(W{2,3}∗ ; [Y∗1]
n
1 |W1∗, [Z]

n
1 )

≥ I(W∗1 ; W1∗, [Y∗1,Z]
n
1 )

+
p2→1

p2→3∨1

I(W2→3 ; W3∗, [Y∗3,Z]
n
1 )

+
p3→1

p3→1∨2

I(W3→2 ; W2∗, [Y∗2,Z]
n
1 ), (53)

≥ n(R2→1 + R3→1 +R2→31 +R3→12)(1− ǫ)

− H2(ǫ)

log2 q
+

p2→1

p2→3∨1

(

nR2→3(1− ǫ)− H2(ǫ)

log2 q

)

+
p3→1

p3→1∨2

(

nR3→2(1− ǫ)− H2(ǫ)

log2 q

)

(54)

where (53) follows from jointly combining (46) to (52);
and (54) follows from applying Fano’s inequality to each
individual term. Since we can chooseǫ arbitrarily, by letting
ǫ → 0, we have proven (13A).

Remark: As discussed in Section III-A, (13) is inspired
by the multiple-access channel(MAC) cut-set bound. When
considering the MAC, one usually focuses on allincoming
traffic entering nodei, i.e.,Rj→i, Rj→ki, Rk→i, andRk→ij ,
and thus might be interested in quantifying/bounding the
following mutual information term:

I(Wj→i,Wj→ki,Wk→i,Wk→ij ; [Y∗i]
n
1

|Wi∗,Wj→k,Wk→j , [Z]
n
1 ).

(55)

Unfortunately, (55) does not take into the fact that node
j has some private information that need to be delivered
to node k (thoseWj→k packets) and vice versa. Due to
such an observation, we quantify the mutual information term
I(W{j,k}∗ ; [Y∗i]

n
1 |Wi∗, [Z]

n
1 ) instead of (55). Comparing

I(W{j,k}∗ ; [Y∗i]
n
1 |Wi∗, [Z]

n
1 ) and (55), we can use the chain

rule to show that

(55)= I(W{j,k}∗ ; [Y∗i]
n
1 |Wi∗, [Z]

n
1 )

− I(Wj→k,Wk→j ; [Y∗i]
n
1 |Wi∗, [Z]

n
1 ),

and the differenceI(Wj→k,Wk→j ; [Y∗i]
n
1 |Wi∗, [Z]

n
1 ) can

be viewed as the amount of the private informationWj→k and
Wk→j that has been “leaked” to the other nodei. In some
broad sense, (13) (or equivalent (13A)) characterizes a new
lower bound on the information leakage

I(Wj→k,Wk→j ; [Y∗i]
n
1 |Wi∗, [Z]

n
1 )

≥ pj→i

pj→k∨i

Rj→k +
pk→i

pk→i∨j

Rk→j .

This is why in our discussion right after Proposition 1 we
referred to the termpj→i

pj→k∨i
Rj→k+

pk→i

pk→i∨j
Rk→j as the penalty

for sending those private-information. Note that similar infor-
mation leakage arguments have been used in other channel
models, e.g., the wireless deterministic channels [29].

VI. PROOF OFPROPOSITION3

We provide the so-calledfirst-order analysisfor the achiev-
ability of a LNC solution.

We assume that all nodes know the channel reception
probabilities, the total time budgetn, and the rate vector~R
they want to achieve in the beginning of time0. As a result,
each node can compute the same15 non-negative valuest(i)[u]

and{t(i)[c, l]}4l=1 for all i ∈ {1, 2, 3} satisfying Proposition 3.
Our construction consists of 2 stages. Stage1: Each node,

say nodei, hasn(Ri→j+Ri→k+Ri→jk) unicast and multicast
packets (i.e.,Wi∗) that need to be sent to other nodesj andk.
Assume that those packets are grouped together and indexed
as l = 1 to n(Ri→j + Ri→k + Ri→jk). That is, the packet
indices l = 1 to nRi→j correspond toWi→j packets, the
packet indicesl = nRi→j +1 to n(Ri→j +Ri→k) correspond
to Wi→k packets, and so forth. Then in the beginning of time
1, node1 chooses the first packet (index1) and repeatedly
sends it uncodedly until at least one of nodes2 and3 receives
it. Whether it is received or not can be known causally by
network-wide feedbacksZ(t−1). Then node1 picks the next
indexed packet and repeats the same process until each of
thesen(R1→2 + R1→3 +R1→23) packets is heard by at least
one of nodes2 and 3. By simple analysis, see [21], node
1 can finish the transmission innt(i)[u] slots since (17).5 We
repeat this process for nodes2 and3, respectively. Note that
once node1 has finished transmitting all its own packets
W1∗, node2 can immediately take over and start transmitting
its own packetsW2∗ because node2 knows the value of
n(R1→2 + R1→3 + R1→23) and from the instant, error-free,
network-wide feedback, node2 can count in the end of each
time slot how many packets node1 finished transmission. By
the same reason, node3 can immediately take over after node
2 has finished. Stage1 can be finished inn(

∑

i t
(i)
[u] ) slots.

After Stage1, the status of all packets is summarized as
follows. Each ofWi→j packets is heard by at least one of
nodesj and k. Those that have already been heard by node
j, the intended destination, are delivered successfully and
thus will not be considered for future operations (Stage2).
We denote thoseWi→j packets that are overheard by node
k only (not by nodej) as W

(k)
i→j . In average, there are

5By the law of large numbers, we can ignore the randomness of the events
and treat them as deterministic whenn is sufficiently large.
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nRi→j
pi→jk

pi→j∨k
number of W(k)

i→j packets. Since the causal
feedback is available to all network nodes (not only nodei), by
letting all three nodes perform some simple bookkeeping, any
one of the three network nodes (not only nodei) is aware of the
indices of all theW(k)

i→j packets. We denote the corresponding

index set byI(k)i→j . Symmetrically, we also havenRi→k
pi→jk

pi→j∨k

number ofW(j)
i→k packets that was intended for nodek but

was overheard only by nodej in Stage1, and all three nodes
can individually create the corresponding index setI

(j)
i→k.

Similarly for the common-information packetsWi→jk,
each packet was heard by at least one of nodesj and k in
Stage1. Those that have been heard by both nodesj and
k, are delivered successfully and thus will not be considered
in Stage2. We similarly denote thoseWi→jk packets that
are heard by nodek only (not by nodej) as W

(k)
i→jk. In

average, there arenRi→jk
pi→jk

pi→j∨k
number ofW(k)

i→jk pack-

ets. Symmetrically, we also havenRi→jk
p
i→jk

pi→j∨k
number of

W
(j)
i→jk packets that were heard only by nodej in Stage1.

The corresponding index sets are denoted byI
(k)
i→jk andI(j)i→jk,

respectively, and they can be individually created by all three
nodes through simple bookkeeping.

In summary, all three nodes individually know all12 index
sets{I(k)i→j , I

(k)
i→jk, I

(j)
i→k, I

(j)
i→jk : ∀(i, j, k)} after Stage1. In

addition, each nodei knows the content of its own packets
Wi→j , Wi→k, andWi→jk, and the content of what it has
received from other nodes(W(i)

j→k,W
(i)
j→ki,W

(i)
k→j ,W

(j)
k→ij)

during Stage 1.
Stage2 is the LNC phase, in which each nodei will send a

linear combination of the overheard packets. That is, for each
time t, nodei sends a linear combinationXi(t) = [W̃j + W̃k]
with 4 possible ways of choosing the constituent packetsW̃j

andW̃k, which are detailed as follows.

[c,1] : W̃j∈W
(k)
i→j∪W

(k)
i→jk and W̃k∈W

(j)
i→k∪W

(j)
i→jk,

[c,2] : W̃j∈W
(i)
k→j∪W

(i)
k→ij and W̃k∈W

(i)
j→k∪W

(i)
j→ki,

[c,3] : W̃j∈W
(k)
i→j∪W

(k)
i→jk and W̃k∈W

(i)
j→k∪W

(i)
j→ki,

[c,4] : W̃j∈W
(i)
k→j∪W

(i)
k→ij and W̃k∈W

(j)
i→k∪W

(j)
i→jk.

To explain the intuition behind the4 coding choices [c,1]
to [c,4], we observe that choice [c,1] is the standard LNC
operation for the2-receiver broadcast channels [14] since
node i sends a linear sum that benefits both nodesj and k

simultaneously, i.e., the sum of two packets, each overheard
by an undesired receiver. Choice [c,2] is the standard LNC
operation for the2-way relay channels, since nodei, as a
relay for the2-way traffic from j → k and from k → j,
respectively, mixes the packets from two opposite directions
and sends their linear sum.

Choices [c,3] and [c,4] are the new “hybrid” cases that
are proposed in this work, for which we can mix part of the
broadcast traffic and part of the2-way traffic. We argue that
transmitting such a linear mixture again benefits both nodes
simultaneously. For example, suppose that coding choice [c,3]
is used, and the linear sum[W̃j + W̃k] is received by nodej.
SinceW̃k is a function of all packets originated from nodej,

nodej can computeW̃k by itself and then subtract it from the
linear sum and derive the desired packetW̃j . Similarly, if node
k receives the linear sum, since it has overheard all packets
in W

(k)
i→j ∪W

(k)
i→jk , it can subtractW̃j and decode its desired

W̃k. The argument for coding choice [c,4] is symmetric.
We now explain in details how to implement the above4

coding choices for each of the time slots in Stage 2. The best
way to explain the implementation is to temporarily view the
overheard packets as being stored in a big queue. Namely, in
the beginning of Stage 2, all the packets inW(k)

i→j ∪W
(k)
i→jk

are put into a big queue. Similarly, all the packets inW
(j)
i→k ∪

W
(j)
i→jk, W(i)

k→j ∪W
(i)
k→ij , andW(i)

j→k ∪W
(i)
j→ki are put into

3 big queues as well, one queue for each set of packets
respectively. Then coding choice [c,1] means that nodei takes
the head-of-line packet from the queue ofW

(k)
i→j ∪ W

(k)
i→jk,

and combines it with the head-of-line packet from the queue
of W

(j)
i→k ∪ W

(j)
i→jk. Coding choices [c,2] to [c,4] can be

interpreted similarly by combining the head-of-line packets
from different queues.

Since each nodei has4 possible coding choices, we perform
coding choice [c,l] for exactly nt

(i)
[c, l] times sequentially for

l=1 to 4. After sending the4 coding choices for a combined
total of n

(

t
(i)
[c,1] + t

(i)
[c,2] + t

(i)
[c,3] + t

(i)
[c,4]

)

time slots for node
i, we set i = i + 1 and repeat the same process until all
three nodes have finished transmission. Totally, Stage 2 takes
∑

i∈{1,2,3} n
(

t
(i)
[c,1] + t

(i)
[c,2] + t

(i)
[c,3] + t

(i)
[c,4]

)

time slots. We now
describe how to manage the “queues” within each node during
transmission.

Suppose that nodei is performing the coding choice [c,1]
and chooses two head-of-line packetsW̃j ∈W

(k)
i→j ∪W

(k)
i→jk

andW̃k∈W
(j)
i→k∪W

(j)
i→jk from the individual queues, respec-

tively. If the linear combination[W̃j+W̃k] is received by node
j, then nodej will decode the desired̃Wj by subtracting the
overheard packet̃Wk. As a result, we remove the successfully
delivered packetW̃j from the queue ofW(k)

i→j ∪ W
(k)
i→jk.

Similarly, if the combination[W̃j + W̃k] is received by node
k, then nodek can decode the desired packetW̃k and we
removeW̃k from the corresponding queue ofW

(j)
i→k∪W

(j)
i→jk.

If any one of the two queues is empty, say the queue of
W

(k)
i→j ∪ W

(k)
i→jk is empty during coding choice [c,1], then

we simply setW̃j = 0. Namely, in such a degenerate case
we choose to send an uncoded packet[0 + W̃k] instead of a
linear combination[W̃j +W̃k]. If both queues are empty, then
we simply send a0 packet. The same queue management is
applied to coding choices [c,2] to [c,4] as well.

Note that the above process requires very detailed book-
keeping at each node. Namely, nodej (resp. nodek) needs
to know the head-of-line packet̃Wk (resp.W̃j) while node
i is executing Stage 2, so that it can subtract the overheard
from the linear combination[W̃j+W̃k] when received. This is
possible since in the beginning of Stage 2, each node knows
all 12 index sets:{I(k)i→j , I

(k)
i→jk , I

(j)
i→k, I

(j)
i→jk : ∀(i, j, k)}.

Since the reception status[Z]t−1
1 is available to all nodes

for free, through detailed bookkeeping and a proper counting
mechanism over the index sets, each node (not only nodei

but also nodesj and k) can successfully trace the status of
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the queues when nodei is executing Stage 2. In this way each
node maintains a synchronized view of the queue status of the
other nodes and can thus identify the head-of-line packets that
constitute the linear combination.

Another important point worth emphasizing is that the
queues cannot be replenished during Stage 2. Namely, if a
packet is removed from the queue in one coding operation,
then it will be removed from the synchronized queues at
all three nodes and will not participate in any future coding
operations. For example, the packets inW

(k)
i→j ∪W

(k)
i→jk will

participate in coding choice [c,1] of nodei, but they can also
participate in coding choice [c,3] of nodei, and coding choices
[c,2] and [c,3] of nodek. If a packet inW(k)

i→j ∪W
(k)
i→jk is

successfully delivered through coding choice [c,1] of node i,
then it will be removed from the queue and will not participate
in any subsequent coding choices [c,3] of nodei, and coding
choices [c,2] and [c,3] of node k in the future time slots.
Again, this LNC design is possible since each node maintains
a synchronized view of the queue status of the other nodes
with the help of the causal feedback[Z]t−1

1 .
SinceW(k)

i→j ∪W
(k)
i→jk participates in coding choices [c,1]

and [c,3] of node i and coding choices [c,2] and [c,3] of
nodek, (18) guarantees that the queue ofW

(k)
i→j ∪ W

(k)
i→jk

will be empty in the end of Stage 2, which means that we
can finish sending allW(k)

i→j ∪W
(k)
i→jk packets and they will

all successfully arrive at nodej, the intended destination.6

Symmetrically, (19) guarantees that the queue ofW
(j)
i→k ∪

W
(j)
i→jk will be empty, which means that we can finish sending

all W(j)
i→k∪W

(j)
i→jk packets to their intended destination node

k in the end of Stage 2. Finally, (15) guarantees that we can
finish Stages1 and 2 in the allottedn time slots. The proof
of Proposition 3 is complete.

Remark:An astute reader might notice that it would be a
strict waste of resource if a node transmitsXi(t) = 0 packet,
which happens when both queues are empty during Stage 2.
The reason why we include such a “wasteful” operation is that
the scheme described herein has to operate under any arbitrary
t-values satisfying (15)–(19). The underlyingt-values may not
be optimal and sometimes they canoverly allocatetime slots.
Therefore, we include theidle operation(i.e., sendingXi(t) =
0) in our scheme description so that we can properly consume
the overly allocated time slots. One can actually prove thatif
the optimalt-values derived in Proposition 4 are used, then
the proposed scheme will never be idle or equivalently will
not send such a fixedXi(t) = 0.

VII. D ISCUSSIONS ONCHANNEL INTERFERENCEMODELS

In this paper, the 3-node packet erasure problem is for-
mulated based on the full collision model. Namely, when-
ever two or more nodes transmit, both transmissions always
collide regardless whether erasure happens. Essentially,this
full-collision model necessitates time-sharing among allthree

6Those W
(k)
i→jk

packets are the common-information packets that are

intended for both nodesj and k. However, since our definition ofW(k)
i→jk

counts only those that have already been received by nodek, we say herein
their new intended destination is nodej instead.

nodes. One main reason behind this model is to characterize
the throughput benefits of broadcast diversity and find the
largest attainable capacity of a 3-node PEN without worrying
about the effects of interference.

For future work, there are a couple of ways that can
generalize the above full-collision model. One is called the
partial collision model. Namely, when two nodes transmit,
then they collide only if both are non-erasure. If only one
is non-erasure, then the receiver still hears the non-erased
one successfully. Another interference model is the additive
interference model. Namely, when both nodes transmit and
both are non-erasure, we add the transmitted filesX1 andX2

in the finite field. This is the most complicated one and similar
to the settings used in some existing works [30]–[34]. There
currently are no known capacity results on the general 3-node
networks with 9 co-existing flows.

VIII. C ONCLUSION

This work studies the capacity of the3-node packet erasure
network, when the most general9-dimensional private- and
common-information traffics are considered. The Shannon
capacity has been exactly characterized for all channel pa-
rameters when the causal ACK/NACK feedbacks are causally
available for free through a separate control channel. For the
practical setting where the control messages have to be sent
through the regular forward channels, under the assumption
of the network beingfully-connected, the capacity region is
bracketed by a pair of upper and lower bounds, the gap of
which is inversely proportional to the packet size (in bits).
The capacity region is thus effectively characterized whenthe
packet size becomes sufficiently large. Technical contributions
of this work include a new converse for many-to-many net-
work communications and a new capacity-approaching scheme
based on simple linear network coding operations.

APPENDIX A
PROOF OFLEMMA 1

We prove this by induction. Whent = 1, then (6) and
(10) are equivalent by definition. Suppose (6) and (10) are
equivalent fort = 1 to t0 − 1. We now considert = t0. By
Lemma 2 in Appendix D,[Y∗i]

t0−1
1 can be uniquely computed

by the values ofW{1,2,3}∗ and [Z]t0−1
1 . As a result, we can

rewrite (6) by

σi(t0) = f
(t0)

SCH, i(W{1,2,3}∗, [Z]
t0−1
1 ). (56)

Then due to the information equality (5), there is no
dependence betweenσi(t0) andW{1,2,3}∗. As a result, we can
further removeW{1,2,3}∗ from the input arguments in (56),
which leads to (10). By induction, the proof of Lemma 1 is
thus complete.

APPENDIX B
PROOF OFPROPOSITION2

We provide the first-order analysis for the achievability
scheme.

Suppose that all the network nodes share the same param-
eters before initiating, see the discussion in Section VI. Also
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assume that a common random seed is available to all nodes
in advance.

We similarly follow the2-stage scheme used in the proof
of Proposition 3. The difference is that we need to revise the
scheme in Scenario 1 to take into account the assumption
of Scenario 2 that any feedback information needs to be
sent over the regular channels as well. Our scheme closely
mimics the scheme in Section VI but now uses some form
of random linear network coding (RLNC), which allows us
to circumvent the need of instant causal feedback (after each
transmission) and can thus use “batch feedback” that reports
the reception status with delay. With a common random seed
available to all three nodes, the RLNC operations of one
node can be “simulated” in the other nodes as well. This
allows the same kind of “bookkeeping” as used in the proof
of Proposition 3. Since bookkeeping may be computationally
expensive, in practice, network code designers can place the
coding vectors used by the RLNC in the header of the packets,
which circumvents the need of bookkeeping. However, putting
the coding vectors in the header reduces the data rate. As
a result, to minimize the loss of capacity, we opt to use
bookkeeping instead of the traditional practice of puttingthe
coding vectors in the header of the packet.

We now explain the main RLNC process for each stage. In
each stage, we assume that nodes will sequentially transmit
following the order of the node indices{1, 2, 3}. We now
define the following three constants for each nodei ∈ {1, 2, 3}
that can facilitate our discussion:

η
(i)
1 ,

Ri→j

Ri→j +Ri→k +Ri→jk

, (57)

η
(i)
2 ,

Ri→k

Ri→j +Ri→k +Ri→jk

, (58)

η
(i)
3 ,

Ri→jk

Ri→j +Ri→k +Ri→jk

. (59)

Obviously,η(i)1 +η
(i)
2 +η

(i)
3 = 1 for anyi ∈ {1, 2, 3}. Totally,

there are9 such constants. Note that each of the network node
can compute all9 constants since~R is available to all nodes.
Without loss of generality, we can also assume

t
(i)
[u]

(

η
(i)
1 + η

(i)
3

)

· pi→jk

<
(

t
(i)
[c,1] + t

(i)
[c,3]

)

· pi→j +
(

t
(k)
[c,2] + t

(k)
[c,3]

)

· pk→j ,
(60)

t
(i)
[u]

(

η
(i)
2 + η

(i)
3

)

· pi→jk

<
(

t
(i)
[c,1] + t

(i)
[c,4]

)

· pi→k +
(

t
(j)
[c,2] + t

(j)
[c,4]

)

· pj→k.
(61)

The reason is that we can always sett
(i)
[u] to be ar-

bitrarily close to Ri→j+Ri→k+Ri→jk

pi→j∨k
but still larger than

Ri→j+Ri→k+Ri→jk

pi→j∨k
without violating any of the inequalities

(15) and (17). As a result,t(i)[u] η
(i)
1 can be made arbitrarily close

to Ri→j

pi→j∨k
and t

(i)
[u] η

(i)
3 arbitrarily close to Ri→jk

pi→j∨k
. By (18),

we thus have (60). Similarly, sincet(i)[u] η
(i)
2 andt(i)[u] η

(i)
3 can be

made arbitrarily close toRi→k

pi→j∨k
and Ri→jk

pi→j∨k
, respectively, (19)

implies (61).

Description of Stage1: Each nodei performs the following
RLNC operations exactly fornt(i)[u] number of time slots.

Specifically, consider the firstη(i)1 portion of the allottednt(i)[u]

times. In each of thosent(i)[u] η
(i)
1 time slots, nodei chooses

a 1 × (nRi→j) random encoding row vectorct ∈ F
nRi→j
q

independently and uniformly randomly and transmitsXi(t)

by Xi(t) = ctW
⊤
i→j . We now consider the secondη(i)2

portion of the nt
(i)
[u] time slots. In each of thosent(i)[u] η

(i)
2

time slots, nodei chooses a1 × (nRi→k) random coding
vectorct independently and uniformly randomly and transmits
Xi(t) = ctW

⊤
i→k. Finally, consider the lastη(i)3 portion of

the nt
(i)
[u] time slots. In each of thosent(i)[u] η

(i)
3 time slots,

nodei chooses a1 × (nRi→jk) vectorct independently and
uniformly randomly and transmitsXi(t) = ctW

⊤
i→jk. Namely

for the allottednt(i)[u] time slots, nodei sequentially transmits
some random mixture of the packetsWi→j , Wi→k, and
Wi→jk over the fixed fractionsη(i)1 , η(i)2 , andη

(i)
3 of times,

respectively, and does not care whether the transmitted packet
is correctly received or not. Stage1 can be finished in exactly
n(
∑

i t
(i)
[u] ) slots.

Note that when nodei computes the coding vectorsct, the
other nodesj andk can also “simulate” the computation and
thus know thect vector used by nodei. As a result, if node
j receives a coded packetXi(t) = ctW

⊤
i→jk during the third

fraction of nodei’s transmission, nodej knows thect vector
used for encoding.

New Packet Regrouping After Stage1: After Stage1, we
put some of those{ctWi→j} packets that were sent during the
first fraction of Stage1, totally there arent(i)[u] η

(i)
1 such packets,

into two disjoint groups. Specifically, we use{ctWi→j}jk
to denote those packets{ctWi→j} that are heard only by
nodek and not by nodej; and we use{ctWi→j}j to denote
those packets that are heard by nodej (may or may not
be heard by nodek). In average, there arent(i)[u] η

(i)
1 pi→jk

number of{ctWi→j}jk packets andnt(i)[u] η
(i)
1 pi→j number of

{ctWi→j}j packets.

Symmetrically, we put some of thosent(i)[u] η
(i)
2 packets sent

during the second fraction of Stage1 into two disjoint groups.
That is,{ctWi→k}jk and{ctWi→k}k denote those packets
that are heard by nodej only, and by nodek (may or may
not be heard by nodej), respectively. The size of each group,
in average, isnt(i)[u] η

(i)
2 pi→jk andnt(i)[u] η

(i)
2 pi→k, respectively.

Finally, among the nt
(i)
[u] η

(i)
3 number of the packets

{ctWi→jk} sent in the third fractionη(i)3 , we place them into
4 different groups but this time the groups are not necessarily
disjoint. Specifically, we use{ctWi→jk}jk and{ctWi→jk}j
to denote, respectively, the packets that are received by nodek
only (not by nodej) and by nodej (regardless whether node
k receives them). We use{ctWi→jk}jk and {ctWi→jk}k
to denote, respectively, those packets that are heard by node
j only (not by nodek) and by nodek (regardless whether
node j receives them). The first two groups of packets are
disjoint and the last two groups of packets are disjoint. But
there may be overlap between{ctWi→jk}j and{ctWi→jk}k.
In average, the sizes of these four groups arent

(i)
[u] η

(i)
3 pi→jk,
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nt
(i)
[u] η

(i)
3 pi→j , nt

(i)
[u] η

(i)
3 pi→jk, andnt(i)[u] η

(i)
3 pi→k, respectively.

For ease of description, we further put some of the groups
of the packets into super groups. Specifically, for all(i, j, k) ∈
{(1, 2, 3), (2, 3, 1), (3, 1, 2)},

W̃
(k)
i→j , {ctWi→j}jk ∪ {ctWi→jk}jk, (62)

W̃
(j)
i→k , {ctWi→k}jk ∪ {ctWi→jk}jk. (63)

In total, there are6 suchW̃-groups by definition and their
sizes, in average, are

|W̃(k)
i→j | = nt

(i)
[u]

(

η
(i)
1 + η

(i)
3

)

pi→jk, (64)

|W̃(j)
i→k| = nt

(i)
[u]

(

η
(i)
2 + η

(i)
3

)

pi→jk. (65)

Description of The Feedback Stage:Thus far, the above
re-grouping of the packets can be made only when one has
the full knowledge of the reception status. However, right after
Stage1, no node has received any feedback yet and it is
thus impossible to perform the packet regrouping as described
previously. After Stage1, we thus perform the following
feedback stage so that after the feedback stage, all nodes can
share a synchronized view about which packets are in which
groups. Again, we emphasize that the goal of the feedback
stage is to convey the reception status ACK/NACK. We never
send any actual coded/uncoded messages (the payload) during
the feedback stage.

Specifically, during Stage1, each nodei has been on the
listening side for a total duration ofn

(

t
(j)
[u] + t

(k)
[u]

)

number
of time slots. As a result, each nodei can record whether it
received a packet or not during those time slots and generate
a single file ofn

(

t
(j)
[u] + t

(k)
[u]

)

bits. Then nodei would like
to deliver this file to both nodesj andk. It can be achieved
by the following two-step approach. Step 1: Nodei converts

the file into

⌈

n
(

t
(j)
[u] +t

(k)
[u]

)

log2 q

⌉

number of packets. Then it uses

an MDS code or a rate-less code tobroadcastthose packets
for totally

n
(

t
(j)
[u] + t

(k)
[u]

)

log2(q) · nzmin{pi→j , pi→k}
(66)

number of time slots. As a result, ifmin(pi→j , pi→k) > 0,
thennzmin{pi→j , pi→k} = min(pi→j , pi→k) and both nodes
j and k can recover the file. The feedback transmission for
nodei is thus complete.

However, it is possible thatpi→j = 0 (or pi→k = 0). In
this case,nzmin{pi→j , pi→k} = pi→k and only nodek can
recover the file of nodei. In this case, we let nodek help
relay the file to nodej, which will take additionally

n
(

t
(j)
[u] + t

(k)
[u]

)

log2(q) · pk→j

(67)

number7 of time slots. The feedback stage of nodei finishes
after nodek helps relay the file of nodei. Note that the number

7If pi→j = 0, then by our fully-connectedness assumption,pk→j > 0.

of time slots used for the file of nodei during the feedback
stage can be upper bounded by

n

log2(q) · nzmin{pi→j , pi→k}
+

n

log2(q) · nzmin{pj→k, pj→i}
+

n

log2(q) · nzmin{pk→i, pk→j}
where the first term n

log2(q)·nzmin{pi→j ,pi→k}
upper

bounds (66) sincet(j)[u] + t
(k)
[u] ≤ 1; and the summation

n
log2(q)·nzmin{pj→k,pj→i}

+ n
log2(q)·nzmin{pk→i,pk→j}

upper
bounds (67) regardless whetherpi→j = 0 or pi→k = 0.

Since the feedback stage has to be executed for all three
nodes, the total number of time slots of the feedback stage is
upper bounded byntFB, as defined in (16).

After the feedback stage, every node will know the reception
status of all other nodes during Stage1. All three nodes can
thus share a synchronized view of the packet reception status
and the packet regrouping, as discussed in (62) and (63). In
particular, each nodei exactly knows

• The contents and size of the RLNC packet groups
(W̃

(k)
i→j ,W̃

(j)
i→k). The content of the packets in each

group is known since those are the messages originated
from nodei.

• The contents and size of the RLNC packet groups
(W̃

(i)
j→k,W̃

(i)
k→j). The content of the packets in each

group is known since those are the packets overheard
by nodei.

• The sizes of|W̃(k)
j→i| and |W̃(j)

k→i|, which are obtained
by the feedback it has received from nodesj andk.

• The content of all packets in({ctWj→i}i, {ctWj→ki}i,
{ctWk→i}i, {ctWk→ij}i) are known by nodei since it
has received those packets during Stage1. Note that these
are the packets that have already been delivered to their
target destination, which is nodei. In comparison, the
(W̃

(i)
j→k,W̃

(i)
k→j) in the second bullet are those packets

destined for either nodej or k but is overheardby i.
• The random coding vectors{ct} for all RLNC packets

sent during Stage1. This is due to that all three nodes
compute the coding vectors based on a common random
seed.

Description of Stage2: We describe the LNC operations
of node i only and the operations for other nodes follow
symmetrically. Similar to Stage2 of Proposition 3, each
nodei will perform 4 different types of LNC operations and
each operation will last fornt(i)[c,1] to nt

(i)
[c,4] , respectively.

For each time slot of the first coding operations (out of
totally nt

(i)
[c,1] time slots), we let nodei choose two coding

vectorsct;j and ct;k independently and uniformly randomly,
wherect;j is a 1 × |W̃(k)

i→j | random row vector andct;k is a

1 × |W̃(j)
i→k| random row vector. Then we let nodei send a

linear combination

[c,1] : Xi(t) = W̃
(k)
i→jc

⊤
t;j + W̃

(j)
i→kc

⊤
t;k. (68)

For the next time slot, another pair ofct;j and ct;k cod-
ing vectors are randomly chosen and used to encodeXi(t)
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according to (68). Repeat the above operations until the time-
budgetnt(i)[c,1] is used up. Then we move on and encode the
next coding type [c,l], l = 2, 3, 4

[c,2] : Xi(t) = W̃
(i)
k→jc

⊤
t;j + W̃

(i)
j→kc

⊤
t;k, (69)

[c,3] : Xi(t) = W̃
(k)
i→jc

⊤
t;j + W̃

(i)
j→kc

⊤
t;k, (70)

[c,4] : Xi(t) = W̃
(i)
k→jc

⊤
t;j + W̃

(j)
i→kc

⊤
t;k. (71)

Each coding type [c,l] will last for nt
(i)
[c, l] time slots and

the coding vectorsct;j andct;k are chosen independently and
uniformly randomly with the properly selected dimension. For
example of the coding choice [c,3], the randomly chosenct;j
is a 1 × |W̃(k)

i→j | row vector and the randomly chosenct;k is

a 1× |W̃(i)
j→k| row vector.

Stage2 is completed after all three nodes have finished
sending their corresponding4 coding types. The description
of the proposed scheme is complete. (There is no need to have
the second feedback stage.)

Analysis of the scheme:The total amount of time to finish
the transmission is upper bounded by

n

(

(

∑

∀ i∈{1,2,3}

t
(i)
[u]

)

+ tFB +
(

∑

∀ i∈{1,2,3}

t
(i)
[c,1] + t

(i)
[c,2] + t

(i)
[c,3] + t

(i)
[c,4]

)

)

.

By (15), we can thus finish all the transmissions within the
total time budget ofn time slots.

We now argue that after finishing transmission, all nodes
can decode their desired packets. To that end, we focus only
on node1. The discussions of nodes2 and3 can be made by
symmetry.

During Stage2, consider the transmission of node3. Node
3 has 4 possible coding choices. In each coding choice, it
randomly mixes from two groups of packets. For example, in
coding choice [c,1], node3 mixesW̃(2)

3→1
andW̃(1)

3→2
, see (68)

when (i, j, k) = (3, 1, 2). Since the content of any packets in
W̃

(1)
3→2

is known to node1, see the discussion in the end of the
feedback stage, node1, upon the reception of any [c,1] packet
transmitted by node3, can subtract the term̃W(1)

3→2
c
⊤
t;2 from

the received packet. Therefore, it is as if node1 has received
a packet of the form

W̃
(2)
3→1

c
⊤
t;1 (72)

without the corruption term̃W(1)
3→2

c
⊤
t;2. Similarly, when node3

performs coding choice [c,3], again, node1 will receive coded
packets of the form (72) after subtracting thosẽW

(3)
1→2

c
⊤
t;2

packets of its own, see (70) when(i, j, k) = (3, 1, 2). Also,
during node2 performing coding choices [c,2] and [c,3],
node 1 can again receive coded packets of the form (72)
after subtracting those known packets (either of the form
W̃

(2)
1→3

c
⊤
t;3 or of the formW̃

(1)
2→3

c
⊤
t;3), see (69) and (70) when

(i, j, k) = (2, 3, 1).
SinceW̃(2)

3→1
participates in coding choices [c,1] and [c,3]

of node3 and coding choices [c,2] and [c,3] of node2, node1
will receiven

(

t
(3)
[c,1] + t

(3)
[c,3]

)

·p3→1+n
(

t
(2)
[c,2] + t

(2)
[c,3]

)

·p2→1

number of packets of the form (72). Note that the number
of W̃(2)

3→1
packets, in average, has been computed in (64). By

(60), the number of linear combinations (72) received by node
1 is larger than the number of̃W(2)

3→1
packets to be begin with.

As a result, node1 is guaranteed to decodẽW(2)
3→1

correctly
with close-to-one probability when the finite-field sizeq is
sufficiently large enough.

Recall that by definition (62),W̃(2)
3→1

= {ctW3→1}12 ∪
{ctW3→12}12. We now observe that node1 has also received
all the RLNC packets of({ctW3→1}1, {ctW3→12}1) during
Stage1. As a result, in the end of Stage2, node1 has correctly
received nt

(3)
[u] η

(3)
1 p3→1∨2 number of packets of the form

{ctW3→1} and nt
(3)
[u] η

(3)
3 p3→1∨2 number of packets of the

form {ctW3→12}. Note that we only havenR3→1 of W3→1

packets andnR3→12 of W3→12 packets to begin with. Since
by definition t

(3)
[u] is strictly larger thanR3→1+R3→2+R3→12

p3→1∨2
,

and also by definitions (57) and (59), the number of linear
combinations received by node1 is larger than the number of
uncoded message symbolsW3→1 andW3→12. As a result,
node1 is guaranteed to decodeW3→1 andW3→12 correctly
with close-to-one probability when the finite field sizeq is
sufficiently large enough.

By symmetric arguments, with close-to-one probability
node 1 can also decodeW̃(3)

2→1
in the end of Stage2

and later combinesW̃(3)
2→1

with the packets({ctW2→1}1,
{ctW2→31}1) it has received in Stage1 to decode message
symbolsW2→1 and W2→31. Symmetric arguments can be
used to shown that nodes2 and3 can also decode their desired
messages. The proof of Proposition 2 is thus complete.

Remark:The arguments of letting the finite field size ap-
proach infinity is to ensure that the simple RLNC construction
leads to legitimate MDS codes. When the finite field size is
small, sayq = 2, we can use the fact that for any fixedFq we
can always construct a code with dimensionk that is nearly
MDS in the sense that as long as we receivek+O(

√
k) number

of encoded packets we can reconstruct the original file. Since
we focus only on the normalized throughput, such a near-MDS
code is sufficient for our achievability construction.

APPENDIX C
DETAILED DESCRIPTION OFACHIEVABILITY SCHEMES IN

FIG. 3

In the following, we describe the9-dimensional rate regions
of each suboptimal achievability scheme used for the numer-
ical evaluation in Section IV-E.

• LNC with pure operations 1, 2: The rate regions can be
described by Proposition 3 with the variablest

(i)
[c,3] and t

(i)
[c,4]

hardwired to0 for all i ∈ {1, 2, 3}.

• TWRC at node 1 and RX coord.: This scheme performs
two-way relay channel (TWRC) coding only at node1 for
those3 → 2 and 2 → 3 flows while allowing both nodes2
and3 to relay the node1’s packets destined to each other. That
is, node2 can relayW1→3 andW1→23 for node3, and node
3 can relayW1→2 andW1→23 for node2. The corresponding
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rate regions can be described as follows:
∑

∀ i∈{1,2,3}

t
(i)
[u] + t

(i)
[c] ≤ 1, (73)

R1→2 +R1→3 +R1→23

p1→2∨3

< t
(1)
[u] , (74)

R2→1

p2→1

+
R2→3

p2→3∨1

+
R2→31

p2→1

+
R2→31

p2→3

< t
(2)
[u] , (75)

R3→1

p3→1

+
R3→2

p3→1∨2

+
R3→12

p3→1

+
R3→12

p3→2

< t
(3)
[u] , (76)

R2→3

p
2→31

p2→3∨1

< t
(1)
[c] · p1→3, (77)

R3→2

p
3→12

p3→1∨2

< t
(1)
[c] · p1→2, (78)

(

R1→3 +R1→23

) p
1→23

p1→2∨3

< t
(2)
[c] · p2→3, (79)

(

R1→2 +R1→23

) p
1→23

p1→2∨3

< t
(3)
[c] · p3→2. (80)

Namely, each nodei has two variablest(i)[u] and t(i)[c] for the
respective stages, see (73). During Stage 1, node1 repeatedly
transmits its packets uncodedly until at least one of nodes2

and3 receives it. This stage can be finished withinnt
(1)
[u] time

slots, see (74). For node2, we send allW2→1 and allW2→31

messages directly to node1 and send allW2→31 directly to
node3; but we send allW2→3 messages uncodedly until at
least one of the nodes1 and 3 receives it. Such anuncoded
stagecan be finished innt(2)[u] time slots, see (75). Node3’s
uncoded stage is symmetric to that of node2.

Eq. (77) to (78) allow node1 to perform Two-Way-Relay
coding over the3 → 2 and2 → 3 packets overheard at node1.
(79) allows node2 to relay those packets it has overheard from
node1 to the desired destination node3. (80) is symmetric to
(79).
• [14] & Time-sharing: The rate regions can be described
by Proposition 3 with the variablest(i)[c,2] , t

(i)
[c,3] , andt(i)[c,4] = 0

hardwired to0 for all i ∈ {1, 2, 3}. Namely, we only allow,
as in [14], the broadcast channel LNC of coding choice [c,1]
during the Stage 2.
• Uncoded direct TX: This scheme does not perform any
coding operation when transmitting, and just uncodedly trans-
mits packets one by one until the desired receivers receive it.
The rate region of this primitive scheme can be described by

∑

∀ i∈{1,2,3}

Ri→j

pi→j

+
Ri→k

pi→k

+
Ri→jk

pi→j

+
Ri→jk

pi→k

≤ 1.

APPENDIX D
PROOFS OFTHREE CLAIMS IN SECTION V-B

Before we prove Claims 1 to 3, we prove the following
useful lemmas.
Lemma 2. Consider Scenario 1 and any fixedt ∈
{1, · · · , n}. Then, knowing all the messagesW{1,2,3}∗

and the past channel outputs[Z]t−1
1 can uniquely decide

[X1, X2, X3]
t
1 and [Y1∗,Y2∗,Y3∗]

t−1
1 . Namely,[X1, X2, X3]

t
1

and [Y1∗,Y2∗,Y3∗]
t−1
1 are functions of the random variables

{W{1,2,3}∗, [Z]
t−1
1 } for any timet ∈ {1, · · · , n}.

Proof of Lemma 2:The proof follows from the induction on
time t. When t = 1, each nodei encodes the input symbol
Xi(1) purely based on its information messagesWi∗, see
(7). As a result,{X1(1), X2(1), X3(1)} can be uniquely
determined byW{1,2,3}∗. Lemma 2 thus holds fort = 1.

Suppose that the statement of Lemma 2 is true until time
t = t0 − 1. Considert = t0. By induction,[X1, X2, X3]

t0−1
1

can be uniquely decided byW{1,2,3}∗ and [Z]t0−2
1 . Since

[Y1∗,Y2∗,Y3∗]
t0−1
1 is a function of [X1, X2, X3]

t0−1
1 and

[Z]t0−1
1 , we know that[Y1∗,Y2∗,Y3∗]

t0−1
1 can be uniquely

decided byW{1,2,3}∗ and [Z]t0−1
1 . Then by the encoding

functions in (7), the input symbols{X1(t0), X2(t0), X3(t0)}
at time t = t0 can be uniquely determined as well. The proof
of Lemma 2 is thus complete.

Lemma 3. Consider Scenario 1 and any fixed time slot
t ∈ {1, · · · , n}. Then, knowing the messagesW{1,3}∗, the
received symbols[Y2∗]

t−1
1 , and the past channel outputs

[Z]t−1
1 can uniquely decide[X1, X3]

t
1. Namely,[X1, X3]

t
1 is a

function of the random variables{W{1,3}∗, [Y2∗]
t−1
1 , [Z]t−1

1 }
for any timet ∈ {1, · · · , n}.

Proof of Lemma 3:Similar to Lemma 2, the proof follows
from induction on timet. When t = 1, in the beginning
of time slot 1, X1(1) (resp.X3(1)) is encoded purely based
on the messageW1∗ (resp. W3∗), see (7). As a result,
{X1(1), X3(1)} can be uniquely determined byW{1,3}∗.

Assume that the statement of Lemma 3 is true until time
t = t0 − 1. By induction, [X1, X3]

t0−1
1 can be uniquely

determined by{W{1,3}∗, [Y2∗]
t0−2
1 , [Z]t0−2

1 }. Now consider
time t = t0. Compared to timet = t0 − 1, we know addi-
tionally Y2→1(t0 − 1), Y2→3(t0 − 1), andZ(t0 − 1). Since we
already knew[X3]

t0−1
1 , the received symbols[Y3→1]

t0−1
1 can

be uniquely determined from the given[Z]t0−1
1 . Jointly with

the known messagesW1∗, the received symbols[Y2→1]
t0−1
1 ,

and [Z]t0−1
1 , we can also uniquely determineX1(t0), see the

encoding function of node1 in (7). The proof regarding to
X3(t0) can be done by symmetry. The proof of Lemma 3 is
thus complete.

D-1. Proof of Claim 1

The equality (46) in Claim 1 can be proven as follows.
Notice that

I(W{2,3}∗ ; [Y∗1]
n
1 |W1∗, [Z]

n
1 )

= I(W{2,3}∗ ; [Y∗1,Z]
n
1 |W1∗)− I(W{2,3}∗ ; [Z]

n
1 |W1∗)

(81)

= I(W{2,3}∗ ; [Y∗1,Z]
n
1 |W1∗) (82)

= I(W{2,3}∗ ; [Y∗1,Z]
n−1
1 |W1∗)

+ I(W{2,3}∗ ; Z(n) | [Y∗1,Z]
n−1
1 ,W1∗)

+ I(W{2,3}∗ ; Y∗1(n) | [Y∗1,Z]
n−1
1 ,W1∗,Z(n)) (83)

= I(W{2,3}∗ ; [Y∗1,Z]
n−1
1 |W1∗)

+ I(W{2,3}∗ ; Y∗1(n) | [Y∗1,Z]
n−1
1 ,W1∗,Z(n)), (84)

where (81) follows from the chain rule; (82) follows from
the fact thatW{2,3}∗, W1∗ and [Z]n1 are independent with
each other; (83) follows from the chain rule; and (84) can be
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obtained by showing that the second term of (83) is zero. The
reason is that by our problem formulation,Z(n) is independent
of W{2,3}∗, [Y∗1,Z]

n−1
1 , andW1∗.

By iteratively applying the equalities (83) to (84), we have
proven Claim 1.

D-2. Proof of Claim 2

For any fixed deterministic channel realization[z]t−1
1 , we

will consider the mutual information terms in (49), condition-
ing on the event[Z]t−1

1 = [z]t−1
1 . For notational simplicity, we

use~z to denote the deterministic channel realization[z]t−1
1

of interest and use〈~z〉 , {[Z]t−1
1 = [z]t−1

1 } to denote the
corresponding event.

For any fixed deterministic~z and fixed time instantt, we
define

term
[~z]
0 , I(W{2,3}∗ ; Y∗1(t) | [Y∗1]

t−1
1 , 〈~z〉,W1∗,Z(t)),

(85)

term
[~z]
1 , I(W∗1 ; Y∗1(t) | [Y∗1]

t−1
1 , 〈~z〉,W1∗,Z(t)), (86)

term
[~z]
2 , I(W2→3 ; Y2∗(t) | [Y2∗]

t−1
1 , 〈~z〉,W

2→3
,Z(t)),

(87)

term
[~z]
3 , I(W3→2 ; Y3∗(t) | [Y3∗]

t−1
1 , 〈~z〉,W

3→2
,Z(t)).

(88)

By the definition of mutual information, we have

I(W{2,3}∗ ; Y∗1(t) | [Y∗1,Z]
t−1
1 ,W1∗,Z(t))

=
∑

∀~z

Prob([Z]t−1
1 = ~z) · term[~z]

0 , (89)

I(W∗1 ; Y∗1(t) | [Y∗1,Z]
t−1
1 ,W1∗,Z(t))

=
∑

∀~z

Prob([Z]t−1
1 = ~z) · term[~z]

1 , (90)

I(W2→3 ; Y2∗(t) | [Y2∗,Z]
t−1
1 ,W

2→3
,Z(t))

=
∑

∀~z

Prob([Z]t−1
1 = ~z) · term[~z]

2 , (91)

I(W3→2 ; Y3∗(t) | [Y3∗,Z]
t−1
1 ,W

3→2
,Z(t))

=
∑

∀~z

Prob([Z]t−1
1 = ~z) · term[~z]

3 . (92)

Comparing (49) and equalities (89) to (92), it is clear that
we only need to prove that for all~z, the following inequality
holds:

term
[~z]
0 ≥ term

[~z]
1 +

p2→1

p2→3∨1

term
[~z]
2 +

p3→1

p3→1∨2

term
[~z]
3 . (93)

To prove (93), we first partition all the past channel status
realizations~z into three disjoint sets, depending on the value
of the scheduling decisionσ(t), see (9). That is, for alli ∈
{1, 2, 3},

Zi , {~z : σ(t) = i }.

This partition can be done uniquely since the scheduling
decisionσ(t) is a function of the past channel status[Z]t−1

1 .
We now prove (93) depending on to whichZi the realization

vector~z belong. Specifically, we will prove the following:

• For all ~z ∈ Z1, we have

term
[~z]
0 = 0, (94)

term
[~z]
1 = 0, (95)

term
[~z]
2 = 0, (96)

term
[~z]
3 = 0. (97)

• For all ~z ∈ Z2, we have

term
[~z]
0 ≥ term

[~z]
1 +

p2→1

p2→3∨1

term
[~z]
2 , (98)

term
[~z]
3 = 0. (99)

• For all ~z ∈ Z3, we have

term
[~z]
0 ≥ term

[~z]
1 +

p3→1

p3→1∨2

term
[~z]
3 , (100)

term
[~z]
2 = 0. (101)

Then, one can see that (94) to (101) jointly imply that (93)
holds for all the past channel output realizations~z.

Consider the first case in which~z ∈ Z1. (94) is true because

term
[~z]
0 , I(W{2,3}∗ ; Y∗1(t) | [Y∗1]

t−1
1 , 〈~z〉,W1∗,Z(t))

≤ H(Y∗1(t) | [Y∗1]
t−1
1 , 〈~z〉) (102)

= 0, (103)

where (102) follows from the definition of mutual informa-
tion, non-negativity of entropy, and the fact that condition-
ing reduces entropy; and (103) follows from that, when the
scheduling decision isσ(t) = 1, the received symbols at node
1, i.e.,Y∗1(t), are always erasure.

Similarly applying the above arguments, one can prove that
(95) to (97) are true as well when~z ∈ Z1. The first case is
thus proven.

Consider the second case in which~z ∈ Z2. By the same
argument as used in proving (94) to (97), we can easily prove
(99). We now prove (98). Then notice that

term
[~z]
0 , I(W{2,3}∗ ; Y∗1(t) | [Y∗1]

t−1
1 , 〈~z〉,W1∗,Z(t))

= I(W∗1 ; Y∗1(t) | [Y∗1]
t−1
1 , 〈~z〉,W1∗,Z(t))

+ I(W3→2 ; Y∗1(t) | [Y∗1]
t−1
1 , 〈~z〉,W1∗,W∗1,Z(t))

+ I(W2→3 ; Y∗1(t) | [Y∗1]
t−1
1 , 〈~z〉,W

2→3
,Z(t)) (104)

≥ term
[~z]
1

+ I(W2→3 ; Y∗1(t) | [Y∗1]
t−1
1 , 〈~z〉,W

2→3
,Z(t))

(105)

= term
[~z]
1

+ I(W2→3 ; Y2→1(t) | [Y∗1]
t−1
1 , 〈~z〉,W

2→3
,Z(t)),

(106)

where (104) follows from the chain rule and the fact that
W1∗ ∪ W∗1 ∪ W3→2 contains all9-flow messages except
for W2→3, which, by definition (47), equalsW

2→3
. (105)

follows from the definition (86) and the non-negativity of
mutual information. (106) follows from that when~z ∈ Z2,
the received symbolY3→1(t) ⊂ Y∗1(t) is always erasure.

The second term in the RHS of (106) satisfies

I(W2→3 ; Y2→1(t) | [Y∗1]
t−1
1 , 〈~z〉,W

2→3
,Z(t))

=
p2→1

p2→3∨1

I(W2→3 ; Y2∗(t) | [Y∗1]
t−1
1 , 〈~z〉,W

2→3
,Z(t)).

(107)
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Proof of (107): For the ease of exposition, let us denoteV ,

{[Y∗1]
t−1
1 ,W

2→3
}. Rewriting (107), we thus need to prove

I(W2→3 ; Y2→1(t) |V, 〈~z〉,Z(t))
=

p2→1

p2→3∨1

I(W2→3 ; Y2∗(t) |V, 〈~z〉,Z(t)). (108)

Since~z ∈ Z2, we haveY2→1(t) = X2(t) ◦ Z2→1(t). Since
Z2→1(t) is independent ofW2→3, X2(t), V, and the random
event〈~z〉, we thus have

I(W2→3 ; Y2→1(t) |V, 〈~z〉,Z(t))
= Prob(Z2→1(t) = 1) · I(W2→3 ; X2(t) |V, 〈~z〉)
= p2→1 · I(W2→3 ; X2(t) |V, 〈~z〉). (109)

By similar arguments, we can also prove that

I(W2→3 ; Y2∗(t) |V, 〈~z〉,Z(t))
= Prob({Z2→1(t) = 1} ∪ {Z2→3(t) = 1})

· I(W2→3 ; X2(t) |V, 〈~z〉)
= p2→3∨1 · I(W2→3 ; X2(t) |V, 〈~z〉). (110)

Equalities (109) and (110) jointly imply (108), which com-
pletes the proof of (107).

Then we observe that the mutual information term on the
RHS of (107) also satisfies

I(W2→3 ; Y2∗(t) | [Y∗1]
t−1
1 , 〈~z〉,W

2→3
,Z(t))

= H(Y2∗(t) | [Y∗1]
t−1
1 , 〈~z〉,W

2→3
,Z(t))

−H(Y2∗(t) | [Y∗1]
t−1
1 , 〈~z〉,W

2→3
,W2→3,Z(t)) (111)

= H(Y2∗(t) | [Y∗1]
t−1
1 , 〈~z〉,W

2→3
,Z(t))

−H(Y2∗(t) | [Y2∗]
t−1
1 , 〈~z〉,W

2→3
,W2→3,Z(t)) (112)

≥ H(Y2∗(t) | [Y2∗,Y3∗]
t−1
1 , 〈~z〉,W

2→3
,Z(t))

−H(Y2∗(t) | [Y2∗]
t−1
1 , 〈~z〉,W

2→3
,W2→3,Z(t)) (113)

= H(Y2∗(t) | [Y2∗]
t−1
1 , 〈~z〉,W

2→3
,Z(t))

−H(Y2∗(t) | [Y2∗]
t−1
1 , 〈~z〉,W

2→3
,W2→3,Z(t)) (114)

= I(W2→3 ; Y2∗(t) | [Y2∗]
t−1
1 , 〈~z〉,W

2→3
,Z(t)) (115)

= term
[~z]
2 , (116)

where (111) follows from the definition of mutual information;
(112) follows from that (i)W

2→3
∪ W2→3 contains all the

9-flow information messagesW{1,2,3}∗, and (ii) by Lemma 2,
both[Y∗1]

t−1
1 and[Y2∗]

t−1
1 can be uniquely computed once we

know all the messagesW{1,2,3}∗ = W
2→3

∪W2→3 and the
past channel realizations~z = [z]t−1

1 . Therefore, the conditional
entropy remains identical even when we substitute[Y∗1]

t−1
1 by

[Y2∗]
t−1
1 ; (113) follows from the fact that conditioning reduces

entropy; (114) follows from Lemma 3 that knowing the mes-
sages{W1∗,W3∗} ⊂ W

2→3
, the received symbols[Y2∗]

t−1
1 ,

and the past channel realizations~z = [z]t−1
1 can uniquely

decide [X3]
t
1, and thus also the received symbols[Y3∗]

t−1
1

(since[z]t−1
1 is known). As a result, removing[Y3∗]

t−1
1 in the

first term of (113) will not change the conditional entropy;
(115) follows from the definition of mutual information; and
(116) follows from the definition (87).

Jointly (106), (107), and (116) imply (98).
The third case,~z ∈ Z3, is symmetric to the case of~z ∈ Z2.

The proof of Claim 2 is thus complete.

D-3. Proof of Claim 3

We provide the proofs for the (in)equalities (50) to (52) in
Claim 3. We first show the proof for (50).

Proof of (50): Note that

I(W∗1 ; W1∗, [Y∗1,Z]
n
1 )

= I(W∗1 ; W1∗) + I(W∗1 ; [Y∗1,Z]
n
1 |W1∗) (117)

= I(W∗1 ; [Y∗1,Z]
n
1 |W1∗) (118)

= I(W∗1 ; [Y∗1,Z]
n−1
1 |W1∗)

+ I(W∗1 ; Z(n) | [Y∗1,Z]
n−1
1 ,W1∗)

+ I(W∗1 ; Y∗1(n) | [Y∗1,Z]
n−1
1 ,W1∗,Z(n)) (119)

= I(W∗1 ; [Y∗1,Z]
n−1
1 |W1∗)

+ I(W∗1 ; Y∗1(n) | [Y∗1,Z]
n−1
1 ,W1∗,Z(n)), (120)

where (117) follows from the chain rule; (118) follows from
the fact the messagesW∗1 and W1∗ are independent with
each other; (119) follows from the chain rule; and (120) can be
obtained by showing that the second term of (119) is zero. The
reason is becauseZ(n) is independent ofW∗1, [Y∗1,Z]

n−1
1 ,

andW1∗. By iteratively applying the equalities (119) to (120)
for t = n− 1 back tot = 1, the result (50) follows.

Secondly, we prove (51). The proof of (52) can be derived
symmetrically by swapping the node indices2 and3.

Proof of (51): Note that

I(W2→3 ; W3∗, [Y∗3,Z]
n
1 )

≤ I(W2→3 ; W{1,3}∗,W2→1,W2→31, [Y2∗, Y1→3,Z]
n
1 )
(121)

= I(W2→3 ; W{1,3}∗,W2→1,W2→31, [Y2∗,Z]
n
1 ) (122)

= I(W2→3 ; W2→3
) + I(W2→3 ; [Y2∗,Z]

n
1 |W2→3

),
(123)

= I(W2→3 ; [Y2∗,Z]
n
1 |W2→3

), (124)

= I(W2→3 ; [Y2∗,Z]
n−1
1 |W

2→3
)

+ I(W2→3 ; Z(n) | [Y2∗,Z]
n−1
1 ,W

2→3
)

+ I(W2→3 ; Y2∗(n) | [Y2∗,Z]
n−1
1 ,W

2→3
,Z(n)) (125)

= I(W2→3 ; [Y2∗,Z]
n−1
1 |W

2→3
)

+ I(W2→3 ; Y2∗(n) | [Y2∗,Z]
n−1
1 ,W

2→3
,Z(n)), (126)

where (121) follows from the fact that adding the observations
W1∗, W2→1, W2→31, and [Y2→1]

n
1 increases the mutual

information; (122) follows from Lemma 3 that[X1]
n
1 is a

function of W{1,3}∗, [Y2∗]
n−1
1 , and [Z]n−1

1 , which in turn
implies that[Y1→3]

n
1 is a function ofW{1,3}∗, [Y2∗]

n−1
1 , and

[Z]n1 since[Y1→3]
n
1 is a function of[X1]

n
1 and[Z]n1 . As a result,

removing[Y1→3]
n
1 does not decrease the mutual information;

(123) follows from the chain rule and the definition ofW
2→3

in (47); (124) follows from the fact the messagesW2→3 and
W

2→3
are independent of each other; (125) follows from the

chain rule; and (126) follows from the second term of (125)
being zero, sinceZ(n) is independent ofW2→3, [Y2∗,Z]

n−1
1 ,

and W
2→3

. By iteratively applying the equalities (125) to
(126), the inequality (51) follows.
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APPENDIX E
PROOF OFPROPOSITION4

Without loss of generality, we assume thatpi→j > 0 and
pi→k > 0 for all (i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)} since
the case that any one of them is zero can be viewed as a
limiting scenario and the polytope of the capacity outer bound
in Proposition 1 is continuous with respect to the channel
success probability parameters.

We first introduce the following Lemma.

Lemma4. Given any ~R and the associated3 non-negative
values{s(i)} that satisfy Proposition 1, we can always find
15 non-negative valuest(i)[u] and{t(i)[c, l]}4l=1 for all i ∈ {1, 2, 3}
such that jointly they satisfy the groups of linear conditions in
Proposition 3 (when replacing all strict inequality< by ≤).

One can clearly see that Lemma 4 implies that the capacity
outer bound in Proposition 1 matches the closure of the inner
bound in Proposition 3. The proof of Proposition 4 is thus
complete.

Proof of Lemma 4:Given ~R and the reception probabilities,
consider3 non-negative values{s(i)} that jointly satisfy the
linear conditions of Proposition 1.

We first chooset(i)[u] ,
Ri→j+Ri→k+Ri→jk

pi→j∨k
which is non-

negative by definition. Then definẽs(i) , s(i) − t
(i)
[u] for

all i ∈ {1, 2, 3}. By (12) in Proposition 1, the newly con-
structed values{s̃(i)} must be non-negative. Then, we can
rewrite (13) in Proposition 1 as follows: For all(i, j, k) ∈
{(1, 2, 3), (2, 3, 1), (3, 1, 2)}, we have
(

Rj→i +Rj→ki

) pj→ki

pj→k∨i

+
(

Rk→i +Rk→ij

) pk→ij

pk→i∨j

≤ s̃(j) · pj→i + s̃(k) · pk→i.

For each tuple(i, j, k), define a constantαijk as follows:

αijk =

(

Rj→i +Rj→ki

)

pj→ki

pj→k∨i
(

Rj→i +Rj→ki

)

pj→ki

pj→k∨i
+
(

Rk→i +Rk→ij

)

pk→ij

pk→i∨j

.

For each tuple(i, j, k), we will useαijk, s̃(j) and s̃(k) to
define/compute4 more variables.

s̃
(j)
ijk,+ = αijk · s̃(j),
s̃
(k)
ijk,+ = αijk · s̃(k),
s̃
(j)
ijk,− = (1− αijk) · s̃(j),
s̃
(k)
ijk,− = (1− αijk) · s̃(k).

By the above construction, we quickly have

s̃
(j)
ijk,+ + s̃

(j)
ijk,− = s̃(j), (127)

s̃
(k)
ijk,+ + s̃

(k)
ijk,− = s̃(k), (128)

and
(

Rj→i +Rj→ki

) pj→ki

pj→k∨i

≤ s̃
(j)
ijk,+ · pj→i + s̃

(k)
ijk,+ · pk→i,

(129)
(

Rk→i +Rk→ij

) pk→ij

pk→i∨j

≤ s̃
(j)
ijk,− · pj→i + s̃

(k)
ijk,− · pk→i,

(130)

for every cyclically shifted(i, j, k) tuple. Totally, we have3
variables of the form̃s(i) and12 variables of the forms̃s(j)ijk,+,

s̃
(j)
ijk,−, s̃(k)ijk,+, and s̃(k)ijk,−. Since each̃s(i) may participate in

more than one “splitting operations (127) and (128)”, we thus
have that for all(i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)},

s̃
(i)
jki,+ + s̃

(i)
jki,− = s̃

(i)
kij,+ + s̃

(i)
kij,− = s̃(i). (131)

The following claim allows us to convert thẽs(i)jki,+, s̃(i)jki,−,

s̃
(i)
kij,+, and s̃(i)kij,− values to the targetedt(i)[c,1] to t

(i)
[c,4] values.

Claim: For any cyclically shifted(i, j, k) tuple, given the
above four values of{s̃(i)jki,+, s̃

(i)
jki,−, s̃

(i)
kij,+, s̃

(i)
kij,−} and the

value of s̃(i), we can always find another four non-negative
valuest(i)[c,1] , t

(i)
[c,2] , t

(i)
[c,3], andt(i)[c,4] such that

t
(i)
[c,2] + t

(i)
[c,4] = s̃

(i)
jki,+, (132)

t
(i)
[c,1] + t

(i)
[c,3] = s̃

(i)
jki,−, (133)

t
(i)
[c,1] + t

(i)
[c,4] = s̃

(i)
kij,+, (134)

t
(i)
[c,2] + t

(i)
[c,3] = s̃

(i)
kij,−, (135)

and t(i)[c,1] + t
(i)
[c,2] + t

(i)
[c,3] + t

(i)
[c,4] = s̃(i). (136)

Proof of Claim: Since the given values
{s̃(i)jki,+, s̃

(i)
jki,−, s̃

(i)
kij,+, s̃

(i)
kij,−} satisfy (131), consider the

following two cases depending on the order of the two values
s̃
(i)
jki,− and s̃(i)kij,+.

Case 1: s̃
(i)
jki,− ≥ s̃

(i)
kij,+. We then construct four values

t
(i)
[c,1], t

(i)
[c,2] , t

(i)
[c,3], andt(i)[c,4] in the following way:

t
(i)
[c,1] = s̃

(i)
kij,+,

t
(i)
[c,2] = s̃

(i)
jki,+,

t
(i)
[c,3] = s̃

(i)
kij,− − s̃

(i)
jki,+,

t
(i)
[c,4] = 0.

The above construction clearly gives non-negativet
(i)
[c,1] to

t
(i)
[c,4] values. One can easily verify that the above construction

satisfies all the equalities (132) to (136). For example, by our
constructiont(i)[c,2] + t

(i)
[c,3] = s̃

(i)
jki,+ + s̃

(i)
kij,− − s̃

(i)
jki,+ = s̃

(i)
kij,−,

which satisfies (135).
Case 2: s̃

(i)
jki,− < s̃

(i)
kij,+. We then construct four non-

negative valuest(i)[c,1] , t
(i)
[c,2], t

(i)
[c,3] , and t

(i)
[c,4] in the following

way:

t
(i)
[c,1] = s̃

(i)
jki,−,

t
(i)
[c,2] = s̃

(i)
kij,−,

t
(i)
[c,3] = 0,

t
(i)
[c,4] = s̃

(i)
jki,+ − s̃

(i)
kij,−.

Again, the above construction leads to non-negativet
(i)
[c,1] to

t
(i)
[c,4] values that satisfy (132) to (136). Since the above two

cases cover all possible scenarios, the claim is thus proven.

Using the above claim, we now prove that the constructed
values{t(i)[c,1] , t

(i)
[c,2], t

(i)
[c,3] , t

(i)
[c,4]} for all i ∈ {1, 2, 3} together

with the previously chosent(i)[u] ,
Ri→j+Ri→k+Ri→jk

pi→j∨k
satisfy
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the linear conditions of Proposition 3 (when< being replaced
by ≤).

To that end, we first notice that

t
(i)
[u] + t

(i)
[c,1] + t

(i)
[c,2] + t

(i)
[c,3] + t

(i)
[c,4]

=
Ri→j +Ri→k +Ri→jk

pi→j∨k

+ s̃(i)

= s(i),

where the first equality follows from the definition oft(i)[u] and
(136); and the second equality follows from the definition of
s̃(i). Since the given valuess(i) for all i ∈ {1, 2, 3} satisfy the
time-sharing condition (11) of Proposition 1, the time-sharing
condition (15) of Proposition 3 must hold as well.

Moreover, the second condition (17) of Proposition 3 ob-
viously holds by the definition oft(i)[u] . In the following, we
prove (18) and (19) for the case when(i, j, k) = (1, 2, 3) and
other cases can be proven symmetrically. In other words, we
will prove the following equalities:
(

R1→2 +R1→23

) p
1→23

p1→2∨3

≤
(

t
(1)
[c,1] + t

(1)
[c,3]

)

· p1→2

+
(

t
(3)
[c,2] + t

(3)
[c,3]

)

· p3→2,

(137)
(

R1→3 +R1→23

) p
1→23

p1→2∨3

≤
(

t
(1)
[c,1] + t

(1)
[c,4]

)

· p1→3

+
(

t
(2)
[c,2] + t

(2)
[c,4]

)

· p2→3.

(138)

By (133) and (135), we have
(

t
(1)
[c,1] + t

(1)
[c,3]

)

· p1→2 +
(

t
(3)
[c,2] + t

(3)
[c,3]

)

· p3→2

= s̃
(1)
231,− · p1→2 + s̃

(3)
231,− · p3→2.

As a result, by (130) with the(i, j, k) substituted by
(2, 3, 1), we have proven (137). Similarly, by (134) and (132),
we have
(

t
(1)
[c,1] + t

(1)
[c,4]

)

· p1→3 +
(

t
(2)
[c,2] + t

(2)
[c,4]

)

· p2→3

= s̃
(1)
312,+ · p1→3 + s̃

(2)
312,+ · p2→3.

As a result, by (129) with(i, j, k) substituted by(3, 1, 2),
we have proven (138).

In summary, from the given values{s(i)} for all i∈{1, 2, 3}
satisfying the linear conditions of Proposition 1, we have con-
structed15 non-negative values{t(i)[u] , t

(i)
[c,1], t

(i)
[c,2] , t

(i)
[c,3], t

(i)
[c,4]}

for all i ∈ {1, 2, 3} such that they jointly satisfy the linear
inequalities of Proposition 3. The proof of Lemma 4 is thus
complete.
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